上海市金山區(qū)上海交大南洋中學(xué)2023-2024學(xué)年高一上數(shù)學(xué)期末監(jiān)測試題含解析_第1頁
上海市金山區(qū)上海交大南洋中學(xué)2023-2024學(xué)年高一上數(shù)學(xué)期末監(jiān)測試題含解析_第2頁
上海市金山區(qū)上海交大南洋中學(xué)2023-2024學(xué)年高一上數(shù)學(xué)期末監(jiān)測試題含解析_第3頁
上海市金山區(qū)上海交大南洋中學(xué)2023-2024學(xué)年高一上數(shù)學(xué)期末監(jiān)測試題含解析_第4頁
上海市金山區(qū)上海交大南洋中學(xué)2023-2024學(xué)年高一上數(shù)學(xué)期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海市金山區(qū)上海交大南洋中學(xué)2023-2024學(xué)年高一上數(shù)學(xué)期末監(jiān)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件2.有三個函數(shù):①,②,③,其中圖像是中心對稱圖形的函數(shù)共有().A.0個 B.1個C.2個 D.3個3.下列關(guān)系中,正確的是()A. B.C D.4.終邊在x軸上的角的集合為()A. B.C. D.5.函數(shù)的部分圖像如圖所示,則該函數(shù)的解析式為()A. B.C. D.6.已知冪函數(shù)的圖象過(4,2)點,則A. B.C. D.7.已知函數(shù)的定義域為,命題為奇函數(shù),命題,那么是的()A.充分必要條件 B.既不充分也不必要條件C.充分不必要條件 D.必要不充分條件8.已知是空間兩條不重合的直線,是兩個不重合的平面,則下列命題中正確的是A.,,B,,C.,,D.,,9.已知函數(shù),若函數(shù)有3個零點,則實數(shù)m的取值范圍()A. B.C.(0,1) D.10.正四棱錐的頂點都在同一球面上,若該棱錐的高為4,底面邊長為2,則該球的表面積為()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.我國古代數(shù)學(xué)名著《九章算術(shù)》中將底面為矩形且有一側(cè)棱垂直于底面的四棱錐稱為“陽馬”,現(xiàn)有一“陽馬”如圖所示,平面,,,,則該“陽馬”外接球的表面積為________.12.命題“,”的否定形式為__________________________.13.如圖,全集,A是小于10的所有偶數(shù)組成的集合,,則圖中陰影部分表示的集合為__________.14.求值:____.15.若函數(shù)在上單調(diào)遞增,則的取值范圍是__________16.已知為第四象限的角,,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),(1)求的單調(diào)遞增區(qū)間;(2)令函數(shù),再從條件①、條件②這兩個條件中選擇一個作為已知,求在區(qū)間上的最大值及取得最大值時的值條件①:;條件②:注:如果選擇條件①和條件②分別解答,按第一個解答計分18.如圖所示,正方體的棱長為,過頂點、、截下一個三棱錐.(1)求剩余部分的體積;(2)求三棱錐的高.19.若關(guān)于x的不等式的解集為(1)當時,求的值;(2)若,求的值及的最小值20.已知函數(shù)(其中,)的圖象與軸的任意兩個相鄰交點間的距離為,且直線是函數(shù)圖象的一條對稱軸.(1)求的值;(2)求的單調(diào)遞減區(qū)間;(3)若,求的值域.21.已知二次函數(shù)的圖象關(guān)于直線對稱,且關(guān)于x的方程有兩個相等的實數(shù)根(1)求函數(shù)的值域;

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】解絕對值不等式求解集,根據(jù)充分、必要性的定義判斷題設(shè)條件間的充分、必要關(guān)系.【詳解】由,可得,∴“”是“”的充分而不必要條件.故選:A.2、C【解析】根據(jù)反比例函數(shù)的對稱性,圖象變換,然后結(jié)合中心對稱圖形的定義判斷【詳解】,顯然函數(shù)的圖象是中心對稱圖形,對稱中心是,而的圖形是由的圖象向左平行3個單位,再向下平移1個單位得到的,對稱中心是,由得,于是不是中心對稱圖形,,中間是一條線段,它關(guān)于點對稱,因此有兩個中心對稱圖形故選:C3、B【解析】根據(jù)對數(shù)函數(shù)的性質(zhì)判斷A,根據(jù)指數(shù)函數(shù)的性質(zhì)判斷B,根據(jù)正弦函數(shù)的性質(zhì)及誘導(dǎo)公式判斷C,根據(jù)余弦函數(shù)的性質(zhì)及誘導(dǎo)公式判斷D;【詳解】解:對于A:因為,,,故A錯誤;對于B:因為在定義域上單調(diào)遞減,因為,所以,又,,因為在上單調(diào)遞增,所以,所以,所以,故B正確;對于C:因為在上單調(diào)遞減,因為,所以,又,所以,故C錯誤;對于D:因為在上單調(diào)遞減,又,所以,又,所以,故D錯誤;故選:B4、B【解析】利用任意角的性質(zhì)即可得到結(jié)果【詳解】終邊在x軸上,可能為x軸正半軸或負半軸,所以可得角,故選B.【點睛】本題考查任意角的定義,屬于基礎(chǔ)題.5、A【解析】由圖象確定以及周期,進而得出,再由得出的值.【詳解】顯然因為,所以,所以由得所以,即,因為,所以所以.故選:A【點睛】本題主要考查了由函數(shù)圖象確定正弦型函數(shù)的解析式,屬于中檔題.6、D【解析】設(shè)函數(shù)式為,代入點(4,2)得考點:冪函數(shù)7、C【解析】根據(jù)奇函數(shù)的性質(zhì)及命題充分必要性的概念直接判斷.【詳解】為奇函數(shù),則,但,無法得函數(shù)為奇函數(shù),例如,滿足,但是為偶函數(shù),所以是的充分不必要條件,故選:C.8、D【解析】A不正確,也有可能;B不正確,也有可能;C不正確,可能或或;D正確,,,,考點:1線面位置關(guān)系;2線面垂直9、C【解析】函數(shù)有3個零點,所以有三個實根,即直線與函數(shù)的圖象有三個交點,作出圖象,即可求出實數(shù)的取值范圍【詳解】因為函數(shù)有3個零點,所以有三個實根,即直線與函數(shù)的圖象有三個交點作出函數(shù)圖象,由圖可知,實數(shù)的取值范圍是故選:C.10、A【解析】正四棱錐P-ABCD的外接球的球心在它的高上,記為O,PO=AO=R,,=4-R,在Rt△中,,由勾股定理得,∴球的表面積,故選A.考點:球的體積和表面積二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】以,,為棱作長方體,長方體的對角線即為外接球的直徑,從而求出外接球的半徑,進而求出外接球的表面積.【詳解】由題意,以,,為棱作長方體,長方體的對角線即為外接球的直徑,設(shè)外接球的半徑為,則故.故答案為:【點睛】本題考查了多面體外接球問題以及球的表面積公式,屬于中檔題.12、##【解析】根據(jù)全稱量詞命題的否定直接得出結(jié)果.【詳解】命題“”的否定為:,故答案為:13、【解析】根據(jù)維恩圖可知,求,根據(jù)補集、交集運算即可.【詳解】,A是小于10的所有偶數(shù)組成的集合,,,由維恩圖可知,陰影部分為,故答案為:14、【解析】根據(jù)誘導(dǎo)公式以及正弦的兩角和公式即可得解【詳解】解:因為,故答案為:15、【解析】由題意根據(jù)函數(shù)在區(qū)間上為增函數(shù)及分段函數(shù)的特征,可求得的取值范圍【詳解】∵函數(shù)在上單調(diào)遞增,∴函數(shù)在區(qū)間上為增函數(shù),∴,解得,∴實數(shù)的取值范圍是故答案為【點睛】解答此類問題時要注意兩點:一是根據(jù)函數(shù)在上單調(diào)遞增得到在定義域的每一個區(qū)間上函數(shù)都要遞增;二是要注意在分界點處的函數(shù)值的大小,這一點容易忽視,屬于中檔題16、【解析】給兩邊平方先求出,然后利用完全平方公式求出,再利用公式可得結(jié)果.【詳解】∵,兩邊平方得:,∴,∴,∵為第四象限角,∴,,∴,∴.故答案為:【點睛】此題考查的是同角三角函數(shù)的關(guān)系和二倍角公式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),(2)答案不唯一,具體見解析【解析】(1)根據(jù)正弦函數(shù)的單調(diào)增區(qū)間建立不等式求解即可得出;(2)選①代入,化簡,令,轉(zhuǎn)化為二次函數(shù)求值域即可,選擇條件②代入化簡,令,根據(jù)正弦函數(shù)的圖象與性質(zhì)求最值即可求解.【小問1詳解】函數(shù)的單調(diào)增區(qū)間為()由,,解得,,所以的單調(diào)增區(qū)間為,【小問2詳解】選擇條件①:令,因為,所以所以所以,因為在區(qū)間上單調(diào)遞增,所以當時,取得最大值所以當時,取得最大值選擇條件②:令,因為,所以所以當時,即時,取得最大值18、(1);(2).【解析】(1)由題意,正方體的幾何結(jié)構(gòu)特征,結(jié)合棱錐和正方體的體積公式,即可求解;(2)由(1),結(jié)合,即可求解.【詳解】(1)由題意,正方體的棱長為,則正方體的體積為,根據(jù)三棱錐的體積公式,可得,所以剩余部分的體積.(2)由(1)知,設(shè)三棱錐的高為,則,故,解得.【點睛】求空間幾何體的表面積與體積的求法:(1)公式法:對于規(guī)則的幾何體的表面積和體積,可直接利用公式進行求解;(2)割補法:把不規(guī)則的圖形分割成規(guī)則的圖形,然后進行體積的計算,或不規(guī)則的幾何體補成規(guī)則的幾何體,不熟悉的幾何體補成熟悉的幾何體,便于計算;(3)等體積法:等體積法也稱積轉(zhuǎn)化或等積變形,通過選擇合適的底面來求幾何體體積的一種方法,多用來解決錐體的體積,特別時三棱錐的體積.19、(1);(2);.【解析】(1)根據(jù)一元二次不等式解集的性質(zhì),結(jié)合一元二次方程根與系數(shù)的關(guān)系、根的判別式進行求解即可;(2)根據(jù)一元二次不等式解集的性質(zhì),結(jié)合一元二次方程根與系數(shù)的關(guān)系、基本不等式進行求解即可.【小問1詳解】由題可知關(guān)于x的方程有兩個根,所以故【小問2詳解】由題意關(guān)于x的方程有兩個正根,所以有解得;同時,由得,所以,由于,所以,當且僅當,即,且,解得時取得“=”,此時實數(shù)符合條件,故,且當時,取得最小值20、(1)2(2)(3)【解析】小問1:先求解函數(shù)周期再求得參數(shù)的值;小問2:根據(jù)對稱軸求出的值,結(jié)合正弦函數(shù)單調(diào)減區(qū)間定義即可求解;小問3:因為,所以,結(jié)合正弦函數(shù)的值域即可求出結(jié)果【小問1詳解】因為函數(shù)的圖象與軸的任意兩個相鄰交點間的距離為,所以函數(shù)的周期,所以【小問2詳解】因為直線是函數(shù)圖象的一條對稱軸,所以,.又,所以所以函數(shù)的解析式是令,解得所以函數(shù)的單調(diào)遞減區(qū)間為【小問3詳解】因為,所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論