2024屆浙江省金蘭教育合作組織數(shù)學高二第二學期期末經(jīng)典試題含解析_第1頁
2024屆浙江省金蘭教育合作組織數(shù)學高二第二學期期末經(jīng)典試題含解析_第2頁
2024屆浙江省金蘭教育合作組織數(shù)學高二第二學期期末經(jīng)典試題含解析_第3頁
2024屆浙江省金蘭教育合作組織數(shù)學高二第二學期期末經(jīng)典試題含解析_第4頁
2024屆浙江省金蘭教育合作組織數(shù)學高二第二學期期末經(jīng)典試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆浙江省金蘭教育合作組織數(shù)學高二第二學期期末經(jīng)典試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.楊輝三角,是二項式系數(shù)在三角形中的一種幾何排列.在歐洲,這個表叫做帕斯卡三角形,帕斯卡(1623-1662)是在1654年發(fā)現(xiàn)這一規(guī)律的.我國南宋數(shù)學家楊輝1261年所著的《詳解九章算法》一書里出現(xiàn)了如圖所示的表,這是我國數(shù)學史上的一個偉大成就.如圖所示,在“楊輝三角”中,去除所有為1的項,依次構成數(shù)列,則此數(shù)列前135項的和為()A. B. C. D.2.與圓及圓都外切的圓的圓心在().A.一個圓上 B.一個橢圓上 C.雙曲線的一支上 D.拋物線上3.為直線,為平面,則下列命題中為真命題的是()A.若,,則 B.則,,則C.若,,則 D.則,,則4.若函數(shù)為奇函數(shù),則A. B. C. D.5.在復平面內(nèi),復數(shù)(i為虛數(shù)單位)的共軛復數(shù)對應的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限6.高三某班有60名學生(其中女生有20名),三好學生占,而且三好學生中女生占一半,現(xiàn)在從該班任選一名學生參加座談會,則在已知沒有選上女生的條件下,選上的是三好學生的概率是()A. B. C. D.7.設集合P={3,log2a},Q={a,b},若,則()A.{3,1} B.{3,2,1} C.{3,2} D.{3,0,1,2}8.已知具有線性相關關系的五個樣本點A1(0,0),A2(2,2),A3(3,2),A4(4,2)A5(6,4),用最小二乘法得到回歸直線方程l1:y=bx+a,過點A1,A2的直線方程l2:y=mx+n那么下列4個命題中(1);(2)直線過點;(3);(4).(參考公式,)正確命題的個數(shù)有()A.1個 B.2個 C.3個 D.4個9.若是兩個非零向量,且,則與的夾角為()A.30° B.45° C.60° D.90°10.已知命題橢圓上存在點到直線的距離為1,命題橢圓與雙曲線有相同的焦點,則下列命題為真命題的是()A. B. C. D.11.已知點P在直徑為2的球面上,過點P作球的兩兩相互垂直的三條弦PA,PB,PC,若,則的最大值為A. B.4 C. D.312.已知雙曲線的左右焦點分別為,,以線段為直徑的圓與雙曲線在第二象限的交點為,若直線與圓相切,則雙曲線的漸近線方程是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角所對的邊分別為,已知,則____.14.在平面上,,,.若,則的取值范圍是_______.15.已知非零向量滿足,且,則與的夾角為______.16.直線與拋物線交于兩點,且經(jīng)過拋物線的焦點,已知,則線段的中點到準線的距離為___________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)討論函數(shù)在定義域內(nèi)的極值點的個數(shù);(2)若函數(shù)在處取得極值,且對任意,恒成立,求實數(shù)的取值范圍;(3)當時,求證:.18.(12分)某學習小組在研究性學習中,對晝夜溫差大小與綠豆種子一天內(nèi)出芽數(shù)之間的關系進行研究.該小組在4月份記錄了1日至6日每天晝夜最高、最低溫度(如圖1),以及浸泡的100顆綠豆種子當天內(nèi)的出芽數(shù)(如圖2).根據(jù)上述數(shù)據(jù)作出散點圖,可知綠豆種子出芽數(shù)(顆)和溫差()具有線性相關關系.(1)求綠豆種子出芽數(shù)(顆)關于溫差()的回歸方程;(2)假如4月1日至7日的日溫差的平均值為11,估計4月7日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù).附:,19.(12分)在平面直角坐標系中,直線的參數(shù)方程為(其中為參數(shù)).現(xiàn)以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)寫出直線的普通方程和曲線的直角坐標方程;(2)若點坐標為,直線交曲線于,兩點,求的值.20.(12分)設是等差數(shù)列,,且成等比數(shù)列.(1)求的通項公式;(2)記的前項和為,求的最小值.21.(12分)已知函數(shù),其中均為實數(shù),為自然對數(shù)的底數(shù).(I)求函數(shù)的極值;(II)設,若對任意的,恒成立,求實數(shù)的最小值.22.(10分)某學校高三年級有學生1000名,經(jīng)調(diào)查研究,其中750名同學經(jīng)常參加體育鍛煉(稱為類同學),另外250名同學不經(jīng)常參加體育鍛煉(稱為類同學),現(xiàn)用分層抽樣方法(按類、類分二層)從該年級的學生中共抽查100名同學.(1)測得該年級所抽查的100名同學身高(單位:厘米)頻率分布直方圖如圖,按照統(tǒng)計學原理,根據(jù)頻率分布直方圖計算這100名學生身高數(shù)據(jù)的平均數(shù)和中位數(shù)(單位精確到0.01);(2)如果以身高達到作為達標的標準,對抽取的100名學生,得到列聯(lián)表:體育鍛煉與身高達標列聯(lián)表身高達標身高不達標合計積極參加體育鍛煉60不積極參加體育鍛煉10合計100①完成上表;②請問有多大的把握認為體育鍛煉與身高達標有關系?參考公式:.參考數(shù)據(jù):0.400.250.150.100.050.0250.0100.0050.0010.7081.3232.0722.7063.8415.0246.6357.87910.828

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】

利用n次二項式系數(shù)對應楊輝三角形的第n+1行,然后令x=1得到對應項的系數(shù)和,結合等比數(shù)列和等差數(shù)列的公式進行轉化求解即可.【題目詳解】n次二項式系數(shù)對應楊輝三角形的第n+1行,例如(x+1)2=x2+2x+1,系數(shù)分別為1,2,1,對應楊輝三角形的第3行,令x=1,就可以求出該行的系數(shù)之和,第1行為20,第2行為21,第3行為22,以此類推即每一行數(shù)字和為首項為1,公比為2的等比數(shù)列,則楊輝三角形的前n項和為Sn2n﹣1,若去除所有的為1的項,則剩下的每一行的個數(shù)為1,2,3,4,……,可以看成一個首項為1,公差為1的等差數(shù)列,則Tn,可得當n=15,在加上第16行的前15項時,所有項的個數(shù)和為135,由于最右側為2,3,4,5,……,為首項是2公差為1的等差數(shù)列,則第16行的第16項為17,則楊輝三角形的前18項的和為S18=218﹣1,則此數(shù)列前135項的和為S18﹣35﹣17=218﹣53,故選:A.【題目點撥】本題主要考查歸納推理的應用,結合楊輝三角形的系數(shù)與二項式系數(shù)的關系以及等比數(shù)列等差數(shù)列的求和公式是解決本題的關鍵,綜合性較強,難度較大.2、C【解題分析】

設動圓的半徑為,然后根據(jù)動圓與圓及圓都外切得,再兩式相減消去參數(shù),則滿足雙曲線的定義,即可求解.【題目詳解】設動圓的圓心為,半徑為,而圓的圓心為,半徑為1;圓的圓心為,半徑為1.依題意得,則,所以點的軌跡是雙曲線的一支.故選C.【題目點撥】本題主要考查了圓與圓的位置關系,以及雙曲線的定義的應用,其中解答中熟記圓與圓的位置關系和雙曲線的定義是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.3、B【解題分析】

根據(jù)空間中平面和直線平行和垂直的位置關系可依次通過反例排除,從而得到結果.【題目詳解】選項:若,則與未必平行,錯誤選項:垂直于同一平面的兩條直線互相平行,正確選項:垂直于同一平面的兩個平面可能相交也可能平行,錯誤選項:可能與平行或相交,錯誤本題正確選項:【題目點撥】本題考查空間中直線與直線、直線與平面、平面與平面位置關系的相關命題的判定,通常通過反例,采用排除法的方式來得到結果,屬于基礎題.4、A【解題分析】分析:運用奇函數(shù)的定義,可得,再計算即可詳解:函數(shù)為奇函數(shù),故選點睛:本題主要考查的是奇函數(shù)的定義,分段函數(shù)的應用,屬于基礎題。根據(jù)函數(shù)奇偶性的性質(zhì)是解題的關鍵5、D【解題分析】分析:首先求得復數(shù)z,然后求解其共軛復數(shù)即可.詳解:由復數(shù)的運算法則有:,則,其對應的點位于第四象限.本題選擇D選項.點睛:本題主要考查復數(shù)的運算法則及其應用等知識,意在考查學生的轉化能力和計算求解能力.6、B【解題分析】

根據(jù)所給的條件求出男生數(shù)和男生中三好學生數(shù),本題可以看作一個古典概型,試驗發(fā)生包含的事件是從40名男生中選出一個人,共有40種結果,滿足條件的事件是選到的是一個三好學生,共有5種結果,根據(jù)概率公式得到結果.【題目詳解】因為高三某班有60名學生(其中女生有20名),三好學生占,而且三好學生中女生占一半,所以本班有40名男生,男生中有5名三好學生,由題意知,本題可以看作一個古典概型,試驗發(fā)生包含的事件是從40名男生中選出一個人,共有40種結果,滿足條件的事件是選到的是一個三好學生,共有5種結果,所以沒有選上女生的條件下,選上的是三好學生的概率是,故選B.【題目點撥】該題考查的是有關古典概型的概率求解問題,在解題的過程中,需要首先求得本班的男生數(shù)和男生中的三好學生數(shù),根據(jù)古典概型的概率公式求得結果.7、B【解題分析】分析:由求出a的值,再根據(jù)題意求出b的值,然后由并集運算直接得答案.詳解:由,,即,,則.故選:B.點睛:本題考查了并集及其運算,考查了對數(shù)的運算,是基礎題.8、B【解題分析】分析:先求均值,再代公式求b,a,再根據(jù)最小二乘法定義判斷命題真假.詳解:因為,所以直線過點;因為,所以因為,所以,因為過點A1,A2的直線方程,所以,即;根據(jù)最小二乘法定義得;(4).因此只有(1)(2)正確,選B.點睛:函數(shù)關系是一種確定的關系,相關關系是一種非確定的關系.事實上,函數(shù)關系是兩個非隨機變量的關系,而相關關系是非隨機變量與隨機變量的關系.如果線性相關,則直接根據(jù)用公式求,寫出回歸方程,回歸直線方程恒過點.9、A【解題分析】

畫出圖像:根據(jù)計算夾角為,再通過夾角公式計算與的夾角.【題目詳解】形成一個等邊三角形,如圖形成一個菱形.與的夾角為故答案選A【題目點撥】本題考查了向量的加減和夾角,通過圖形可以簡化運算.10、B【解題分析】對于命題p,橢圓x2+4y2=1與直線l平行的切線方程是:直線,而直線,與直線的距離,所以命題p為假命題,于是¬p為真命題;對于命題q,橢圓2x2+27y2=54與雙曲線9x2?16y2=144有相同的焦點(±5,0),故q為真命題,從而(¬p)∧q為真命題。p∧(¬q),(¬p)∧(¬q),p∧q為假命題,本題選擇B選項.11、A【解題分析】

由題意得出,設,,利用三角函數(shù)輔助角公式可得出的最大值.【題目詳解】由于、、是直徑為的球的三條兩兩相互垂直的弦,則,所以,設,,,其中為銳角且,所以,的最大值為,故選A.【題目點撥】本題考查多面體的外接球,考查棱長之和的最值,在直棱柱或直棱錐的外接球中,若其底面外接圓直徑為,高為,其外接球的直徑為,則,充分利用這個模型去解題,可簡化計算,另外在求最值時,可以利用基本不等式、柯西不等式以及三角換元的思想來求解.12、B【解題分析】

先設直線與圓相切于點,根據(jù)題意,得到,再由,根據(jù)勾股定理求出,從而可得漸近線方程.【題目詳解】設直線與圓相切于點,因為是以圓的直徑為斜邊的圓內(nèi)接三角形,所以,又因為圓與直線的切點為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B【題目點撥】本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡單性質(zhì)即可,屬于??碱}型.二、填空題:本題共4小題,每小題5分,共20分。13、3【解題分析】

由正弦定理和已知,可以求出角的大小,再結合已知,可以求出的值,根據(jù)余弦定理可以求出的值.【題目詳解】解:由正弦定理及得,,,,又,,,由余弦定理得:,即.【題目點撥】本題考查了正弦定理、余弦定理、考查了數(shù)學運算能力.14、【解題分析】

本題可以通過建立平面直角坐標系,將給的向量條件坐標化,然后把所求的也用坐標表示出來,最后根據(jù)式子采用適當?shù)姆椒ǖ贸鼋Y果.【題目詳解】設,則有因為所以①②③因為所以①+②得即由①②可知帶入③中可知綜上可得所以,的取值范圍是.【題目點撥】在做向量類的題目的時候,可以通過構造直角坐標系,用點的坐標來表示向量以及向量之間的關系,借此來得出答案.15、【解題分析】

通過,可得,化簡整理可求出,從而得到答案.【題目詳解】根據(jù)題意,可得,即,代入,得到,于是與的夾角為.【題目點撥】本題主要考查向量的數(shù)量積運算,向量垂直轉化為數(shù)量積為0是解決本題的關鍵,意在考查學生的轉化能力,分析能力及計算能力.16、【解題分析】

先根據(jù)拋物線方程求得焦點坐標,設點坐標為,進而可得直線方程,把點代入可求得點坐標,進而根據(jù)拋物線的定義,即可求得答案.【題目詳解】由題意,拋物線知,設點坐標為,由直線過焦點,所以直線的方程為,把點代入上式得,解得,所以,所以線段中點到準線的距離為,故答案為.【題目點撥】本題主要考查了直線與拋物線的關系的應用,其中解答中涉及拋物線的焦點弦的問題時,常常利用拋物線的定義來解決,著重考查了推理與運算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)答案見解析;(2);(3)證明見解析.【解題分析】試題分析:(1)由題意可得,分類討論有:當時,函數(shù)沒有極值點,當時,函數(shù)有一個極值點.(2)由題意可得,原問題等價于恒成立,討論函數(shù)的性質(zhì)可得實數(shù)的取值范圍是;(3)原問題等價于,繼而證明函數(shù)在區(qū)間內(nèi)單調(diào)遞增即可.試題解析:(1),當時,在上恒成立,函數(shù)在單調(diào)遞減,∴在上沒有極值點;當時,得,得,∴在上遞減,在上遞增,即在處有極小值.∴當時在上沒有極值點,當時,在上有一個極值點.(2)∵函數(shù)在處取得極值,∴,∴,令,,可得在上遞減,在上遞增,∴,即.(3)證明:,令,則只要證明在上單調(diào)遞增,又∵,顯然函數(shù)在上單調(diào)遞增.∴,即,∴在上單調(diào)遞增,即,∴當時,有.點睛:導數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學中重要的知識點,所以在歷屆高考中,對導數(shù)的應用的考查都非常突出,本專題在高考中的命題方向及命題角度從高考來看,對導數(shù)的應用的考查主要從以下幾個角度進行:(1)考查導數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結合思想的應用.18、(1)(2)5125顆.【解題分析】

(1)根據(jù)題中信息,作出溫差與出芽數(shù)(顆)之間數(shù)據(jù)表,計算出、,并將表格中的數(shù)據(jù)代入最小二乘法公式計算出和,即可得出回歸直線方程;(2)將月日至日的日平均溫差代入回歸直線方程,可得出顆綠豆種子的發(fā)芽數(shù),于是可計算出顆綠豆種子在一天內(nèi)的發(fā)芽數(shù)?!绢}目詳解】(1)依照最高(低)溫度折線圖和出芽數(shù)條形圖可得如下數(shù)據(jù)表:日期1日2日3日4日5日6日溫差781291311出芽數(shù)232637314035故,,-3-22-131-9-65-183,,所以,所以,所以綠豆種子出芽數(shù)(顆)關于溫差()的回歸方程為;(2)因為4月1日至7日的日溫差的平均值為,所以4月7日的溫差,所以,所以4月7日浸泡的10000顆綠豆種子一天內(nèi)的出芽數(shù)約為5125顆.【題目點撥】本題主要考查回歸分析及其應用等基礎知識,解題的關鍵就是理解和應用最小二乘法公式,考査數(shù)據(jù)處理能力和運算求解能力,考查學生數(shù)學建模和應用意識,屬于中等題。19、(1),;(2).【解題分析】

(1)根據(jù)參普互化和極值互化的公式得到標準方程;(2)聯(lián)立直線和圓的方程,得到關于t的二次,再由韋達定理得到.【題目詳解】(1)由消去參數(shù),得直線的普通方程為又由得,由得曲線的直角坐標方程為,即;(2)其代入得,則所以.20、(1);(2)【解題分析】

(1)利用等差數(shù)列通項公式和等比數(shù)列的性質(zhì),列出方程求出,由此能求出的通項公式.(2)由,,求出的表達式,然后轉化求解的最小值.【題目詳解】解:(1)是等差數(shù)列,,且,,成等比數(shù)列.,,解得,.(2)由,,得:,或時,取最小值.【題目點撥】本題考查數(shù)列的通項公式、前項和的最小值的求法,考查等差數(shù)列、等比數(shù)列的性質(zhì)等基礎知識,考查推理能力與計算能力,屬于基礎題.21、(1)當時,取得極大值,無極小值;(2).【解題分析】試題分析:(1)由題對得,研究其單調(diào)性,可得當時,取得極大值,無極小值;(2)由題當時,,由單調(diào)性可得在區(qū)間上為增函數(shù),根據(jù),構造

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論