


下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
基于免疫遺傳算法的井下工具試驗裝置模糊神經(jīng)網(wǎng)絡控制的中期報告AbstractThereportpresentstheprogressmadeinthedevelopmentofafuzzyneuralnetworkcontrolsystemforanundergroundtooltestrigusingtheimmunegeneticalgorithm.Themainobjectiveoftheprojectistodevelopacontrolsystemthatcanoptimizetheperformanceoftheundergroundtooltestrig.Thecontrolsystememploysafuzzyneuralnetworkwhichisoptimizedbytheimmunegeneticalgorithm.Theproposedapproachhasshownpromisingresultsintermsofimprovingtheperformanceofthetestrig.Thereportprovidesanoverviewofthetheoreticalbackground,theproposedcontrolsystem,andtheresultsobtainedfrompreliminaryexperiments.IntroductionIntheindustry,undergrounddrillingmachinesarewidelyusedforvariousminingactivitiessuchastheextractionofoil,gas,andminerals.Thesemachinesaremainlyinvolvedinrockdrillingandhaveasignificantimpactontheoverallefficiencyandprofitabilityofminingoperations.Therefore,theperformanceandreliabilityofundergrounddrillingmachinesarecriticalforthesuccessofminingprojects.Testingundergroundtoolsisimportanttoensuretheiroptimalperformance.However,testingmachinesposesachallengeduetotheircomplexityandhighcost.Therefore,developinganefficientcontrolsystemthatcanoptimizetheperformanceofundergrounddrillingmachinesisofsignificantinteresttotheindustry.Inrecentyears,fuzzyneuralnetworkshavebeenwidelyusedincontrolapplicationsduetotheirabilitytohandlecomplexandnonlinearsystems.Fuzzyneuralnetworksemployfuzzylogictomodeluncertainty,andneuralnetworkstolearnandoptimizethecontrolsystem.Immunegeneticalgorithmshavealsobeenusedincontrolapplicationsduetotheirabilitytooptimizecontrolparameters.Therefore,thisprojectproposesthedevelopmentofafuzzyneuralnetworkcontrolsystemoptimizedbytheimmunegeneticalgorithmtocontrolanundergroundtooltestrig.TheoreticalBackgroundFuzzyLogicFuzzylogicisamathematicalrepresentationofuncertaintyandimprecision.Fuzzylogicallowstherepresentationofavariableintermsofmembershipfunctions,whichdeterminethedegreeofmembershipofavariabletoaspecificclass.Fuzzylogichasbeenusedinvariousapplications,suchascontrolsystems,decision-makingsystems,andpatternrecognitionsystems.NeuralNetworksNeuralnetworksareamethodofmachinelearningthathasbeenwidelyusedincontrolapplications.Neuralnetworksconsistofanetworkofinterconnectedneuronsthatcanlearnfromdataandoptimizetheparametersofthecontrolsystem.Thebackpropagationalgorithmiscommonlyusedtotrainneuralnetworks.ImmuneGeneticAlgorithmImmunegeneticalgorithmsareasubclassofgeneticalgorithmsthatareinspiredbythenaturalimmunesystem.Immunegeneticalgorithmsusetheconceptofimmunizationtooptimizetheparametersofthecontrolsystem.Immunegeneticalgorithmshavebeenshowntobeeffectiveinoptimizingcontrolparametersofcomplexandnonlinearsystems.ProposedApproachTheproposedapproachisacontrolsystemthatemploysafuzzyneuralnetworkoptimizedbytheimmunegeneticalgorithm.Thecontrolsystemconsistsofthreemaincomponents:theinputlayer,thehiddenlayer,andtheoutputlayer.Theinputlayerconsistsoftheinputstothecontrolsystem,whicharethedrillingdepth,drillingspeed,drillingpressure,anddrillingtorque.Theinputvaluesaretransformedintofuzzysetsusingmembershipfunctions.Thehiddenlayerconsistsofthefuzzyinferencesystem,whichdeterminesthecontrolactionsbasedontheinputvaluesandthefuzzyrules.ThefuzzyrulesaregeneratedusingtheMamdaniinferencemethod.Theoutputlayerconsistsofthecontrolactions,whicharethedrillingdepth,drillingspeed,drillingpressure,anddrillingtorque.Theoutputvaluesaretransformedfromfuzzysetstocrispvaluesusingdefuzzification.Theimmunegeneticalgorithmisusedtooptimizethefuzzyrulesandtheparametersofthemembershipfunctions.Theimmunegeneticalgorithmemploystheconceptsofimmunizationtooptimizethecontrolparameters.ResultsPreliminaryexperimentshaveshownpromisingresultsinimprovingtheperformanceoftheundergroundtooltestrig.Theoptimizedfuzzyneuralnetworkcontrolsystemachievedahigherdrillingratethantheconventionalcontrolsystem.Theimmunegeneticalgorithmwasalsoshowntobeeffectiveinoptimizingthefuzzyrulesandmembershipfunctions.ConclusionTheproposedapproachofafuzzyneuralnetworkcontrolsystemoptimizedbytheimmunegeneticalgorithmhasshownpromisingresultsinimprovingtheperformanceoftheundergroundtool
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 農(nóng)村污染源控制技術(shù)-全面剖析
- 容器云平臺性能監(jiān)控-全面剖析
- 能源感知調(diào)度策略-全面剖析
- 生鮮類商品采購合同9篇
- 職教數(shù)字化學習環(huán)境構(gòu)建-全面剖析
- 芯片級存儲創(chuàng)新-全面剖析
- 大數(shù)據(jù)資源挖掘分析-全面剖析
- 小學一年級上冊信息技術(shù)課程計劃
- 幼兒園大班下學期團隊合作計劃
- 監(jiān)控拆除合同范本
- 城市建設各行業(yè)編制定員試行標準
- 《核舟記》課后練習及參考答案
- 外來文件一覽表
- 增材制造產(chǎn)業(yè)調(diào)研報告
- 以刀代筆——手工橡皮章課件
- 醫(yī)院環(huán)境衛(wèi)生整治排查表
- 勞動課程校本教材(共43頁)
- 喜達屋明星服務
- 煙草企業(yè)安全生產(chǎn)標準化規(guī)范-第3部分-考核評價準則和方法
- 風機配套件知識
- 硼氫化鈉還原全文
評論
0/150
提交評論