2024屆云南省昆明市官渡區(qū)先鋒中學(xué)數(shù)學(xué)九上期末學(xué)業(yè)水平測試模擬試題含解析_第1頁
2024屆云南省昆明市官渡區(qū)先鋒中學(xué)數(shù)學(xué)九上期末學(xué)業(yè)水平測試模擬試題含解析_第2頁
2024屆云南省昆明市官渡區(qū)先鋒中學(xué)數(shù)學(xué)九上期末學(xué)業(yè)水平測試模擬試題含解析_第3頁
2024屆云南省昆明市官渡區(qū)先鋒中學(xué)數(shù)學(xué)九上期末學(xué)業(yè)水平測試模擬試題含解析_第4頁
2024屆云南省昆明市官渡區(qū)先鋒中學(xué)數(shù)學(xué)九上期末學(xué)業(yè)水平測試模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆云南省昆明市官渡區(qū)先鋒中學(xué)數(shù)學(xué)九上期末學(xué)業(yè)水平測試模擬試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.拋物線y=(x-4)(x+2)的對稱軸方程為()A.直線x=-2 B.直線x=1 C.直線x=-4 D.直線x=42.為增加綠化面積,某小區(qū)將原來正方形地磚更換為如圖所示的正八邊形植草磚,更換后,圖中陰影部分為植草區(qū)域,設(shè)正八邊形與其內(nèi)部小正方形的邊長都為a,則陰影部分的面積為()A.2a2 B.3a2 C.4a2 D.5a23.下列大學(xué)?;諆?nèi)部圖案中可以看成由某一個基本圖形通過平移形成的是()A. B. C. D.4.若式子有意義,則x的取值范圍為()A.x≥2 B.x≠3C.x≥2或x≠3 D.x≥2且x≠35.如果將拋物線y=x2向上平移1個單位,那么所得拋物線對應(yīng)的函數(shù)關(guān)系式是()A.y=x2+1 B.y=x2﹣1 C.y=(x+1)2 D.y=(x﹣1)26.如圖,正方形的邊長為4,點在的邊上,且,與關(guān)于所在的直線對稱,將按順時針方向繞點旋轉(zhuǎn)得到,連接,則線段的長為()A.4 B. C.5 D.67.下列標(biāo)志圖中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.8.如圖,在中,,,以為斜邊向上作,.連接,若,則的長度為()A.或 B.3或4 C.或 D.2或49.如圖,在菱形ABCD中,對角線AC、BD相交于點O,,則四邊形AODE一定是()A.正方形 B.矩形 C.菱形 D.不能確定10.如圖,一艘快艇從O港出發(fā),向東北方向行駛到A處,然后向西行駛到B處,再向東南方向行駛,共經(jīng)過1小時到O港,已知快艇的速度是60km/h,則A,B之間的距離是()A. B. C. D.11.如圖,在平行四邊形中,,,那么的值等于()A. B. C. D.12.如圖,在Rt△ABC中,∠ACB=900,CD⊥AB于點D,BC=3,AC=4,tan∠BCD的值為()A.; B.; C.; D.;二、填空題(每題4分,共24分)13.如圖,△ABC中,已知∠C=90°,∠B=55°,點D在邊BC上,BD=2CD.把△ABC繞著點D逆時針旋轉(zhuǎn)m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=_____14.已知關(guān)于的一元二次方程的一個根是2,則的值是:______.15.如圖,△ABC中,AD是中線,BC=8,∠B=∠DAC,則線段的長為________.16.如圖,在菱形ABCD中,對角線AC,BD交于點O,∠ABC=60°,AB=2,分別以點A、點C為圓心,以AO的長為半徑畫弧分別與菱形的邊相交,則圖中陰影部分的面積為______.(結(jié)果保留)17.當(dāng)寬為3cm的刻度尺的一邊與圓相切時,另一邊與圓的兩個交點處的讀數(shù)如圖所示(單位:cm),那么該圓的半徑為▲cm.18.已知線段a,b,c,d成比例線段,其中a=3cm,b=4cm,c=6cm,則d=_____cm;三、解答題(共78分)19.(8分)在四邊形ABCD中,對角線AC、BD相交于點O,設(shè)銳角∠DOC=α,將△DOC按逆時針方向旋轉(zhuǎn)得到△D′OC′(0°<旋轉(zhuǎn)角<90°)連接AC′、BD′,AC′與BD′相交于點M.(1)當(dāng)四邊形ABCD是矩形時,如圖1,請猜想AC′與BD′的數(shù)量關(guān)系以及∠AMB與α的大小關(guān)系,并證明你的猜想;(2)當(dāng)四邊形ABCD是平行四邊形時,如圖2,已知AC=kBD,請猜想此時AC′與BD′的數(shù)量關(guān)系以及∠AMB與α的大小關(guān)系,并證明你的猜想;(3)當(dāng)四邊形ABCD是等腰梯形時,如圖3,AD∥BC,此時(1)AC′與BD′的數(shù)量關(guān)系是否成立?∠AMB與α的大小關(guān)系是否成立?不必證明,直接寫出結(jié)論.20.(8分)在綜合實踐課中,小慧將一張長方形卡紙如圖1所示裁剪開,無縫隙不重疊的拼成如圖2所示的“”形狀,且成軸對稱圖形.裁剪過程中卡紙的消耗忽略不計,若已知,,.求(1)線段與的差值是___(2)的長度.21.(8分)⊙O直徑AB=12cm,AM和BN是⊙O的切線,DC切⊙O于點E且交AM于點D,交BN于點C,設(shè)AD=x,BC=y(tǒng).(1)求y與x之間的關(guān)系式;(2)x,y是關(guān)于t的一元二次方程2t2﹣30t+m=0的兩個根,求x,y的值;(3)在(2)的條件下,求△COD的面積.22.(10分)已知關(guān)于的一元二次方程(是常量),它有兩個不相等的實數(shù)根.(1)求的取值范圍;(2)請你從或或三者中,選取一個符合(1)中條件的的數(shù)值代入原方程,求解出這個一元二次方程的根.23.(10分)如圖,已知拋物線與軸相交于、兩點,與軸相交于點,對稱軸為,直線與拋物線相交于、兩點.(1)求此拋物線的解析式;(2)為拋物線上一動點,且位于的下方,求出面積的最大值及此時點的坐標(biāo);(3)設(shè)點在軸上,且滿足,求的長.24.(10分)如圖,在菱形ABCD中,對角線AC,BD交于點O,AE⊥BC交CB延長線于E,CF∥AE交AD延長線于點F.(1)求證:四邊形AECF是矩形;(2)連接OE,若AE=4,AD=5,求OE的長.25.(12分)如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A(-3,m+8),B(n,-6)兩點.(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)求△AOB的面積.26.如圖,點A在軸上,OA=6,將線段OA繞點O順時針旋轉(zhuǎn)120°至OB的位置.(1)求點B的坐標(biāo);(2)求經(jīng)過點A、O、B的拋物線的解析式.

參考答案一、選擇題(每題4分,共48分)1、B【解析】把拋物線解析式整理成頂點式解析式,然后寫出對稱軸方程即可.【詳解】解:y=(x+2)(x-4),=x2-2x-8,=x2-2x+1-9,=(x-1)2-9,∴對稱軸方程為x=1.故選:B.【點睛】本題考查了二次函數(shù)的性質(zhì),是基礎(chǔ)題,把拋物線解析式整理成頂點式解析式是解題的關(guān)鍵.2、A【分析】正多邊形和圓,等腰直角三角形的性質(zhì),正方形的性質(zhì).圖案中間的陰影部分是正方形,面積是,由于原來地磚更換成正八邊形,四周一個陰影部分是對角線為的正方形的一半,它的面積用對角線積的一半【詳解】解:.故選A.3、C【分析】由平移的性質(zhì),分別進(jìn)行判斷,即可得到答案.【詳解】解:由平移的性質(zhì)可知,C選項的圖案是通過平移得到的;A、B、D中的圖案不是平移得到的;故選:C.【點睛】本題考查了平移的性質(zhì),解題的關(guān)鍵是掌握圖案的平移進(jìn)行解題.4、D【分析】求函數(shù)自變量的取值范圍,就是求函數(shù)解析式有意義的條件,根據(jù)二次根式被開方數(shù)必須是非負(fù)數(shù)和分式分母不為0的條件可得關(guān)于x的不等式組,解不等式組即可.【詳解】由題意,要使在實數(shù)范圍內(nèi)有意義,必須且x≠3,故選D.5、A【分析】根據(jù)向上平移縱坐標(biāo)加求出平移后的拋物線的頂點坐標(biāo),然后利用頂點式解析式寫出即可.【詳解】解:∵拋物線y=x2向上平移1個單位后的頂點坐標(biāo)為(0,1),∴所得拋物線對應(yīng)的函數(shù)關(guān)系式是y=x2+1.故選:A.【點睛】本題考查二次函數(shù)的平移,利用數(shù)形結(jié)合思想解題是本題的解題關(guān)鍵.6、C【分析】如圖,連接BE,根據(jù)軸對稱的性質(zhì)得到AF=AD,∠EAD=∠EAF,根據(jù)旋轉(zhuǎn)的性質(zhì)得到AG=AE,∠GAB=∠EAD.求得∠GAB=∠EAF,根據(jù)全等三角形的性質(zhì)得到FG=BE,根據(jù)正方形的性質(zhì)得到BC=CD=AB=1.根據(jù)勾股定理即可得到結(jié)論.【詳解】解:如圖,連接BE,∵△AFE與△ADE關(guān)于AE所在的直線對稱,∴AF=AD,∠EAD=∠EAF,∵△ADE按順時針方向繞點A旋轉(zhuǎn)90°得到△ABG,∴AG=AE,∠GAB=∠EAD.∴∠GAB=∠EAF,∴∠GAB+∠BAF=∠BAF+∠EAF.∴∠GAF=∠EAB.∴△GAF≌△EAB(SAS).∴FG=BE,∵四邊形ABCD是正方形,∴BC=CD=AB=1.∵DE=1,∴CE=2.∴在Rt△BCE中,BE=,∴FG=5,故選:C.【點睛】本題考查了正方形的性質(zhì),勾股定理,全等三角形的判定與性質(zhì)以及旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.7、B【分析】根據(jù)軸對稱圖形和中心對稱圖形的定義逐項識別即可,在平面內(nèi),一個圖形經(jīng)過中心對稱能與原來的圖形重合,這個圖形叫做叫做中心對稱圖形;一個圖形的一部分,以某條直線為對稱軸,經(jīng)過軸對稱能與圖形的另一部分重合,這樣的圖形叫做軸對稱圖形.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形;B、是軸對稱圖形,也是中心對稱圖形;C、是軸對稱圖形,不是中心對稱圖形;D、不是軸對稱圖形,也不是中心對稱圖形.故選B.【點睛】本題考查了軸對稱圖形和中心對稱圖形的識別,熟練掌握軸對稱圖形和中心對稱圖形的定義是解答本題的關(guān)鍵.8、A【分析】利用A、B、C、D四點共圓,根據(jù)同弧所對的圓周角相等,得出,再作,設(shè)AE=DE=x,最后利用勾股定理求解即可.【詳解】解:如圖所示,∵△ABC、△ABD都是直角三角形,∴A,B,C,D四點共圓,∵AC=BC,∴,∴,作于點E,∴△AED是等腰直角三角形,設(shè)AE=DE=x,則,∵CD=7,CE=7-x,∵,∴AC=BC=5,在Rt△AEC中,,∴解得,x=3或x=4,∴或.故答案為:A.【點睛】本題考查的知識點是勾股定理的綜合應(yīng)用,解題的關(guān)鍵是根據(jù)題目得出四點共圓,作出合理輔助線,在圓內(nèi)利用勾股定理求解.9、B【分析】根據(jù)題意可判斷出四邊形AODE是平行四邊形,再由菱形的性質(zhì)可得出AC⊥BD,即∠AOD=90°,繼而可判斷出四邊形AODE是矩形;【詳解】證明:∵DE∥AC,AE∥BD,∴四邊形AODE是平行四邊形,∵四邊形ABCD是菱形,∴AC⊥BD,∴∠AOD=∠AOD=90°,∴四邊形AODE是矩形.故選B.【點睛】本題考查了菱形的性質(zhì)、矩形的判定與性質(zhì)、平行四邊形的判定;熟練掌握矩形的判定與性質(zhì)、菱形的性質(zhì)是解決問題的關(guān)鍵.10、B【分析】根據(jù)∠AOD=45°,∠BOD=45°,AB∥x軸,△AOB為等腰直角三角形,OA=OB,利用三角函數(shù)解答即可.【詳解】∵∠AOD=45°,∠BOD=45°,∴∠AOD=90°,∵AB∥x軸,∴∠BAO=∠AOC=45°,∠ABO=∠BOD=45°,∴△AOB為等腰直角三角形,OA=OB,∵OB+OA+AB=60km,∵OB=OA=AB,∴AB=,故選:B.【點睛】本題考查了等腰直角三角形,解決本題的關(guān)鍵是熟悉等腰直角三角形的性質(zhì).11、D【分析】由題意首先過點A作AF⊥DB于F,過點D作DE⊥AB于E,設(shè)DF=x,然后利用勾股定理與含30°角的直角三角形的性質(zhì),表示出個線段的長,再由三角形的面積,求得x的值,繼而求得答案.【詳解】解:過點A作AF⊥DB于F,過點D作DE⊥AB于E.設(shè)DF=x,∵∠ADB=60°,∠AFD=90°,∴∠DAF=30°,則AD=2x,∴AF=x,又∵AB:AD=3:2,∴AB=3x,∴,∴,解得:,∴.故選:D.【點睛】本題考查平行四邊形的性質(zhì)和三角函數(shù)以及勾股定理.解題時注意掌握輔助線的作法以及注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.12、A【分析】根據(jù)余角的性質(zhì),可得∠BCD=∠A,根據(jù)等角的正切相等,可得答案.【詳解】由∠ACB=90°,CD⊥AB于D,得

∠BCD=∠A

tan∠BCD=tan∠A=,

故選A.【點睛】此題考查銳角三角函數(shù)的定義,利用余角的性質(zhì)得出∠BCD=∠A是解題關(guān)鍵.二、填空題(每題4分,共24分)13、70°或120°【分析】①當(dāng)點B落在AB邊上時,根據(jù)DB=DB1,即可解決問題,②當(dāng)點B落在AC上時,在RT△DCB2中,根據(jù)∠C=90°,DB2=DB=2CD可以判定∠CB2D=30°,由此即可解決問題.【詳解】①當(dāng)點B落在AB邊上時,∵,∴,∴,②當(dāng)點B落在AC上時,在中,∵∠C=90°,,∴,∴,故答案為70°或120°.【點睛】本題考查的知識點是旋轉(zhuǎn)的性質(zhì),解題關(guān)鍵是考慮多種情況,進(jìn)行分類討論.14、1【分析】先將所求式子化成,再根據(jù)一元二次方程的根的定義得出一個a、b的等式,然后將其代入求解即可得.【詳解】由題意,將代入方程得:整理得:,即將代入得:故答案為:1.【點睛】本題考查了一元二次方程的根的定義、代數(shù)式的化簡求值,利用一元二次方程的根的定義得出是解題關(guān)鍵.15、【解析】已知BC=8,AD是中線,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根據(jù)相似三角形的性質(zhì)可得,即可得AC2=CD?BC=4×8=32,解得AC=4.16、【解析】根據(jù)菱形的性質(zhì)得到AC⊥BD,∠AB0=∠ABC=30°,∠BAD=∠BCD=120°,根據(jù)直角三角形的性質(zhì)求出AC、BD,根據(jù)扇形面積公式、菱形面積公式計算即可.【詳解】解:∵四邊形ABCD是菱形,∴AC⊥BD,∠AB0=∠ABC=30°,∠BAD=∠BCD=120°∴AO=AB=1,由勾股定理得,又∵AC=2,BD=2,∴調(diào)影部分的面積為:故答案為:【點睛】本題考查的是扇形面積計算、菱形的性質(zhì),掌握扇形面積公式是解題的關(guān)鍵.17、.【解析】如圖,連接OA,過點O作OD⊥AB于點D,∵OD⊥AB,∴AD=AB=(9﹣1)=1.設(shè)OA=r,則OD=r﹣3,在Rt△OAD中,OA2﹣OD2=AD2,即r2﹣(r﹣3)2=12,解得r=(cm).18、3.【詳解】根據(jù)題意得:a:b=c:d,∵a=3cm,b=4cm,c=6cm,∴3:4=6:d,∴d=3cm.考點:3.比例線段;3.比例的性質(zhì).三、解答題(共78分)19、(1)BD′=AC′,∠AMB=α,見解析;(2)AC′=kBD′,∠AMB=α,見解析;(3)AC′=BD′成立,∠AMB=α不成立【分析】(1)通過證明△BOD′≌△AOC′得到BD′=AC′,∠OBD′=∠OAC′,根據(jù)三角形內(nèi)角和定理求出∠AMB=∠AOB=∠COD=α;(2)依據(jù)(1)的思路證明△BOD′∽△AOC′,得到AC′=kBD′,設(shè)BD′與OA相交于點N,由相似證得∠BNO=∠ANM,再根據(jù)三角形內(nèi)角和求出∠AMB=α;(3)先利用等腰梯形的性質(zhì)OA=OD,OB=OC,再利用旋轉(zhuǎn)證得,由此證明△≌△,得到BD′=AC′及對應(yīng)角的等量關(guān)系,由此證得∠AMB=α不成立.【詳解】解:(1)AC′=BD′,∠AMB=α,證明:在矩形ABCD中,AC=BD,OA=OC=AC,OB=OD=BD,∴OA=OC=OB=OD,又∵OD=OD′,OC=OC′,∴OB=OD′=OA=OC′,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴△BOD′≌△AOC′,∴BD′=AC′,∴∠OBD′=∠OAC′,設(shè)BD′與OA相交于點N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=∠COD=α,綜上所述,BD′=AC′,∠AMB=α,(2)AC′=kBD′,∠AMB=α,證明:∵在平行四邊形ABCD中,OB=OD,OA=OC,又∵OD=OD′,OC=OC′,∴OC′=OA,OD′=OB,∵∠D′OD=∠C′OC,∴180°﹣∠D′OD=180°﹣∠C′OC,∴∠BOD′=∠AOC′,∴△BOD′∽△AOC′,∴BD′:AC′=OB:OA=BD:AC,∵AC=kBD,∴AC′=kBD′,∵△BOD′∽△AOC′,設(shè)BD′與OA相交于點N,∴∠BNO=∠ANM,∴180°﹣∠OAC′﹣∠ANM=180°﹣∠OBD′﹣∠BNO,即∠AMB=∠AOB=α,綜上所述,AC′=kBD′,∠AMB=α,(3)∵在等腰梯形ABCD中,OA=OD,OB=OC,由旋轉(zhuǎn)得:,∴,即,∴△≌△,∴AC′=BD′,,設(shè)BD′與OA相交于點N,∵∠ANB=+∠AMB=,,∴,∴AC′=BD′成立,∠AMB=α不成立.【點睛】此題是變化類圖形問題,根據(jù)變化的圖形找到共性證明三角形全等,由此得到對應(yīng)邊相等,對應(yīng)角相等,在(3)中,對應(yīng)角的位置發(fā)生變化,故而角度值發(fā)生了變化.20、96【分析】如圖1,延長FG交BC于H,設(shè)CE=x,則E'H'=CE=x,根據(jù)軸對稱的性質(zhì)得:D'E'=DC=E'F'=9,表示GH,EH,BE的長,證明△EGH∽△EAB,則,可得x的值,即可求出線段、及FG的長,故可求解.【詳解】(1)如圖1,延長FG交BC于H,設(shè)CE=x,則E'H'=CE=x,由軸對稱的性質(zhì)得:D'E'=DC=E'F'=9,∴H'F'=AF=9+x,∵AD=BC=16,∴DF=16?(9+x)=7?x,即C'D'=DF=7?x=F'G',∴FG=7?x,∴GH=9?(7?x)=2+x,EH=16?x?(9+x)=7?2x,∴EH∥AB,∴△EGH∽△EAB,∴,∴,解得x=1或31(舍),、及FG∴AF=9+x=10,EC=1,故AF-EC=9故答案為:9;(2)由(1)得FG=7?x=7-1=6.【點睛】本題考查了圖形的拼剪,軸對稱的性質(zhì),矩形、直角三角形、相似三角形等相關(guān)知識,積累了將實際問題轉(zhuǎn)化為數(shù)學(xué)問題經(jīng)驗,滲透了數(shù)形結(jié)合的思想,體現(xiàn)了數(shù)學(xué)思想方法在現(xiàn)實問題中的應(yīng)用價值.21、(1)y=;(2)或;(3)1.【分析】(1)如圖,作DF⊥BN交BC于F,根據(jù)切線長定理得,則DC=DE+CE=x+y,在中根據(jù)勾股定理,就可以求出y與x之間的關(guān)系式.(2)由(1)求得,由根與系數(shù)的關(guān)系求得的值,通過解一元二次方程即可求得x,y的值.(3)如圖,連接OD,OE,OC,由AM和BN是⊙O的切線,DC切⊙O于點E,得到,,,推出S△AOD=S△ODE,S△OBC=S△COE,即可得出答案.【詳解】(1)如圖,作DF⊥BN交BC于F;∵AM、BN與⊙O切于點定A、B,∴AB⊥AM,AB⊥BN.又∵DF⊥BN,∴∠BAD=∠ABC=∠BFD=90°,∴四邊形ABFD是矩形,∴BF=AD=x,DF=AB=12,∵BC=y(tǒng),∴FC=BC﹣BF=y(tǒng)﹣x;∵DE切⊙O于E,∴DE=DA=xCE=CB=y(tǒng),則DC=DE+CE=x+y,在Rt△DFC中,由勾股定理得:(x+y)2=(y﹣x)2+122,整理為:y=,∴y與x的函數(shù)關(guān)系式是y=.(2)由(1)知xy=36,x,y是方程2x2﹣30x+a=0的兩個根,∴根據(jù)韋達(dá)定理知,xy=,即a=72;∴原方程為x2﹣15x+36=0,解得或.(3)如圖,連接OD,OE,OC,∵AD,BC,CD是⊙O的切線,∴OE⊥CD,AD=DE,BC=CE,∴S△AOD=S△ODE,S△OBC=S△COE,∴S△COD=××(3+12)×12=1.【點睛】本題考查了圓切線的綜合問題,掌握切線長定理、勾股定理、一元二次方程的解法是解題的關(guān)鍵.22、(1);(2),【分析】(1)由一元二次方程有兩個不相等的實數(shù)根,根據(jù)根的判別式,建立關(guān)于k的不等式,即可求出k的取值范圍;(2)在k的取值范圍內(nèi)確定一個k的值,代入求得方程的解即可.【詳解】解:(1)由題意,得整理,得,所以的取值范圍是;(2)由(1),知,所以在或或三者中取,將代入原方程得:,化簡得:,因式分解得:,解得兩根為,.【點睛】本題考查了一元二次方程根的判別式及因式分解法解一元二次方程的知識,題目難度一般,需要注意計算的準(zhǔn)確度和正確確定k的值.23、(1);(2)當(dāng)時,取最大值,此時點坐標(biāo)為.(3)或17.【分析】(1)根據(jù)對稱軸與點A代入即可求解;(2)先求出,過點作軸的平行線,交直線于點,設(shè),得到,,表示出,根據(jù)二次函數(shù)的性質(zhì)即可求解;(3)根據(jù)題意分①當(dāng)在軸正半軸上時,②當(dāng)在軸負(fù)半軸上時利用相似三角形的性質(zhì)即可求解.【詳解】(1)∵對稱軸為x=?1,∴?=?1,∴b=2a,∴y=ax2+2ax?5,∵y=?x+3與x軸交于點A(3,0),將點A代入y=ax2+2ax?5可得a=∴.(2)令,解得:,,∴,過點作軸的平行線,交直線于點,設(shè),則,∴,,則,∵,∴當(dāng)時,取最大值,此時點坐標(biāo)為.(3)存在,理由:①當(dāng)在軸正半軸上時,如圖,過點作于,根據(jù)三角形的外角的性質(zhì)得,,又∵,∴,∴,∵,,∴,設(shè),則,又∵,,∴,∴,∴,∴,②當(dāng)在軸負(fù)半軸上時,記作,由①知,,取,如圖,則由對稱知:,∴,因此點也滿足題目條件,∴,綜合以上得:或17.【點睛】本題考查二次函數(shù)的綜合;熟練掌握二次與一次函數(shù)的圖象及性質(zhì),掌握三角形相似、直角三角形的性質(zhì)是解題的關(guān)鍵.24、(1)見解析;(2)OE=25【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論