![丘成桐先生在香港中文大學(xué)演講:我數(shù)學(xué)經(jīng)歷_第1頁(yè)](http://file4.renrendoc.com/view10/M00/05/1D/wKhkGWW-8sWAf1KGAAEzsJmbsmU234.jpg)
![丘成桐先生在香港中文大學(xué)演講:我數(shù)學(xué)經(jīng)歷_第2頁(yè)](http://file4.renrendoc.com/view10/M00/05/1D/wKhkGWW-8sWAf1KGAAEzsJmbsmU2342.jpg)
![丘成桐先生在香港中文大學(xué)演講:我數(shù)學(xué)經(jīng)歷_第3頁(yè)](http://file4.renrendoc.com/view10/M00/05/1D/wKhkGWW-8sWAf1KGAAEzsJmbsmU2343.jpg)
![丘成桐先生在香港中文大學(xué)演講:我數(shù)學(xué)經(jīng)歷_第4頁(yè)](http://file4.renrendoc.com/view10/M00/05/1D/wKhkGWW-8sWAf1KGAAEzsJmbsmU2344.jpg)
![丘成桐先生在香港中文大學(xué)演講:我數(shù)學(xué)經(jīng)歷_第5頁(yè)](http://file4.renrendoc.com/view10/M00/05/1D/wKhkGWW-8sWAf1KGAAEzsJmbsmU2345.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
MyPastExperienceinMathematicsShing-TungYauTheChineseUniversityofHongKongSep.19,20031Igrewupinthe(farming)countrysideofHongKong:YuenLongandShatin.Therewasnoelectricityandnopipewater.ItookbathintheriverwhenIwasveryyoung.Ihaveeightbrothersandsistersandfoodwasscarce.WhenIwasfiveyearsold,Itookanentranceexaminationtoagoodpublicschool.IfailedmathematicsbecauseImadethewrongconvention: Iwrote 57tobe75, 69tobe96.2SoIenteredaverysmallvillageschool.Thereweremanyroughkidsfromthefarm.Inamatterofhalfayear,Igotserioussickbecauseoftheintimidationoftheroughkidsandmistreatmentoftheteacher.Irestedathomeforhalfayear.Istartedtolearnhowtodealwithdifficultsituationwithclassmatesandteachers.BythetimewhenIenteredsixthgrade,Iwasaleaderofasmallgroupofstudentstowanderonthestreet.3Myfatherwasaprofessor.HetaughtmealotofChineseliteratureatthattime.
However,hedidnotrealizethatIdidnotattendschoolforaperiodoftime.
(PerhapsbecauseIdidwellathomeasIcanrecitemostoftheessaysthatheaskedmetodo.)4ThereasonthatIdidnotgotoschoolwasthattheteachersdidnotreallyteach.Igotboredinschool.ThenafterawhileIgotboredonthestreet,also.
Therewasajointexaminationforallprimaryschools.Ididpoorly.However,Iwasexactlyontheborderlinecase.
Thegovernmentallowedtheseborderlinekidstoapplyforprivateschoolandgavethemtuition.
IgotintoPuiChingMiddleSchool.5校歌何安東編李竹侯詞
培正培正何光榮,教育生涯慘淡營(yíng),
培後進(jìn)兮其素志,正軌道兮樹(shù)風(fēng)聲,
萬(wàn)千氣象方蓬勃,鼓鑄群才備請(qǐng)纓,
愛(ài)我培正謨謀遠(yuǎn),永為真理之干城,永為真理之干城!青年向上歌 我要真誠(chéng),莫負(fù)人家信任深。我要潔淨(jìng),因?yàn)橛腥岁P(guān)心。我要?jiǎng)倧?qiáng),人間痛苦才能當(dāng)。我要膽壯,奮鬥才能得勝。我要膽壯,奮鬥才能得勝。 我要愛(ài)人,愛(ài)敵人也愛(ài)淪落人。我要施贈(zèng),心誠(chéng)、義重、財(cái)輕。我要虛懷,不忘我身多弱點(diǎn)。我要向上,學(xué)主榜樣做人。我要向上,學(xué)主榜樣做人。6Thisisprobablyoneofthebestmiddleschool.
Nothingwasexcitinginthefirstyearofmiddleschool.Ididnotdotoowellthatyear.
However,Ilearntmuchmoreathome:Chineseliterature,Novels(ChineseandWestern),Philosophy,history.Allfrommyfatherandhisconversationswithhisstudents.
AlthoughIdidnotunderstandGreekPhilosophy.Itstartedtoimpressmeafterlisteningtomanyconversationofmyfatherwithhisstudents.7IstartedtoreadthefamousChinesehistorybooks:史記、左傳
Iamespeciallyfascinatedby史記.
Notonlybyitsbeautifulwritings,butalsobyitsoriginalandresponsiblewaytoreporttheancienthistory.
Uptopresentdays,Ireadthisbook.
Theglobalviewofhistoryfromagreatmasterresonantswiththethinkingofagreatscientist.8Thefollowingessaystrikesme:
Thoughindulgedinreading,Idonotpursuitprecisemeanings.Nonetheless,everytimeIhitonsomethingIwassooverwhelmedwithjoythatIforgotmymeals.晉?陶淵明好讀書(shū),不求甚解,每有會(huì)意,便欣然忘食。
Iamnotbitterforbeingpoorandobscure,noramIkeenonbeingrichandfamous.不戚戚於貧賤,不汲汲於富貴。9Infollowingyears,thishasbeentheguidingprincipleofmystudyofmanydifferentsubjects.Withmyfather’steaching,Istartedtosetthegoalofmylife.Animportantquotation:10Zuo'sBookofHistoryOnImmortality“Thefirstplaceistoreignbenevolently,thenexttogainvictory,andthelasttosayvaluablewords.Theseachievementswillstandforlongandnotbeabandoned.Thereaftertheyarecalledimmortal.”左傳叔孫豹論三不朽太上有立德,其次有立功,其次有立言,雖久不廢,此之謂不朽。Oneneedsbeinghumbleandsimpletoreachthesegoals.AformerstudentofminerecentlyrecitedthefollowinglinesfromaTangpoemduringaTVinterviewinChina:立德立功立言之道,必以謙讓質(zhì)樸為主?!笗?huì)當(dāng)凌絕頂,一覽眾山小」,輕妄浮誇之言也?!癐wouldratherbeatthesummit,Soallmountainswillbecometinyunderme.”Ithinkhewasabittooarrogant.11SimaQian(司馬遷)onConfucius(孔子)Therearesoabundantlymanykingsandmenofvirtue!Widelyknownbytheircontemporaries,theirnamesfeelintooblivionsoonaftertheyperished.AndyetConfucius,amaninplaincloth,hasbeenheldingreatesteembyscholarsofmorethantengenerations.天下君王至於賢人,眾矣!當(dāng)時(shí)則榮,沒(méi)則已焉,孔子布衣,傳十餘世,學(xué)者宗之。12Duringconversationsofmyfatherwithstudents,manyimportantpointsofhistoryofphilosophywerementioned.BasicprinciplesTherootoftheveryexistenceofmatter(basicaxioms,etc)GeneralphenomenaUnificationofallprinciples(unifiedfieldtheory)MethodsofunderstandingtruthbasedonlogicandreasoningHowtocombinedifferentknowledgeanddifferentphenomenaunderageneralprincipleThegreatphilosophersdidnotsimplyfollowothersindevelopingtheirviews,notevenfromtheirteachers.Theycreatedtheirownthoughts(basedonpreviousworks.)13Thegoalofwritinghistoryofphilosophy(求因)Theoriginofaphilosophicalthinkingmustcomefromdifferentsources.Itisourgoaltofindoutsuchsources.(明變)Therearemanycomplicatedphilosophicalthoughtsinthehistory.Itisimportanttofigureoutthetreadsoftheirthoughts.(評(píng)論)Acorticalcommentsoftheoccurrenceofallphilosophiesandtheirconsequences.14Ialsolearntthewaytodoresearchwithlastingimportance.WangGuowei(王國(guó)維)TheThreeLevelsToAchieveBreakthroughinResearch(borrowingsomelinesfromSongCiorlyricpoemsfromtheSungdynasty)
LevelOne...LastnightthewestwindwitheredthegreeneryofthetreesInloneliness,ImountedthetallbuildingCastingmyeyesightalongallroadstotheedgeoftheearth晏殊…昨夜西風(fēng)凋碧樹(shù),獨(dú)上高樓,望盡天涯路。15Leveltwo
...FormylooseningwaistbeltIfeelnoregret,Forheritisworthbeinghaggardandthin.柳永…衣帶漸寬終不悔,為伊消得人憔悴。LevelThreeLookingforherathousandtimesInacrowdAllofasuddenAsIturnedmyheadThereshewasStandingintheshadesoffadinglights辛棄疾…眾裏尋他千百度,驀然回首,那人卻在,燈火闌珊處。16InmysecondyearofPuiChing,Igotintoaproblemwithmyteacher.Theteacherwasaverydevotedheadmasterofmyclassandclearlymeantwellforme.Shewasshockedtofindoutthatmyfatherwasaprofessorandpoorlypaid.
Herpassionformyfuturechangedmybehaviorinclassroom.
Istudiedplanegeometryinsecondyearofhighschool.17Myclassmateswerenotusedtoreasonabstractly.ThemerefactthatIlistenedtomyfather’sphilo-sophicaldiscussionathomemademefeelathomewithaxiomaticapproach.
Infact,IfeltIcanunderstandmyfather’sconversationbetterafterIlearntgeometry.
Thecharmtoproveeleganttheoremsbasedonsimpleaxiomsexcitesme.18Withthepassionforgeometry,Istartedtodevelopmytasteformathematics,whichincludedalgebra.EverythingbecameeasyafterIfoundthesubjectexciting.
Ialsofoundthesubjectofhistoryinteresting.
IttaughtmeaglobalviewofeverythingthatIlearnt.
Howeventshappened?Whytheyhappened?Whatmayhappeninthefuture?19Atthistime,myfatherjustfinishedwritinghisbookonhistoryofWesternphilosophy.Hisconversationswithstudentstaughtmethewaythatweshouldseehistoryinaglobalmanner.
Thiskindofpracticedeeplyinfluencemywayoflookingatmyresearchprojectsinthelatertime.20Around400A.D.Liu(whowrotethefirstbookoncomparativeliteratureonChinesewritingsuptothatperiod)文心雕龍諸子
Mybodymayperishalongwithtime.Mygoalandmyambitionwillextendwithmytheory.Myheartisinresonancewiththosegreatmeninancientdays.Myfeelingandmytheorywillgoforwardforthenextthousandyears.身與時(shí)桀,志共道申。標(biāo)心於萬(wàn)古之上,而送懷於千載之下。21WhenIwasfourteen,myfatherpassedaway.Thiswasperhapsthegreatestshocktomylife.Foralongtime,Icouldnotbelievethatmyfatherleftmeandthefamily.
Thefinancialsituationofthefamilywasreallybad.Itwasnotclearatallthatwecouldstillgotoschool.Thetremendouswillofmymotherandthehelpsofmyfather’sfriendsandstudentsmadeitpossible.22Thisdisastrouschangeoffamilysituationmadememuchmoremature.Theextremehard-shipshoweddifficultyofhumanrelationship,whatIlearntfrommyfatherbecamepractical.
ThepoemsandtheclassicalessaysthatIlearntbecamemuchmoremeaningful.IspenthalfayeartoreadclassicalliteratureandhistoryofChina.Itbecameawayformetorelaxduringverytensesituationinlife.Thebeautifulpoemsguidedmetoappreciatethebeautyofnature.23英國(guó)大詩(shī)人拜倫
〝希臘啊!你本是平和時(shí)代的愛(ài)嬌,你本是戰(zhàn)爭(zhēng)時(shí)代的天驕。撒芷波,歌聲高,女詩(shī)人,熱情好。更有那德羅士、菲波士榮光常照。此地是藝文舊壘,技術(shù)中潮。如今在否?算除卻太陽(yáng)光線,萬(wàn)般沒(méi)了。〞
〝馬拉頓前啊!山容縹緲。馬拉頓後??!海門(mén)環(huán)繞。如此好山河,也應(yīng)有自由回照。我向那波斯軍墓門(mén)憑眺。難道我為奴為隸,今生便了?不信我為奴為隸,今生便了。〞
梁?jiǎn)⒊g24FromByron’sDonJuanII--AvariationeditionbySteffanPrattCantoIII,861.TheislesofGreece,theislesofGreece!WhereburningSappholovedandsung,Wheregrewtheartsofwarandpeace,…WhereDelosrose,andPhoebussprung! Eternalsummergildsthenyet,Butall,excepttheirsun,isset.2.ThemountainslookonMarathon…AndMarathonlooksonthesea;Andmusingthereanhouralone,Idream’dthatGreecemightstillbefree;ForstandingonthePersian’sgrave,Icouldnotdeemmyselfaslave.
25Ireadalotofbooksinmathematics.Ithoughtabouttheproblemsinthosebooks.WhenIexhaustedallthoseproblems,IstartedtocreatemyownproblemsasIthoughtthattheymaybechallenging.Thepracticeofcreatingmyownproblemhadbeenthemostimportantpartofmyresearchinthefuture.Thetextbooksinschooldidnotsatisfyme.IwenttolibraryandIwenttobookstorestoreadbooks.IspenthoursandhoursinbookstoretoreadbooksthatIcouldnotaffordtobuy.26WhenIwasfifteen,Istartedtoteachlowergradelevelstudentstoearnmoney.Iwasproudthatbyteachinginanovelway,Iwasabletotransformsomeverypoorstudenttobecomethebeststudentinclass.
Itwasanexperiencetotrainyoungpeople.Ialsolearntthatitisbeneficialtomyselftoteach.27Myhighschoolteachersinmathematicswereexcellent.Westudiedratheradvancedtopicsinmathematics.Ihadnodifficultywiththem.
However,Iwasratherdisappointedthatmyphysicsteacherwasnotgoodenough.Thefundamentalintuitioninphysicswasnotestablishedduringmyhighschoolyear.Iregrettedituptonow.
IhadanexcellentteacherinChinese.Hewasmyfather’sfriend:hetaughtustothinkinanon-traditionalmanner.28Wewereaskedtothinkcreatively.Hesaidthatweshouldreadgoodbooksbutalsobadbooksaspossiblecomparisons.SoIreadeverything.Thisistrueevenformyscientificcareer.
AtypicaltopicforouressayinourChinesewriting:thephilosophyofapig.
Sowestarttodreamaboutanythinginteresting.
Iwasnotthebestinmyhighschool.Ididnothavethehighestgradeinmathematics.ButIthinkdeeperthanmyclassmatesandIreadmuchmorebooks.29IenteredTheChineseUniversityofHongKongin1966.IchosemathematicsasmycareeralthoughIwasalsoveryinterestedinthesubjectofhistory.
Bythistime,IstartedtodigestthoseadvancedlevelmathematicsbooksthatIreadinhighschool.Ididnotquiteunderstandthosebooksatthebeginning.SuddenlyIunderstandthemandIwasmuchbetterthanthecontemporarystudents.30
崇基門(mén)前對(duì)聯(lián)
崇高惟博愛(ài)本天地立心無(wú)間東西溝通學(xué)術(shù)
基礎(chǔ)在育才當(dāng)海山勝境有懷胞與陶鑄人群
31ChungChiCollegeAnthemMenfromfourseasfoundedChungChisothatheremightyouthHonourChrist,eternalteacher,whoHimselfistruth.ThroughthelongnightkeepthetorchbrightandtheworkbegunTillthelightsoffaithandknowledgeshowtheworldmadeone.China'sstillevolvingculture,grateful,weretain;EastandWest,throughfreelysharing,furtherstrengthobtain,BytheChurchupheldandnurtured,mindstodutydrawn,ChungChi,towardtheveryhighest,leaduson,andon!32Collegemathematicsopenedmyeyes.Thefactthatonecanderiveeverystatementinmathematicsfromsimpleaxiomsreallyexcitedme.AfterIunderstoodhowmathematicswasbuilt,IgotsoexcitedthatIwrotealettertomyprofessorshowingmygreatpleasure.Itwasacornerstoneformyappreciationofmathematics.
AnewPh.DcamefromBerkeleytoHongKong.HisnameisStephenSalaff.Hewassoimpressedbymyperformancethathewroteabookwithmetogether.Itstopicisonordinarydifferentialequations.33AnotherteacherDr.BrodycamefromPrinceton.Hehadaratheruniquewayofteaching.Hepickedanadvancedbookinmathematics.Heassignedachapterforthestudentstofindmistakesinthebookandcorrectedthemistakes.
Itisagoodmethodtotrainusnottodependontextbook.Atthesametime,Itrainedmyselftobecriticalabouttheestablishedtheoremsinthebook.SometimesIgeneralizedthetheorems.BrodywasverypleasedbymyperformancewhenIshowedwhatIcoulddoinclass.34Theimportanceofsuchtrainingsisthat:Ilearnthowtothinkindependently.Ifoundouthowimportantitistoexpressmathematicsinfrontofanaudience.Thesepointshavebeenimportantformeandformyteaching.35WiththehelpofDr.Salaff,IwasabletoenterthegraduateschoolofBerkeleydespitethatIdidnotfinishmycollegeinHongKong.
Ofcourse,Berkeleyhastheleadingmathematicsdepartmentintheworld.IarrivedinAugust.ImetProf.S.S.Chernwhobecomemythesisadvisorlater.36WhenIwasinHongKong,Iwastoomuchfascinatedbyveryabstractmathematics.(AlthoughIwastrainedquitesolidlyinanalysis.)Ithoughtmathematicscoveringaverygeneralareaisbestmathematics.IthoughtIwouldstudyfunctionalanalysis.Ilearntalotinthatsubject.IreadabigfatbookofDunford-Schwatzonfunctionalanalysis.Ialsoreadalotofbooksonoperatoralgebra.
WhenIarrivedinBerkeley,Imetsomebestmindsinmathematics.Ichangedmyview.37WhenImetthosefirstratedmathematicians,Iwasratherthirstyinlearningdifferentsubjectsfromthem.Iattendedmanyclassesfrom8amto5pm.(SometimesIatelunchinclass.)Thesearesubjectsrangingfromtopology,geometry,differentialequations,Liegroups,numbertheory,combinatorials,probabilitytheorytodynamicalsystem.Ididnotunderstandallofthem.ButIfocusmyeffortsonseveralofthem.38WhenIlearnttopology,itwassodifferentlyfromwhatIlearntbefore.Therewerefiftystudentsinclass.Allofthemseemtobesmartandfarbetterthanme.Theycouldperformandtalkednicely.
However,Ididmyhomeworkwellandinashorttime,IfoundoutthatIwasnotbad,afterall.Thekeyistoworkoutallthosetoughhomeworksandthinkaboutthemthoroughly.39IreadabookofJohnMilnorandwasfascinatedbythedescriptionoftheconceptofcurvature.JohnMilnorisanexcellenttopologist.
Istartedtothinkaboutproblemsthatisrelatedtoquestionsinthebook.Ispentalotoftimeinthelibrary.Therewasnoofficeforgraduatestudents.ThereweremanyfamousprofessorsinBerkeley.SoonIrealizethattheyarehumanbeingsafterall.Ireadmanyjournalsandbooksinthelibrary.40Istartedtobeabletoprovesomenontrivialtheoremsinthesecondquarter.TheyarerelatedtosometheoremsingrouptheorythatIlearntoversomecasualconversationwithateacherincollege.Iappliedittogeometry.Myprofessorsweresurprisedandpleasedbymyprogress.Oneoftheprofessorsstartedtoworkwithme.Wewrotetwopapers.ProfessorChernwasonsabbaticalleave.Whenhereturned,hewasverypleased.41IdidnotthinkwhatIdidwasgreat.IwasveryimpressedbyProf.Morreyonhisteachingofnonlinearpartialdifferentialequations.Hetaughtnonlineartechnique.Itwasnotfashionable.Thebookhewrotewasdifficulttoread.Ithoughtthosetechniquethathedevelopedareverydeepandmustbeimportantforthefutureofgeometry.Ilearntthosetechnology.DespiteofProf.Morrey’sbigname,veryfewstudentsorfacultiescaredabouthiscourse.Attheend,IwastheonlystudentinclassandProf.Morreytaughtmeinhisoffice.Thiscoursebuiltthefoundationofmymathematicscareer.42AfterIwroteseveralpapers,Prof.CherntoldmanypeoplehowbrilliantIwasalthoughIdidnotthinkheknewmyworkswell.Istartedtothinkmorethoroughlyaboutmathematicsandgeometryinparticular.Iworkedonotherpartsofgeometry.However,resultsdidnotcomeeasy.
MyfriendS.Y.ChengcamefromHongKongthatsummer.WesharedanapartmentrightnexttothecampusandIbecamemorerelax.43Inthatsummer,IaskedProf.Cherntobemyadvisor.Heagreedandafteronemonth,hesaidthatmypapersinthefirstyearshouldbeenoughformythesis.IwassurprisedbecauseIthoughttheyarenotgoodenoughandIwantedtolearnmore.
Inanycase,inthesecondyear,Ilearntmoreinthefieldofcomplexgeometryandtopology.Prof.Chernhadagreatexpectationonme.HesuggestedmetoworkonRiemanhypothesis.Unfortunatelyuptonow,Ineverthoughtaboutit.44InsteadIpursuedthegeneralunderstandingofcurvatureofspace.IdecidedakeytounderstandsuchaconceptwasaproposalmadebyCalabiinearlyfifties.NobodybelievedwhatCalabi’sthoughtistrue.Istartedtothinkaboutit.Itisnotthestandardthingthatageometerwoulddointhosedays.Itisclearlyahardquestionofanalysis.Nobodywouldtouchsuchproblem.45Istartedtodevelopmytasteintolearninghowtointroduceanalyticmethodsintogeometry.Previoustothis,therewereattemptstoapplynonlineartheorytosurfacesinthreespace.Iwantedtodealwithanabstractspaceinarbitrarydimension.
BecauseofProf.MorreyandChern’sinterestsinminimalsurfaces,Ialsodevelopedinterestintothisfascinatingsubject.Inparticular,Iwasinterestingintoharmonicmaps.Ingeneral,IstudiedCalculusofvariation.46Iwasinterestedinallanalyticaspectsofgeometry.Thebasicideaistomergethesubjectofnonlineardifferentialequationandgeometry.Inordertounderstandnonlinearequation,itisfundamentaltounderstandlinearequations.HenceIestablishthefirstmajortheoremforharmonicfunctionsonmanifolds.IgotmyfriendS.Y.Chengtolookintoeigenvalueandeigenfunctionproblems.Togetherwewroteseveralimportantpapersonthesubject.Theyarestillfundamentalformodernresearch.47WhenIgraduated,Igotseveraloffers.MyteacherChernsuggestedmetogotoInstituteforAdvancedStudy.ThesalarywaslessthanhalfofwhatIcouldhavegottenfromHarvard.ButIwenttotheInstituteforAdvancedStudy.Imetsomeothergroupofdistinguishedmathematicians.Idevelopedsometasteintotopology,especiallythetheoryofsymmetriesofspace.IdidsolvesomeimportantproblemsinthissubjectbasedonanalyticalideasIdeveloped(groupactionsonmanifolds).48Becauseofproblemofvisa,IwenttoNewYorkStateUniversityofStonyBrook.Atthatpoint,itwassupposedtobethecenterofmetricgeometry.Itwasindeedagoodplace,fullofenergeticyounggeometers.Ilearnttheirtechnique.ButIdidnotthinkthatwastherightdirectionforgeometry.
Afteroneyear,IwenttoStanfordwheretherewasnogeometer.Itisaverypeacefulenvironmentandisverygoodinnonlinearpartialdifferentialequations.ImetmyverygoodfriendLeonSimonandmyformerstudentRichardSchoen.Togetherwedevelopedthesubjectofnonlinearanalysisingeometry.49TaoYuan-Ming(晉?陶淵明)LongIlivedcheckedbythebarsofacage.NowIhaveturnedagaintoNatureandFreedom. 久在樊籠裡,復(fù)得返自然。50WhenIarrivedatStanford,therewasabigconferenceingeometry.Aphysicistwasinvolvedtogiveatalkongeneralrelativity.AlthoughIdidnotunderstandPhysicswell,Iimmediatelyfellinloveofthegeometryproblemassociatedtogeneralrelativity.Itisfascinatingtogivephysicalmeaningofspacethatwesawandviceversa.51Theproblemwastoodifficulttosolveatthattime.ButIkeptthatinmind.Duringtheconference,IthoughtIfoundawaytodisprovetheproposalofProf.Calabi.Iwasaskedtogiveapresentationofmythoughts.Itallsoundedgood.Nobodyobjected.Soeverypeoplewashappythatthegeneralexpectionwastrue:theCalabiConjectureiswrongafterall.52Aftertwomonths,Prof.Calabiwrotetomeforclarificationofmythoughts.Ifoundaseriousgaponmyreasoning.Itwasthemostpainfulperiodofmyresearchlife.Icouldnotsleep.53Forabouttwoweeks,IcouldnotsleepasIconsideredthatmyreputationwasbadlydamagedbynotabletoreproducewhatIclaimed.(AlthoughIneverwroteanyannouncementofit.)However,thepainofgoingthroughofeachsingledetailsoftheproblemconvincedmethattheoppositedirectionshouldberight.TheargumenttogivecounterexampletotheCalabiConjecturewasthatifitweretrue,somethingmusthappen.Henceafewyearslater,whenIsettledthisproblem,Iknewmanynaturalconsequencesofit.54AfterIdecidedthatitmustbetrue,Iworkedtowardstherightdirection.Manypreparatoryworksweredonetoprepareforthefinalproof.IworkedwithChengonunderstandingmyquestionsrelatedtoMonge-Ampereequations,affinegeometry,maximalsurfacesandmanyrelatedproblems.RichardSchoenworkedwithmeonharmonicmaps.Schoen,SimonandIworkedonminimalsurfaces.Inamatteroftwoyears,weunderstoodagreatdealofnonlinearanalysisrelatedtogeometry.Itwasanexcitingperiodoftimeingeometry.55QuYuan(屈原)ThisiswhatIamafter.Iwillnotturnbackevenninedeathsareahead.固余心之所善兮,雖九死而猶未悔。56RightafterIgotmarried,IgottherightideatofinishtheproofoftheCalabiConjecture.IfeltIfinallyunderstoodcurvatureofKahlergeometry.Manyimportantapplicationswerefoundtosolvesomeoldproblemsinalgebricgeometry.57“Oneproblemisthatstringtheoryrequires10dimensionsofspace-time,whereasweappeartoliveinfour.Dr.StromingerrememberedbeingexcitedwhenhefoundapaperbythemathematicianDr.Shing-TungYau,nowofHarvardandtheChineseUniversityofHongKong.ItprovedaconjecturebyDr.EugenioCalabi,nowretiredfromtheUniversityofPennsylvania,thattheextradimensionscouldbecurledupinmicroscopicallyinvisiblewaysliketheloopsinacarpet.”O(jiān)neCosmicQuestion,TooManyAnswersSeptember2,200358WhenIfinishedtheproofoftheCalabiConjecture,IfeltIhavesetupaframeworkformathematicianstomergetwoimportantfieldstogether:nonlinearpartialdifferentialequationandgeometry.In1976,IwasinUCLAandImetmyfriendMeekswhowasmyclassmateingraduateschool.Hewasnotingoodshape.Buthewasaveryoriginalmathematician.SoIproposedtoworkwithhimonrelatingideasfromminimalsurfacesandtopologyofthreedimensionalmanifoldtogether.59Wehadagreatsuccess.Wesolvedtwoclassicalproblemsinbothfields:Iftheboundaryofasoapfilmisconvex,thesoapfilmcannotcrossitself.TogetherwithworkswithThurston,thefamousproblemofSmithConjectureissolved.Oncethedirectionwassetintherightway,manyclassicalquestionscanbeanswered.60Nextyear,IvisitedBerkeleywhereIgaveseminarsonnonlinearproblemsingeometry.BothRichardSchoenandS.Y.Chengwerethere.WithSchoen,wefinallysolvedtheproblemthatIwasexcitedaboutingeneralrelativity.Theproblemiscalledpositivemassconjectureandisfundamentalforgeneralrelativity.(Onlyifthemassispositivethatspacetimecanbestable.)61In1978,IreturnedtoStanford,Iappliedideasofminimalsurfacestosolveafamousproblem(FrenkelConjecture)incomplexgeometrywithY.T.Siu.Ialsointroducedideasofharmonicmaptostudyingdiscretegroupsymmetries.Theseideasarestillusefuluptonow.SchoenandIdevelopedthestructuretheoryofmanifoldswithpositivescalarcurvaturebasedonourworksongeneralrelativity.62In1979,wehadaspecialyearindifferentialgeometryintheInstituteforAdvancedStudy.Practicallyallgeometerscame.Wesetagooddirectionforgeometry.Iproposedonehundredinterestingopenproblemsforthefieldofgeometry.Someofthemweresolvedandsomeofthemwerenot.The1970’shavebeenoneofthemostfruitfuleraofgeometry.63Bylateseventies,Iwaswell-recognizedbymycolleagues.ThereweremanynewscoverageonproblemsthatIsolved.However,itwillbemisleadingtothinkthatmygoalistoearnmedalsandgainrecognition.Ithasneverbeenthepriorityofmystudy.IaminterestedinMathematicsbecauseitissoexcitingtoseehowhumanthoughtcanbeextendedtounderstandnature.Thebeautyofnaturefromthepointofviewofgeometryiseverlasting.64TogetherwithmyfriendsSchoen,Simon,Cheng,Meeks,Uhlenbeck,Hamilton,andlaterbyDonaldson,TaubesandHuisken,andothers,NonlinearAnalysisinGeometryhasbeenestablishedasarichsubject.Itsimportanceinunderstandingbeautyofnaturecanneverbeunderestimated.ThemostrecentdevelopmentsshowtheirimportanceinPhysicsandinAppliedScience.65Onceanaturalmergeofseveralgreatsubjects:Geometry,Non-linearAnalysis,AlgebraicGeometry,MathematicalPhysics,isdone,classicalanddifficultproblemswerenaturallysolved.Problemsolvingcanbeconsideredaslampstandsonourroadtounderstandnature.66Confucius(孔子)
Studyingwithoutthinkinggoesnowhere;thinkingwithoutstudyingleadstobewilderment.學(xué)而不思則罔,思而不學(xué)則殆。67Han(韓愈600AD)ontheprocessoflearning:Whengeneralpeoplepraisemywriting,Iamnotpleased.Whengeneralpeopleslightmywriting,Iamnotdepressed.譽(yù)之則不以為喜,毀之則不以為憂。68C.F.Gauss(1817)Iambecomingmoreandmoreconvincingthatthenecessityofourgeometrycannotbeproved,atlea
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 五年級(jí)數(shù)學(xué)上冊(cè)蘇教版《釘子板上的多邊形》聽(tīng)評(píng)課記錄
- 八年級(jí)數(shù)學(xué)上冊(cè) 14.3 因式分解 14.3.1 提公因式法聽(tīng)評(píng)課記錄 新人教版
- 湘教版數(shù)學(xué)七年級(jí)上冊(cè)2.4《整式》聽(tīng)評(píng)課記錄
- 青島版數(shù)學(xué)七年級(jí)下冊(cè)12.1《平方差公式》聽(tīng)評(píng)課記錄
- 魯教版地理六年級(jí)下冊(cè)7.4《俄羅斯》聽(tīng)課評(píng)課記錄1
- 人民版九年級(jí)政治全冊(cè)第三單元第八課依法治國(guó)第3-4喜中有憂我們共同的責(zé)任聽(tīng)課評(píng)課記錄
- 中圖版地理八年級(jí)下冊(cè)7.4《巴西》聽(tīng)課評(píng)課記錄
- 鋁合金窗產(chǎn)品質(zhì)量監(jiān)督抽查實(shí)施細(xì)則
- 小學(xué)二年級(jí)數(shù)學(xué)口算練習(xí)題
- 一年級(jí)英語(yǔ)聽(tīng)評(píng)課記錄
- 商務(wù)星球版地理八年級(jí)下冊(cè)全冊(cè)教案
- 天津市河西區(qū)2024-2025學(xué)年四年級(jí)(上)期末語(yǔ)文試卷(含答案)
- 2025年空白離婚協(xié)議書(shū)
- 校長(zhǎng)在行政會(huì)上總結(jié)講話結(jié)合新課標(biāo)精神給學(xué)校管理提出3點(diǎn)建議
- 北京市北京四中2025屆高三第四次模擬考試英語(yǔ)試卷含解析
- 2024年快遞行業(yè)無(wú)人機(jī)物流運(yùn)輸合同范本及法規(guī)遵循3篇
- T-CSUS 69-2024 智慧水務(wù)技術(shù)標(biāo)準(zhǔn)
- 2025年護(hù)理質(zhì)量與安全管理工作計(jì)劃
- 地下商業(yè)街的規(guī)劃設(shè)計(jì)
- 2024-2030年全球及中國(guó)低密度聚乙烯(LDPE)行業(yè)需求動(dòng)態(tài)及未來(lái)發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告
- 傷殘撫恤管理辦法實(shí)施細(xì)則
評(píng)論
0/150
提交評(píng)論