工程流體力學 第二章 流體靜力學201012_第1頁
工程流體力學 第二章 流體靜力學201012_第2頁
工程流體力學 第二章 流體靜力學201012_第3頁
工程流體力學 第二章 流體靜力學201012_第4頁
工程流體力學 第二章 流體靜力學201012_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

工程流體力學第二章流體靜力學1/28/2024§2.1流體靜壓強及其特性流體處于絕對靜止或相對靜止時的壓強一、流體的靜壓強1/28/2024二、流體靜壓強的兩個特性1.方向性流體靜壓力的方向總是沿著作用面的內法線方向;(2)因流體幾乎不能承受拉力,故p指向受壓面。原因:(1)靜止流體不能承受剪力,即τ=0,故p垂直受壓面;1/28/2024二、流體靜壓強的兩個特性2.大小流體靜壓力與作用面在空間的方位無關,僅是該點坐標的函數(shù)。略去無窮小項ozxdzdxdyyBDCo1/28/2024§2.2流體平衡微分方程式一、平衡微分方程式在靜止流體中取如圖所示微小六面體。設其中心點a(x,y,z)的密度為ρ,壓強為p,所受質量力為f。yzoyxzydxdzdyaf,p,ρ1/28/2024§2.2流體平衡微分方程式以x方向為例,列力平衡方程式表面力:

質量力:

p-p/x?dx/2p+p/x?dx/2yzoxxzydxdzdybacf,p,ρ1/28/2024同理,考慮y,z方向,可得:上式即為流體平衡微分方程(歐拉平衡微分方程)p-p/x?dx/2p+p/x?dx/2yzoyxzydxdzdybacf,p,ρ物理意義:在靜止流體中,單位質量流體上的質量力與靜壓強的合力相平衡。適用范圍:所有靜止流體或相對靜止的流體。1/28/2024等壓面:流體中壓強相等的各點組成的平面或曲面。如水平面勢函數(shù):如果存在一個函數(shù)U(x,y,z),使質量力的分量等于這個函數(shù)的偏導數(shù),則這個函數(shù)就為該質量力的勢函數(shù)。(有勢力)(3)(1)(2)2.歐拉微分方程的積分(壓強差公式)物理意義:流體靜壓強的增量決定于質量力1/28/2024等壓面與等勢面重合等壓面與質量力垂直兩個矢量相互垂直已知質量力的方向,可以確定等壓面的形狀1/28/2024§2.3重力作用下的流體平衡一、靜力學基本方程式積分得:zxp11基準面z2p22p0goz11.基本方程式1/28/20242.物理意義位勢能壓強勢能總勢能在重力作用下的連續(xù)均質不可壓縮靜止流體中,各點的單位重力流體的總勢能保持不變。3.幾何意義位置水頭壓強水頭靜水頭在重力作用下的連續(xù)均質不可壓縮靜止流體中,靜水頭線為水平線。1/28/2024h1水靜力學基本方程h=Z0-Z1/28/20244、相對壓強、真空壓強(1)絕對壓強以絕對真空為基準計量的壓強。=相對壓強+大氣壓強(2)相對壓強以當?shù)卮髿鈮簭姙榛鶞视嬃康膲簭姟?絕對壓強-大氣壓強標準大氣壓:海平面上大氣壓強,atm=101325Pa工程大氣壓:at=1kgf/cm2=9.80665×104Pag與萬有引力有關。國際上將在緯度45°的海平面精確測得物體的重力加速度g=9.80665米/秒^2;作為重力加速度的標準值。水銀ρ=13.5951kg/l

(3)真空度=大氣壓強-絕對壓強1/28/20241/28/2024靜止液體的壓強分布圖作用:形象直觀地表示物體表面的靜止液體的壓強分布情況方法:將表面壓強用箭頭表示,箭頭與物體表面垂直,長度與壓強大小成比例,箭頭的方向代表壓強的作用方向,箭頭落在物體表面,就構成了壓強分布圖。注意:由于物體的壁面兩邊都受到大氣壓力作用,相互抵消,因此一般只需畫出相對壓強的分布。1/28/20241、液柱式測壓計1)測壓管測壓管是一根直徑均勻的玻璃管,直接連在需要測量壓強的容器上,以流體靜力學基本方程式為理論依據(jù)。表壓真空優(yōu)點:結構簡單缺點:只能測量較小的壓強五、測壓計1/28/20242)U形管測壓計ph112Ah2ρ2ρpa優(yōu)點:可以測量較大的壓強原理:對于不可壓縮的靜止流體,等壓面為平面要求:容器連通、不可壓縮、靜止流體、互不相混的同一種液體。1/28/20243)U形管差壓計測量同一容器兩個不同位置的壓差或不同容器的壓強差。1A△z2h2hB1/28/2024二、金屬測壓計三、壓力傳感器壓電式壓力傳感器壓阻式壓力傳感器應變式壓力傳感器1/28/20241/28/2024§2.4液體的相對平衡一、等加速水平運動容器中液體的相對平衡容器以等加速度a向右作水平直線運動1/28/2024§2.4液體的相對平衡一、等加速水平運動容器中液體的相對平衡質量力gfahzsz

p0ozaxm容器以等加速度a向右作水平直線運動1/28/2024§2.4液體的相對平衡質量力gfahzsz

p0ozaxm1.等壓面方程積分等壓面是一簇平行的斜面。自由液面:1/28/2024gfahzsz

p0ozaxm2.靜壓強分布規(guī)律積分得:利用邊界條件:1/28/2024gfahzsz

p0ozaxm3.與絕對靜止情況比較(2)壓強分布(1)等壓面絕對靜止:相對靜止:絕對靜止:相對靜止:水平面斜面h-任一點距離自由液面的淹深1/28/2024二、等角速旋轉容器中液體的相對平衡質量力容器以等角速度ω旋轉z

zshzmp0oo

y

2y

2r

2xxxyry1/28/2024質量力1.等壓面方程積分等壓面是一簇繞z軸的旋轉拋物面。自由液面:二、等角速旋轉容器中液體的相對平衡z

zshzmp0oo

y

2y

2r

2xxxyry1/28/20242.靜壓強分布規(guī)律積分得:利用邊界條件:z

zshzmp0oo

y

2y

2r

2xxxyry二、等角速旋轉容器中液體的相對平衡1/28/20243.與絕對靜止情況比較(2)壓強分布(1)等壓面絕對靜止:相對靜止:絕對靜止:相對靜止:水平面旋轉拋物面h-任一點距離自由液面的淹深z

zshzmp0oo

y

2y

2r

2xxxyry二、等角速旋轉容器中液體的相對平衡相對靜止:斜面1/28/2024例1

如圖所示,一灑水車以等加速度a沿著傾角為

的斜面運動,試求灑水車靜壓強分布規(guī)律及等壓面方程。解:取如圖所示坐標系,取自由液面的中點為原點:

經(jīng)受力分析,單位質量力:

fx=-acos

fy=0

fz=-(g+asin

代入到等壓面方程中:積分得:

p=–

[acos

x+(g+asin

)z]+C1/28/2024自由液面上:

x=z=0,p=p0

得:C=p0

即:于是等壓面方程為:——壓強分布顯然也是一種線性分布1/28/2024U型管測加速度

測鑄造分布壓1/28/2024gfahzsz

p0ozaxm1/28/20241/28/2024§2.6靜止液體作用在平面上的總壓力各點壓強大小:一、水平平面上的液體總壓力處處相等各點壓強方向:方向一致bcdapaA

abA

padccAb

apadbapaAc

dh1/28/2024§2.6靜止液體作用在平面上的總壓力各點壓強大小:二、傾斜平面上的液體總壓力處處不相等各點壓強方向:方向一致作用在微分面積dA上的壓力:yoxACDdAabFdF

hDhCyyCyDh作用在平面ab上的總壓力:2.總壓力的大小1.總壓力的方向總壓力的方向垂直于受壓的平面1/28/2024§2.6靜止液體作用在平面上的總壓力二、傾斜平面上的液體總壓力(續(xù))yoxACDdAabFdF

hDhCyyCyDh作用在平面ab上的總壓力:由工程力學知:故即靜止液體作用在平面上的總壓力等于受壓面面積與其形心處的相對壓強的乘積。受壓面面積A對OX軸的靜矩1/28/2024§2.6靜止液體作用在平面上的總壓力二、傾斜平面上的液體總壓力(續(xù))yoxACDdAabFdF

hDhCyyCyDh3.總壓力的作用點合力矩定理:合力對某軸的矩等于各分力對同一軸的矩的代數(shù)和。受壓面A對ox軸的慣性矩。受壓面A對過形心點C且平行于ox軸的軸線的慣性矩。注意:壓力中心D必位于受壓面形心c之下。1/28/2024bycyDCDh1h2BAF例2:一鉛直矩形閘門,已知h1=1m,h2=2m,寬b=1.5m,求總壓力及其作用點。解:1/28/2024§2.7靜止液體作用在曲面上的總壓力各點壓強大?。捍笮〔坏雀鼽c壓強方向:方向不同因作用在曲面上的總壓力為空間力系問題,為便于分析,擬采用理論力學中的分解概念將其分解為水平分力和垂直分力求解。一、總壓力的大小和方向作用在微分面積dA上的壓力:xAzdcPaohchAxzbadAAdFpdFpdFpzdFpx

dAdAxdAz1/28/2024§2.7靜止液體作用在曲面上的總壓力一、總壓力的大小和方向(續(xù))xAzdcPaohchAxzbadAAdFdFdFzdFx

dAdAxdAz1.水平分力作用在曲面上的水平分力等于受壓面形心處的相對壓強pC-p0與其在垂直坐標面oyz的投影面積Ax的乘積。1/28/2024§2.7靜止液體作用在曲面上的總壓力一、總壓力的大小和方向(續(xù))2.垂直分力作用在曲面上的垂直分力等于壓力體的液體重力xAzdcPaohchAxzbadAAdFdFdFzdFx

dAdAxdAz式中:為曲面ab上的液柱體積abcd的體積,稱為壓力體。1/28/2024§2.7靜止液體作用在曲面上的總壓力一、總壓力的大小和方向(續(xù))3.總壓力大?。嚎倝毫εc垂線間的夾角方向:AxzbaPaAzxdF

DD'(1)水平分力Fx的作用線通過Ax的壓力中心;(4)將F的作用線延長至受壓面,其交點D即為總壓力在曲面上的作用點。(3)總壓力F的作用線由Fx、Fz的交點和確定;(2)鉛垂分力Fz的作用線通過V的重心;確定方法:二、總壓力的作用點1/28/2024§2.7靜止液體作用在曲面上的總壓力三、壓力體的兩點說明壓力體僅表示的積分結果(體積),與該體積內是否有液體存在無關。1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論