版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆浙江省寧波市東恩中學(xué)高二數(shù)學(xué)第二學(xué)期期末達(dá)標(biāo)檢測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.甲、乙、丙三人每人準(zhǔn)備在3個旅游景點中各選一處去游玩,則在“至少有1個景點未被選擇”的條件下,恰有2個景點未被選擇的概率是()A.17 B.18 C.12.命題“任意”為真命題的一個充分不必要條件是()A. B. C. D.3.將3本相同的小說,2本相同的詩集全部分給4名同學(xué),每名同學(xué)至少1本,則不同的分法有()A.24種 B.28種 C.32種 D.36種4.函數(shù)的圖象大致為A. B. C. D.5.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C.48 D.6.某一批花生種子,如果每1粒發(fā)芽的概率為,那么播下4粒種子恰有2粒發(fā)芽的概率是()A. B. C. D.7.下列函數(shù)中,既是偶函數(shù),又在區(qū)間(1,2)內(nèi)是增函數(shù)的為()A.,xRB.,xR且x≠0C.,xRD.,xR8.已知函數(shù)在上單調(diào),則實數(shù)的取值范圍為()A. B.C. D.9.已知,用數(shù)學(xué)歸納法證明時.假設(shè)當(dāng)時命題成立,證明當(dāng)時命題也成立,需要用到的與之間的關(guān)系式是()A. B.C. D.10.設(shè)x,y滿足約束條件,則目標(biāo)函數(shù)的取值范圍為()A. B. C. D.11.從1,2,3,4,5,6,7,8,9中不放回地依次取2個數(shù),事件“第一次取到的是偶數(shù)”,“第二次取到的是偶數(shù)”,則()A. B. C. D.12.下列四個結(jié)論:①在回歸分析模型中,殘差平方和越大,說明模型的擬合效果越好;②某學(xué)校有男教師60名、女教師40名,為了解教師的體育愛好情況,在全體教師中抽取20名調(diào)查,則宜采用的抽樣方法是分層抽樣;③線性相關(guān)系數(shù)越大,兩個變量的線性相關(guān)性越弱;反之,線性相關(guān)性越強(qiáng);④在回歸方程中,當(dāng)解釋變量每增加一個單位時,預(yù)報變量增加0.5個單位.其中正確的結(jié)論是()A.①② B.①④C.②③ D.②④二、填空題:本題共4小題,每小題5分,共20分。13.已知是虛數(shù)單位,若復(fù)數(shù)滿足,則________.14.已知等腰直角的斜邊,沿斜邊的高線將折起,使二面角的大小為,則四面體的外接球的表面積為__________.15.已知函數(shù),有以下結(jié)論:①若,則;②在區(qū)間上是增函數(shù);③的圖象與圖象關(guān)于軸對稱;④設(shè)函數(shù),當(dāng)時,.其中正確的結(jié)論為__________.16.在中,若,則的外接圓半徑,將此結(jié)論拓展到空間,可得出的正確結(jié)論是:在四面體中,若兩兩垂直,,則四面體的外接球半徑______________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)求的圖象在點處的切線方程;(2)求在上的最大值與最小值。18.(12分)如果,求實數(shù)的值.19.(12分)如圖,長方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=m,點M是棱CD的中點.(1)求異面直線B1C與AC1所成的角的大??;(2)是否存在實數(shù)m,使得直線AC1與平面BMD1垂直?說明理由;(3)設(shè)P是線段AC1上的一點(不含端點),滿足λ,求λ的值,使得三棱錐B1﹣CD1C1與三棱錐B1﹣CD1P的體積相等.20.(12分)已知函數(shù),;.(1)求的最大值;(2)若對,總存在使得成立,求的取值范圍;(3)證明不等式.21.(12分)在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸正半軸為極軸,建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.(1)求曲線的直角坐標(biāo)方程;(2)設(shè)點,直線與曲線交于不同的兩點,,求的值.22.(10分)如圖,有一塊半徑為的半圓形空地,開發(fā)商計劃征地建一個矩形游泳池和其附屬設(shè)施,附屬設(shè)施占地形狀是等腰,其中為圓心,在圓的直徑上,在圓周上.(1)設(shè),征地面積記為,求的表達(dá)式;(2)當(dāng)為何值時,征地面積最大?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
設(shè)事件A為:至少有1個景點未被選擇,事件B為:恰有2個景點未被選擇,計算P(AB)和P(A),再利用條件概率公式得到答案.【題目詳解】設(shè)事件A為:至少有1個景點未被選擇,事件B為:恰有2個景點未被選擇P(AB)=P(B故答案選A【題目點撥】本題考查了條件概率,意在考查學(xué)生對于條件概率的理解和計算.2、C【解題分析】試題分析:對此任意性問題轉(zhuǎn)化為恒成立,當(dāng),即,,若是原命題為真命題的一個充分不必要條件,那應(yīng)是的真子集,故選C.考點:1.集合;2.充分必要條件.3、B【解題分析】試題分析:第一類:有一個人分到一本小說和一本詩集,這種情況下的分法有:先將一本小說和一本詩集分到一個人手上,有種分法,將剩余的本小說,本詩集分給剰余個同學(xué),有種分法,那共有種;第二類:有一個人分到兩本詩集,這種情況下的分法有:先兩本詩集分到一個人手上,有種情況,將剩余的本小說分給剩余個人,只有一種分法,那共有:種,第三類:有一個人分到兩本小說,這種情況的分法有:先將兩本小說分到一個人手上,有種情況,再將剩余的兩本詩集和一本小說分給剩余的個人,有種分法,那共有:種,綜上所述:總共有:種分法,故選B.考點:1、分布計數(shù)乘法原理;2、分類計數(shù)加法原理.【方法點睛】本題主要考查分類計數(shù)原理與分步計數(shù)原理及排列組合的應(yīng)用,屬于難題.有關(guān)排列組合的綜合問題,往往是兩個原理及排列組合問題交叉應(yīng)用才能解決問題,解答這類問題理解題意很關(guān)鍵,一定多讀題才能挖掘出隱含條件.解題過程中要首先分清“是分類還是分步”、“是排列還是組合”,在應(yīng)用分類計數(shù)加法原理討論時,既不能重復(fù)交叉討論又不能遺漏,這樣才能提高準(zhǔn)確率.4、B【解題分析】由于,故排除選項.,所以函數(shù)為奇函數(shù),圖象關(guān)于原點對稱,排除選項.,排除選項,故選B.5、B【解題分析】
由三視圖可得幾何體是如圖所示四棱錐,根據(jù)三視圖數(shù)據(jù)計算表面積即可.【題目詳解】由三視圖可得幾何體是如圖所示四棱錐,則該幾何體的表面積為:.故選:B【題目點撥】本題主要考查了三視圖,空間幾何體的表面積計算,考查了學(xué)生的直觀想象能力.6、B【解題分析】
解:根據(jù)題意,播下4粒種子恰有2粒發(fā)芽即4次獨立重復(fù)事件恰好發(fā)生2次,由n次獨立重復(fù)事件恰好發(fā)生k次的概率的公式可得,故選B.7、B【解題分析】
首先判斷奇偶性:A,B為偶函數(shù),C為奇函數(shù),D既不是奇函數(shù)也不是偶函數(shù),所以排除C、D,對于先減后增,排除A,故選B.考點:函數(shù)的奇偶性、單調(diào)性.8、D【解題分析】
求得導(dǎo)數(shù),根據(jù)在上單調(diào),得出或在上恒成立,分離參數(shù)構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得新函數(shù)的單調(diào)性與最值,即可求解。【題目詳解】由題意,函數(shù),則,因為,在上單調(diào),所以①當(dāng)在上恒成立時,在上單調(diào)遞增,即在上恒成立,則在上恒成立,令,,則在為增函數(shù),∴.②當(dāng)在上恒成立時,在上單調(diào)遞減,即在上恒成立,則在上恒成立,同①可得,綜上,可得或.故選:D.【題目點撥】本題主要考查了利用導(dǎo)數(shù)研究函數(shù)單調(diào)性、最值問題,用到了分離參數(shù)法求參數(shù)的范圍,恒成立問題的處理及轉(zhuǎn)化與化歸思想是本題的靈魂,著重考查了推理與運算能力,屬于偏難題.9、C【解題分析】
分別根據(jù)已知列出和,即可得兩者之間的關(guān)系式.【題目詳解】由題得,當(dāng)時,,當(dāng)時,,則有,故選C.【題目點撥】本題考查數(shù)學(xué)歸納法的步驟表示,屬于基礎(chǔ)題.10、A【解題分析】
作出可行域,將問題轉(zhuǎn)化為可行域中的點與點的斜率問題,結(jié)合圖形可得答案.【題目詳解】畫出滿足條件得平面區(qū)域,如圖所示:目標(biāo)函數(shù)的幾何意義為區(qū)域內(nèi)的點與的斜率,過與時斜率最小,過與時斜率最大,故選:A.【題目點撥】本題考查了利用線性規(guī)劃求分式型目標(biāo)函數(shù)取值范圍問題,解題關(guān)鍵是轉(zhuǎn)化為斜率,難度較易.11、B【解題分析】分析:事件A發(fā)生后,只剩下8個數(shù)字,其中只有3個偶數(shù)字,由古典概型概率公式可得.詳解:在事件A發(fā)生后,只有8個數(shù)字,其中只有3個偶數(shù)字,∴.故選B.點睛:本題考查條件概率,由于是不放回取數(shù),因此事件A的發(fā)生對B的概率有影響,可考慮事件A發(fā)生后基本事件的個數(shù)與事件B發(fā)生時事件的個數(shù),從而計算概率.12、D【解題分析】
根據(jù)殘差的意義可判斷①;根據(jù)分成抽樣特征,判斷②;根據(jù)相關(guān)系數(shù)的意義即可判斷③;由回歸方程的系數(shù),可判斷④.【題目詳解】根據(jù)殘差的意義,可知當(dāng)殘差的平方和越小,模擬效果越好,所以①錯誤;當(dāng)個體差異明顯時,選用分層抽樣法抽樣,所以②正確;根據(jù)線性相關(guān)系數(shù)特征,當(dāng)相關(guān)系數(shù)越大,兩個變量的線性相關(guān)性越強(qiáng),所以③錯誤;根據(jù)回歸方程的系數(shù)為0.5,所以當(dāng)解釋變量每增加一個單位時,預(yù)報變量增加0.5個單位.綜上,②④正確,故選D.【題目點撥】本題考查了統(tǒng)計的概念和基本應(yīng)用,抽樣方法、回歸方程和相關(guān)系數(shù)的概念和性質(zhì),屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
先計算復(fù)數(shù),再計算復(fù)數(shù)的模.【題目詳解】故答案為【題目點撥】本題考查了復(fù)數(shù)的計算,屬于簡單題.14、【解題分析】等腰直角翻折后是二面角的平面角,即,因此外接圓半徑為,四面體的外接球半徑等于,外接球的表面積為點睛:涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.15、②③④【解題分析】
首先化簡函數(shù)解析式,逐一分析選項,得到答案.【題目詳解】①當(dāng)時,函數(shù)的周期為,,或,所以①不正確;②時,,所以是增函數(shù),②正確;③函數(shù)還可以化簡為,所以與關(guān)于軸對稱,正確;④,當(dāng)時,,,④正確故選②③④【題目點撥】本題考查了三角函數(shù)的化簡和三角函數(shù)的性質(zhì),屬于中檔題型.16、【解題分析】
通過條件三條棱兩兩垂直,可將其補為長方體,從而求得半徑.【題目詳解】若兩兩垂直,可將四面體補成一長方體,從而長方體的外接球即為四面體的外接球,于是半徑,故答案為.【題目點撥】本題主要考查外接球的半徑,將四面體轉(zhuǎn)化為長方體求解是解決本題的關(guān)鍵.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解題分析】
(1)利用導(dǎo)數(shù)求出的值,作為切線的斜率,并計算出,再利用點斜式寫出切線的方程;(2)利用導(dǎo)數(shù)分析函數(shù)在區(qū)間上的單調(diào)性,并求出極值,再與端點值比較大小,即可得出函數(shù)在區(qū)間上的最大值和最小值?!绢}目詳解】(1),,所以,函數(shù)的圖象在點處的切線的斜率為,,所以,函數(shù)的圖象在點處的切線方程為,即;(2),。當(dāng)時,;當(dāng)時,。所以,,因為,,所以,,則,所以,函數(shù)在上的最大值為?!绢}目點撥】本題考查導(dǎo)數(shù)的幾何意義,考查函數(shù)的最值與導(dǎo)數(shù),在處理函數(shù)的最值時,要充分利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,并將極值與端點函數(shù)值作大小比較得出結(jié)論,考查計算能力與分析問題的能力,屬于中等題。18、【解題分析】分析:由復(fù)數(shù)相等的充分必要條件得到關(guān)于x,y的方程組,求解方程組可得.詳解:由題意得,解得.點睛:本題主要考查復(fù)數(shù)相等的充分必要條件及其應(yīng)用等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.19、(1)90°(2)存在,m,理由見解析(3)λ【解題分析】
(1)根據(jù)題意只需證明平面,即可得到B1C⊥AC1,從而可得答案.(2)存在實數(shù)m,使得直線AC1與平面BMD1垂直.只需證明BM⊥AC1,AC1⊥D1M,即可得到直線AC1⊥平面BMD1;(3)計算,,設(shè)AC1與平面B1CD1的斜足為O,則AO=2OC1,則P為AO的中點,從而可得答案.【題目詳解】(1)連接BC1,如圖所示:由四邊形BCC1B1為正方形,可得B1C⊥BC1,又ABCD﹣A1B1C1D1為長方體,可得AB⊥B1C,而AB∩BC1=B,∴B1C⊥平面ABC1,而AC1?平面ABC1,∴B1C⊥AC1,即異面直線B1C與AC1所成的角的大小為90°;(2)存在實數(shù)m,使得直線AC1與平面BMD1垂直.事實上,當(dāng)m時,CM,∵BC=1,∴,則Rt△ABC∽Rt△BCM,則∠CAB=∠MBC,∵∠CAB+∠ACB=90°,∴∠MBC+∠ACB=90°,即AC⊥BM,又CC1⊥BM,AC∩CC1=C,∴BM⊥平面ACC1,則BM⊥AC1,同理可證AC1⊥D1M,又D1M∩BM=M,∴直線AC1⊥平面BMD1;(3)∵,,設(shè)AC1與平面B1CD1的斜足為O,則AO=2OC1,∴在線段AC1上取一點P,要使三棱錐B1﹣CD1C1與三棱錐B1﹣CD1P的體積相等,則P為AO的中點,即.【題目點撥】本題考查了直線與平面垂直的判定定理,考查了直線與平面垂直的性質(zhì),考查了棱柱和棱錐的體積公式,屬于中檔題.20、【解題分析】試題分析:(1)對函數(shù)求導(dǎo),,時,,當(dāng)時,,函數(shù)單調(diào)遞增,當(dāng)時,,函數(shù)單調(diào)遞減,所以當(dāng)時,函數(shù)取得極大值,也是最大值,所以的最大值為;(2)若對,總存在使得成立,則轉(zhuǎn)化為,由(1)知,問題轉(zhuǎn)化為求函數(shù)在區(qū)間上的最大值,對求導(dǎo),,分類討論,當(dāng)時,函數(shù)在上恒成立,在上單調(diào)遞增,只需滿足,,解得,所以;當(dāng)時,時,(舍),當(dāng)時,在上恒成立,只需滿足,,解得,當(dāng),即時,在遞減,遞增,而,在為正,在為負(fù),∴,當(dāng),而時,,不合題意,可以求出的取值范圍。(3)由(1)知:即,取,∴,∴,即∴,等號右端為等比
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年集體土地租賃修建公園協(xié)議
- 2024年陜西省規(guī)范化離婚合同范本一
- 2025年度大巴車租賃合同(含車輛改裝服務(wù))2篇
- 2025年度智能家電產(chǎn)品全國銷售總代理協(xié)議3篇
- 2024年門店合規(guī)與法律風(fēng)險管理合同
- 重癥監(jiān)護(hù)及ICU護(hù)理質(zhì)量控制
- 2024瓷磚直銷協(xié)議范本版B版
- 2024年版美食廣場聯(lián)營合同
- 2024年精裝修浴室工程承包合同版B版
- 2024短期財務(wù)周轉(zhuǎn)貸款協(xié)議范本一
- 中醫(yī)診療技術(shù)操作規(guī)程
- 樂理知識考試題庫130題(含答案)
- 2024年《多媒體技術(shù)與應(yīng)用》 考試題庫及答案
- (完整)北京版小學(xué)英語1至6年級詞匯(帶音標(biāo))
- 終止合同告知函 委婉
- 0-3歲嬰幼兒基礎(chǔ)護(hù)理智慧樹知到期末考試答案章節(jié)答案2024年杭州師范大學(xué)
- 面包烘焙原料供應(yīng)采購合同案例
- 工商企業(yè)管理畢業(yè)論文范文(篇一)
- 基于mRNA-LNP技術(shù)的(細(xì)胞)免疫治療產(chǎn)品開發(fā)指南
- 電動叉車充電區(qū)安全規(guī)程
- 手術(shù)室中心吸引突然停止的應(yīng)急預(yù)案
評論
0/150
提交評論