版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆湖北省蘄春縣數(shù)學(xué)高二第二學(xué)期期末考試模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,則A. B.C. D.R2.已知函數(shù),則的解集為()A. B. C. D.3.(+)(2-)5的展開式中33的系數(shù)為A.-80 B.-40 C.40 D.804.(山西省榆社中學(xué)高三診斷性模擬考試)設(shè)為數(shù)列的前項和,已知,,則A. B.C. D.5.已知,,,則()A.0.6 B.0.7 C.0.8 D.0.96.設(shè),則“”是“”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件7.現(xiàn)有5人參加抽獎活動,每人依次從裝有5張獎票(其中3張為中獎票)的箱子中不放回地隨機抽取一張,直到3張中獎票都被抽出時活動結(jié)束,則活動恰好在第4人抽完后結(jié)束的概率為()A. B. C. D.8.已知滿足約束條件,則的最大值為()A. B. C.3 D.-39.在一個6×6的表格中放3顆完全相同的白棋和3顆完全相同的黑棋,若這6顆棋子不在同一行也不在同一列上,則不同的放法有A.14400種 B.518400種 C.720種 D.20種10.現(xiàn)安排甲、乙、丙、丁、戌5名同學(xué)參加上海世博會志愿者服務(wù)活動,每人從事翻譯、導(dǎo)游、禮儀、司機四項工作之一,每項工作至少有一人參加.甲、乙不會開車但能從事其他三項工作,丙丁戌都能勝任四項工作,則不同安排方案的種數(shù)是A.152 B.126 C.90 D.5411.某機構(gòu)需掌握55歲人群的睡眠情況,通過隨機抽查110名性別不同的55歲的人的睡眠質(zhì)量情況,得到如下列聯(lián)表男女總計好402060不好203050總計6050110由得,.根據(jù)表0.0500.0100.0013.8416.63510.828得到下列結(jié)論,正確的是()A.有以下的把握認(rèn)為“睡眠質(zhì)量與性別有關(guān)”B.有以上的把握認(rèn)為“睡眠質(zhì)量與性別無關(guān)”C.在犯錯誤的概率不超過0.01的前提下,認(rèn)為“睡眠質(zhì)量與性別有關(guān)”D.在犯錯誤的概率不超過0.01的前提下,認(rèn)為“睡眠質(zhì)量與性別無關(guān)”12.若變量滿足約束條件,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中項的系數(shù)為_____.14.隨機變量,變量,則__________.15.從6男2女共8名學(xué)生中選出隊長1人,副隊長1人,普通隊員2人,組成4人服務(wù)隊,要求服務(wù)隊中至少有1名女生,共有__________種不同的選法.(用數(shù)字作答)16.在的展開式中,項的系數(shù)為_____________.(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已經(jīng)函數(shù).(1)討論函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)在處取得極值,對恒成立,求實數(shù)的取值范圍.18.(12分)已知(1)若,且為真,求實數(shù)的取值范圍;(2)若是充分不必要條件,求實數(shù)的取值范圍19.(12分)已知半徑為5的圓的圓心在軸上,圓心的橫坐標(biāo)是整數(shù),且與直線相切.(1)求圓的標(biāo)準(zhǔn)方程;(2)設(shè)直線與圓相交于A,B兩點,求實數(shù)的取值范圍;(3)在(2)的條件下,是否存在實數(shù),使得弦的垂直平分線過點.20.(12分)如圖,在四棱錐中,底面為矩形,平面,為棱的中點,,,.(1)證明:平面.(2)求二面角的余弦值.21.(12分)甲、乙、丙3人均以游戲的方式?jīng)Q定是否參加學(xué)校音樂社團(tuán)、美術(shù)社團(tuán),游戲規(guī)則為:①先將一個圓8等分(如圖),再將8個等分點,分別標(biāo)注在8個相同的小球上,并將這8個小球放入一個不透明的盒子里,每個人從盒內(nèi)隨機摸出兩個小球、然后用摸出的兩個小球上標(biāo)注的分點與圓心構(gòu)造三角形.若能構(gòu)成直角三角形,則兩個社團(tuán)都參加;若能構(gòu)成銳角三角形,則只參加美術(shù)社團(tuán);若能構(gòu)成鈍角三角形,則只參加音樂社團(tuán);若不能構(gòu)成三角形,則兩個社團(tuán)都不參加.②前一個同學(xué)摸出兩個小球記錄下結(jié)果后,把兩個小球都放回盒內(nèi),下一位同學(xué)再從盒中隨機摸取兩個小球.(1)求甲能參加音樂社團(tuán)的概率;(2)記甲、乙、丙3人能參加音樂社團(tuán)的人數(shù)為隨機變量,求的分布列、數(shù)學(xué)期望和方差22.(10分)如圖(1),等腰梯形,,,,,分別是的兩個三等分點,若把等腰梯形沿虛線、折起,使得點和點重合,記為點,如圖(2).(1)求證:平面平面;(2)求平面與平面所成銳二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解題分析】
先解出集合與,再利用集合的并集運算得出.【題目詳解】,,,故選D.【題目點撥】本題考查集合的并集運算,在計算無限數(shù)集時,可利用數(shù)軸來強化理解,考查計算能力,屬于基礎(chǔ)題.2、C【解題分析】
根據(jù)分段函數(shù)的表達(dá)式,討論當(dāng)和時,不等式的解,從而得到答案?!绢}目詳解】因為,由,得:①或②;解①得;;解②得:;所以的解集為;故答案選C【題目點撥】本題考查指數(shù)不等式與對數(shù)不等式的解法,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬于中檔題。3、C【解題分析】,由展開式的通項公式可得:當(dāng)時,展開式中的系數(shù)為;當(dāng)時,展開式中的系數(shù)為,則的系數(shù)為.故選C.【名師點睛】(1)二項式定理的核心是通項公式,求解此類問題可以分兩步完成:第一步根據(jù)所給出的條件(特定項)和通項公式,建立方程來確定指數(shù)(求解時要注意二項式系數(shù)中n和r的隱含條件,即n,r均為非負(fù)整數(shù),且n≥r,如常數(shù)項指數(shù)為零、有理項指數(shù)為整數(shù)等);第二步是根據(jù)所求的指數(shù),再求所求解的項.(2)求兩個多項式的積的特定項,可先化簡或利用分類加法計數(shù)原理討論求解.4、D【解題分析】根據(jù)題意,由,得,則,,…,將各式相加得,又,所以,因此,則將上式減下式得,所以.故選D.點睛:此題主要考查了數(shù)列通項公式、前項和公式的求解計算,以及錯位相消求各法的應(yīng)用等有關(guān)方面的知識與技能,屬于中檔題型,也是常考知識點.錯位相消求和法是一種重要的方法,一般適于所求數(shù)列的通項公式是一個等比數(shù)列乘于一個等差的形式,將求和式子兩邊同時乘于等比數(shù)列的公比,再兩式作差,消去中間項,從而求得前項和公式.5、D【解題分析】分析:根據(jù)隨機變量服從正態(tài)分布,可知正態(tài)曲線的對稱軸,利用對稱性,即可求得.詳解:由題意,
∵隨機變量,,
∴故選:D.點睛:本題主要考查正態(tài)分布曲線的特點及曲線所表示的意義、函數(shù)圖象對稱性的應(yīng)用等基礎(chǔ)知識,屬于基礎(chǔ)題.6、A【解題分析】
利用不等式的性質(zhì)和充分必要條件的定義進(jìn)行求解;【題目詳解】∵可得或,
∴由“”能推出“”,但由“”推不出“”,
∴“”是“”的充分非必要條件,
故選A.【題目點撥】本題主要考查不等式的基本性質(zhì)和充分必要條件,屬于基礎(chǔ)題.7、C【解題分析】試題分析:將5張獎票不放回地依次取出共有種不同的取法,若活動恰好在第四次抽獎結(jié)束,則前三次共抽到2張中獎票,第四次抽到最后一張中獎票.共有種取法,∴考點:古典概型及其概率計算公式8、B【解題分析】
畫出可行域,通過截距式可求得最大值.【題目詳解】作出可行域,求得,,,通過截距式可知在點C取得最大值,于是.【題目點撥】本題主要考查簡單線性規(guī)劃問題,意在考查學(xué)生的轉(zhuǎn)化能力和作圖能力.目標(biāo)函數(shù)主要有三種類型:“截距型”,“斜率型”,“距離型”,通過幾何意義可得結(jié)果.9、A【解題分析】根據(jù)題意,在6×6的棋盤中,第一顆棋子有6×6種放法,由于任意兩顆棋子不在同一行且不在同一列,則第二顆棋子有5×5種放法,第三顆棋子有4×4種放法,第四顆棋子有3×3種放法,第五顆棋子有2×2種放法,第六顆棋子有1種放法,又由于3顆黑子是相同的,3顆白子之間也是相同的,故6顆棋子不同的排列方法種數(shù)為種;故選A.點睛:在排列組合問題中,遇見元素相同的排列時,一般可以將兩個元素看作不同元素,排列結(jié)束后除以相同元素的全排列即可,比如有兩個元素相同即除以,如三個元素相同即除以.10、B【解題分析】試題分析:根據(jù)題意,按甲乙的分工情況不同分兩種情況討論,①甲乙一起參加除了開車的三項工作之一,②甲乙不同時參加一項工作;分別由排列、組合公式計算其情況數(shù)目,進(jìn)而由分類計數(shù)的加法公式,計算可得答案.解:根據(jù)題意,分情況討論,①甲乙一起參加除了開車的三項工作之一:C31×A33=18種;②甲乙不同時參加一項工作,進(jìn)而又分為2種小情況;1°丙、丁、戌三人中有兩人承擔(dān)同一份工作,有A32×C32×A22=3×2×3×2=36種;2°甲或乙與丙、丁、戌三人中的一人承擔(dān)同一份工作:A32×C31×C21×A22=72種;由分類計數(shù)原理,可得共有18+36+72=126種,故選B.考點:排列、組合的實際應(yīng)用.11、C【解題分析】
根據(jù)獨立性檢驗的基本思想判斷得解.【題目詳解】因為,根據(jù)表可知;選C.【題目點撥】本題考查獨立性檢驗的基本思想,屬于基礎(chǔ)題.12、B【解題分析】分析:根據(jù)約束條件畫出平面區(qū)域,再將目標(biāo)函數(shù)轉(zhuǎn)換為,則為直線的截距,通過平推法確定的取值范圍.詳解:(1)畫直線,和,根據(jù)不等式組確定平面區(qū)域,如圖所示.(2)將目標(biāo)函數(shù)轉(zhuǎn)換為直線,則為直線的截距.(3)畫直線,平推直線,確定點A、B分別取得截距的最小值和最大值.易得,聯(lián)立方程組,解得,B坐標(biāo)為(4)分別將點A、B坐標(biāo)代入,,的取值范圍是故選B.點睛:本題主要考查線性規(guī)劃問題,數(shù)形結(jié)合是解決問題的關(guān)鍵.目標(biāo)函數(shù)型線性規(guī)劃問題解題步驟:(1)確定可行區(qū)域(2)將轉(zhuǎn)化為,求z的值,可看做求直線,在y軸上截距的最值。(3)將平移,觀察截距最大(小)值對應(yīng)的位置,聯(lián)立方程組求點坐標(biāo)。(4)將該點坐標(biāo)代入目標(biāo)函數(shù),計算Z。二、填空題:本題共4小題,每小題5分,共20分。13、9【解題分析】
將二項式表示為,然后利用二項式定理寫出其通項,令的指數(shù)為,求出參數(shù)的值,再代入通項即可得出項的系數(shù)。【題目詳解】,所以,的展開式通項為,令,得,所以,展開式中項的系數(shù)為,故答案為:?!绢}目點撥】本題考查二項式中指定項的系數(shù),考查二項式展開式通項的應(yīng)用,這類問題的求解一般要將展開式的通項表示出來,通過建立指數(shù)有關(guān)的方程來求解,考查運算能力,屬于中等題。14、.【解題分析】分析:先根據(jù)二項分布得,再根據(jù),得詳解:因為,所以,因為,所以點睛:二項分布),則此隨機變量的期望可直接利用這種典型分布的期望公式.15、660【解題分析】
第一類,先選女男,有種,這人選人作為隊長和副隊有種,故有種;第二類,先選女男,有種,這人選人作為隊長和副隊有種,故有種,根據(jù)分類計數(shù)原理共有種,故答案為.16、【解題分析】
由,然后利用二項式定理得出含項為,然后利用二項式展開式通項求出中項的系數(shù),與相乘即可得出結(jié)果.【題目詳解】,展開式中含的項為,中含項為,因此,的展開式中項的系數(shù)為.故答案為:.【題目點撥】本題考查二項展開式的應(yīng)用,在處理含三項的問題時,可將其轉(zhuǎn)化為兩項的和來處理,考查運算求解能力,屬于中等題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)①當(dāng)時,的遞減區(qū)間是,無遞增區(qū)間;②當(dāng)時,的遞增區(qū)間是,遞減區(qū)間是.(2).【解題分析】
分析:(Ⅰ)求出導(dǎo)函數(shù),由于定義域是,可按和分類討論的正負(fù),得單調(diào)區(qū)間.(Ⅱ)由函數(shù)在處取極值得且可得的具體數(shù)值,而不等式可轉(zhuǎn)化為,這樣只要求得的最小值即可.詳解:(Ⅰ)在區(qū)間上,.①若,則,是區(qū)間上的減函數(shù);②若,令得.在區(qū)間上,,函數(shù)是減函數(shù);在區(qū)間上,,函數(shù)是增函數(shù);綜上所述,①當(dāng)時,的遞減區(qū)間是,無遞增區(qū)間;②當(dāng)時,的遞增區(qū)間是,遞減區(qū)間是.(II)因為函數(shù)在處取得極值,所以解得,經(jīng)檢驗滿足題意.由已知,則令,則易得在上遞減,在上遞增,所以,即.點睛:本題考查用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間、函數(shù)極值,用導(dǎo)數(shù)研究不等式恒成立問題.不等式恒成立通常通過分離參數(shù)法轉(zhuǎn)化為求函數(shù)的最值.18、(1);(2)【解題分析】
(1)解不等求得p,根據(jù)m的值求得q;根據(jù)p∧q為真可知p、q同時為真,可求得x的取值范圍.(2)先求得q.根據(jù)p是q的充分不必要條件,得到不等式組,解不等式組即可得到m的取值范圍.【題目詳解】(1)由x2-6x+5≤0,得1≤x≤5,∴p:1≤x≤5.當(dāng)m=2時,q:-1≤x≤3.若p∧q為真,p,q同時為真命題,則即1≤x≤3.∴實數(shù)x的取值范圍為[1,3].(2)由x2-2x+1-m2≤0,得q:1-m≤x≤1+m.∵p是q的充分不必要條件,∴解得m≥4.∴實數(shù)m的取值范圍為[4,+∞).【題目點撥】本題考查了復(fù)合命題的簡單應(yīng)用,充分必要條件的關(guān)系,屬于基礎(chǔ)題.19、(Ⅰ)(Ⅱ)(Ⅲ)存在實數(shù)【解題分析】
本試題主要考查圓的方程的求解,以及直線與圓的位置關(guān)系的運用.解:(Ⅰ)設(shè)圓心為().由于圓與直線相切,且半徑為,所以,即.因為為整數(shù),故.故所求圓的方程為.…………………4分(2)把直線ax-y+5=0,即y=ax+5代入圓的方程,消去y整理,的(Ⅲ)設(shè)符合條件的實數(shù)存在,直線的斜率為的方程為,即由于垂直平分弦AB,故圓心必在上,所以,解得.由于,故存在實數(shù)使得過點的直線垂直平分弦AB………14分20、(1)見證明;(2)【解題分析】
(1)先由平面得到面PDC平面,可得平面,則有,再利用勾股數(shù)及等腰三角形可得,可證得平面,即證得結(jié)論.(2)以D為坐標(biāo)原點,建立如圖所示空間直角坐標(biāo)系D﹣xyz,利用向量法能求出二面角P﹣AE﹣D的余弦值.【題目詳解】(1)取的中點,連接,,則.由題知平面,面PDC,所以面PDC平面,又底面為矩形,故平面,所以,在中,,,則.因為,所以,,即△CDP為等腰三角形,又F為的中點,所以.因為,所以平面,即平面.(2)以為原點,,,所在直線分別為,,軸,建立如圖所示的空間直角坐標(biāo)系,則,,,.由題知,,設(shè)平面的法向量為,則,令,則,,得.因為平面,所以為平面的一個法向量,所以,由圖可知,二面角為銳角,所以二面角的余弦值為.【題目點撥】本題考查了線面垂直、面面垂直的證明,考查了利用空間向量法求解二面角的余弦值的方法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,考查數(shù)形結(jié)合思想,是中檔題.21、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣州體育職業(yè)技術(shù)學(xué)院《營養(yǎng)與食品衛(wèi)生學(xué)》2023-2024學(xué)年第一學(xué)期期末試卷
- 2025年海南省建筑安全員《C證》考試題庫
- 2025四川省建筑安全員《A證》考試題庫
- 民航英語口語總復(fù)習(xí)課件
- 【大學(xué)課件】官方單據(jù)公務(wù)證書
- 專利申請實務(wù)
- 最小公倍數(shù) 比較課件
- 小古文-大禹治水課件
- 《展覽品牌策劃》課件
- 2025年中國男褲行業(yè)市場前景預(yù)測及投資戰(zhàn)略研究報告
- PPT中國地圖素材(可修改顏色)
- 2023年深國交入學(xué)考試英語模擬試題
- 2022年中國農(nóng)業(yè)銀行(廣東分行)校園招聘筆試試題及答案解析
- 品牌管理第五章品牌體驗課件
- 基于CAN通訊的儲能變流器并機方案及應(yīng)用分析報告-培訓(xùn)課件
- 保姆級別CDH安裝運維手冊
- 菌草技術(shù)及產(chǎn)業(yè)化應(yīng)用課件
- GB∕T 14527-2021 復(fù)合阻尼隔振器和復(fù)合阻尼器
- 隧道二襯、仰拱施工方案
- 顫病(帕金森?。┲嗅t(yī)護(hù)理常規(guī)
- 果膠項目商業(yè)計劃書(模板范本)
評論
0/150
提交評論