版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
求遞推數(shù)列通項公式的十種策略例析遞推數(shù)列的題型多樣,求遞推數(shù)列的通項公式的方法也非常靈活,往往可以通過適當(dāng)?shù)牟呗詫栴}化歸為等差數(shù)列或等比數(shù)列問題加以解決,亦可采用不完全歸納法的方法,由特殊情形推導(dǎo)出一般情形,進而用數(shù)學(xué)歸納法加以證明,因而求遞推數(shù)列的通項公式問題成為了高考命題中頗受青睞的考查內(nèi)容。筆者試給出求遞推數(shù)列通項公式的十種方法策略,它們是:公式法、累加法、累乘法、待定系數(shù)法、對數(shù)變換法、迭代法、數(shù)學(xué)歸納法、換元法、不動點法、特征根的方法。仔細辨析遞推關(guān)系式的特征,準(zhǔn)確選擇恰當(dāng)?shù)姆椒ǎ茄杆偾蟪鐾椆降年P(guān)鍵。一、利用公式法求通項公式例1已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式。解:SKIPIF1<0兩邊除以SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,故數(shù)列SKIPIF1<0是以SKIPIF1<0為首,以SKIPIF1<0為公差的等差數(shù)列,由等差數(shù)列的通項公式,得SKIPIF1<0,所以數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0。評注:本題解題的關(guān)鍵是把遞推關(guān)系式SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,說明數(shù)列SKIPIF1<0是等差數(shù)列,再直接利用等差數(shù)列的通項公式求出SKIPIF1<0,進而求出數(shù)列SKIPIF1<0的通項公式。二、利用累加法求通項公式例2已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式。解:由SKIPIF1<0得SKIPIF1<0則SKIPIF1<0SKIPIF1<0所以數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0評注:本題解題的關(guān)鍵是把遞推關(guān)系式SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,進而求出SKIPIF1<0,即得數(shù)列SKIPIF1<0的通項公式。例3已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式。解:由SKIPIF1<0得SKIPIF1<0則SKIPIF1<0SKIPIF1<0所以SKIPIF1<0評注:本題解題的關(guān)鍵是把遞推關(guān)系式SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,進而求出SKIPIF1<0,即得數(shù)列SKIPIF1<0的通項公式。例4已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式。解:SKIPIF1<0兩邊除以SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0SKIPIF1<0SKIPIF1<0因此SKIPIF1<0,則SKIPIF1<0評注:本題解題的關(guān)鍵是把遞推關(guān)系式SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,進而求出SKIPIF1<0+…+SKIPIF1<0,即得數(shù)列SKIPIF1<0的通項公式,最后再求數(shù)列SKIPIF1<0的通項公式。三、利用累乘法求通項公式例5已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式。解:因為SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0所以數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0評注:本題解題的關(guān)鍵是把遞推關(guān)系SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,進而求出SKIPIF1<0,即得數(shù)列SKIPIF1<0的通項公式。例6(2004年全國15題)已知數(shù)列SKIPIF1<0滿足SKIPIF1<0SKIPIF1<0,則SKIPIF1<0的通項SKIPIF1<0解:因為SKIPIF1<0 ①所以SKIPIF1<0 ②所以②式-①式得SKIPIF1<0則SKIPIF1<0則SKIPIF1<0所以SKIPIF1<0SKIPIF1<0 ③由SKIPIF1<0,取n=2得SKIPIF1<0,則SKIPIF1<0,又知SKIPIF1<0,則SKIPIF1<0,代入③得SKIPIF1<0。評注:本題解題的關(guān)鍵是把遞推關(guān)系式SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0(n≥2),進而求出SKIPIF1<0,從而可得當(dāng)n≥2時SKIPIF1<0的表達式,最后再求出數(shù)列SKIPIF1<0的通項公式。四、利用待定系數(shù)法求通項公式例7已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式。解:設(shè)SKIPIF1<0 ④將SKIPIF1<0代入④式,得SKIPIF1<0,等式兩邊消去SKIPIF1<0,得SKIPIF1<0,兩邊除以SKIPIF1<0,得SKIPIF1<0,則x=-1,代入④式,得SKIPIF1<0 ⑤由SKIPIF1<0≠0及⑤式,得SKIPIF1<0,則SKIPIF1<0,則數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,以2為公比的等比數(shù)列,則SKIPIF1<0,故SKIPIF1<0。評注:本題解題的關(guān)鍵是把遞推關(guān)系式SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,從而可知數(shù)列SKIPIF1<0是等比數(shù)列,進而求出數(shù)列SKIPIF1<0的通項公式,最后再求出數(shù)列SKIPIF1<0的通項公式。例8已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式。解:設(shè)SKIPIF1<0 ⑥將SKIPIF1<0代入⑥式,得SKIPIF1<0整理得SKIPIF1<0。令SKIPIF1<0,則SKIPIF1<0,代入⑥式,得SKIPIF1<0 ⑦由SKIPIF1<0及⑦式,得SKIPIF1<0,則SKIPIF1<0,故數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,以3為公比的等比數(shù)列,因此SKIPIF1<0,則SKIPIF1<0。評注:本題解題的關(guān)鍵是把遞推關(guān)系式SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,從而可知數(shù)列SKIPIF1<0是等比數(shù)列,進而求出數(shù)列SKIPIF1<0的通項公式,最后再求數(shù)列SKIPIF1<0的通項公式。例9已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式。解:設(shè)SKIPIF1<0SKIPIF1<0 ⑧將SKIPIF1<0代入⑧式,得SKIPIF1<0SKIPIF1<0,則SKIPIF1<0等式兩邊消去SKIPIF1<0,得SKIPIF1<0,則得方程組SKIPIF1<0,則SKIPIF1<0,代入⑧式,得SKIPIF1<0SKIPIF1<0 ⑨由SKIPIF1<0及⑨式,得SKIPIF1<0則SKIPIF1<0,故數(shù)列SKIPIF1<0為以SKIPIF1<0為首項,以2為公比的等比數(shù)列,因此SKIPIF1<0,則SKIPIF1<0。評注:本題解題的關(guān)鍵是把遞推關(guān)系式SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,從而可知數(shù)列SKIPIF1<0是等比數(shù)列,進而求出數(shù)列SKIPIF1<0的通項公式,最后再求出數(shù)列SKIPIF1<0的通項公式。五、利用對數(shù)變換法求通項公式例10已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式。解:因為SKIPIF1<0,所以SKIPIF1<0。在SKIPIF1<0式兩邊取常用對數(shù)得SKIPIF1<0 ⑩設(shè)SKIPIF1<0 eq\o\ac(○,11)將⑩式代入eq\o\ac(○,11)式,得SKIPIF1<0,兩邊消去SKIPIF1<0并整理,得SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0代入eq\o\ac(○,11)式,得SKIPIF1<0SKIPIF1<0 eq\o\ac(○,12)由SKIPIF1<0及eq\o\ac(○,12)式,得SKIPIF1<0,則SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,以5為公比的等比數(shù)列,則SKIPIF1<0,因此SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,則SKIPIF1<0。評注:本題解題的關(guān)鍵是通過對數(shù)變換把遞推關(guān)系式SKIPIF1<0轉(zhuǎn)化為SKIPIF1<0,從而可知數(shù)列SKIPIF1<0是等比數(shù)列,進而求出數(shù)列SKIPIF1<0的通項公式,最后再求出數(shù)列SKIPIF1<0的通項公式。六、利用迭代法求通項公式例11已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式。解:因為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0又SKIPIF1<0,所以數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0。評注:本題還可綜合利用累乘法和對數(shù)變換法求數(shù)列的通項公式,即先將等式SKIPIF1<0兩邊取常用對數(shù)得SKIPIF1<0,即SKIPIF1<0,再由累乘法可推知SKIPIF1<0,從而SKIPIF1<0七、利用數(shù)學(xué)歸納法求通項公式例12已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式。解:由SKIPIF1<0及SKIPIF1<0,得SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0由此可猜測SKIPIF1<0,往下用數(shù)學(xué)歸納法證明這個結(jié)論。(1)當(dāng)n=1時,SKIPIF1<0,所以等式成立。(2)假設(shè)當(dāng)n=k時等式成立,即SKIPIF1<0,則當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0SKIPIF1<0由此可知,當(dāng)n=k+1時等式也成立。根據(jù)(1)(2)可知,等式對任何SKIPIF1<0評注:本題解題的關(guān)鍵是通過首項和遞推關(guān)系式先求出數(shù)列的前n項,進而猜出數(shù)列的通項公式,最后再用數(shù)學(xué)歸納法加以證明。八、利用換元法求通項公式例13已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式。解:令SKIPIF1<0,則SKIPIF1<0故SKIPIF1<0,代入SKIPIF1<0得SKIPIF1<0即SKIPIF1<0因為SKIPIF1<0,故SKIPIF1<0則SKIPIF1<0,即SKIPIF1<0,可化為SKIPIF1<0,所以SKIPIF1<0是以SKIPIF1<0為首項,以SKIPIF1<0為公比的等比數(shù)列,因此SKIPIF1<0,則SKIPIF1<0+3,即SKIPIF1<0,得SKIPIF1<0。評注:本題解題的關(guān)鍵是通過將SKIPIF1<0的換元為SKIPIF1<0,使得所給遞推關(guān)系式轉(zhuǎn)化SKIPIF1<0形式,從而可知數(shù)列SKIPIF1<0為等比數(shù)列,進而求出數(shù)列SKIPIF1<0的通項公式,最后再求出數(shù)列SKIPIF1<0的通項公式。九、利用不動點法求通項公式例14已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式。解:令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0是函數(shù)SKIPIF1<0的兩個不動點。因為SKIPIF1<0。SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,以SKIPIF1<0為公比的等比數(shù)列,故SKIPIF1<0SKIPIF1<0,則SKIPIF1<0。評注:本題解題的關(guān)鍵是先求出函數(shù)SKIPIF1<0的不動點,即方程SKIPIF1<0的兩個根SKIPIF1<0,進而可推出SKIPIF1<0,從而可知數(shù)列SKIPIF1<0為等比數(shù)列,再求出數(shù)列SKIPIF1<0的通項公式,最后求出數(shù)列SKIPIF1<0的通項公式。例15已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式。解:令SKIPIF1<0,得SKIPIF1<0,則x=1是函數(shù)SKIPIF1<0SKIPIF1<0的不動點。因為SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,以SKIPIF1<0為公差的等差數(shù)列,則SKIPIF1<0,故SKIPIF1<0。評注:本題解題的關(guān)鍵是先求出函數(shù)SKIPIF1<0的不動點,即方程SKIPIF1<0的根SKIPIF1<0,進而可推出SKIPIF1<0,從而可知數(shù)列SKIPIF1<0為等差數(shù)列,再求出數(shù)列SKIPIF1<0的通項公式,最后求出數(shù)列SKIPIF1<0的通項公式。十、利用特征根法求通項公式例16已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式。解:SKIPIF1<0的相應(yīng)特征方程為SKIPIF1<0,解之求特征根是SKIPIF1<0,所以SKIPIF1<0。由初始值SKIPIF1<0,得方程組SKIPIF1<0求得SKIPIF1<0從而SKIPIF1<0。評注:本題解題的關(guān)鍵是先求出特征方程的根。再由初始值確定出SKIPIF1<0,從而可得數(shù)列SKIPIF1<0的通項公式。關(guān)于一階線性遞推數(shù)列:SKIPIF1<0其通項公式的求法一般采用如下的參數(shù)法[1],將遞推數(shù)列轉(zhuǎn)化為等比數(shù)列:設(shè)SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時可得SKIPIF1<0知數(shù)列SKIPIF1<0是以SKIPIF1<0為公比的等比數(shù)列,SKIPIF1<0將SKIPIF1<0代入并整理,得SKIPIF1<0對于二階線性遞推數(shù)列,許多文章都采用特征方程法[2]:設(shè)遞推公式為SKIPIF1<0其特征方程為SKIPIF1<0,若方程有兩相異根SKIPIF1<0、SKIPIF1<0,則SKIPIF1<0若方程有兩等根SKIPIF1<0則SKIPIF1<0其中SKIPIF1<0、SKIPIF1<0可由初始條件確定。很明顯,如果將以上結(jié)論作為此類問題的統(tǒng)一解法直接呈現(xiàn)出來,學(xué)生是難以接受的,也是不負責(zé)任的。下面我們結(jié)合求一階線性遞推數(shù)列的參數(shù)法,探討上述結(jié)論的“來源”。設(shè)SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0(*)若方程組(*)有兩組不同的解SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由等比數(shù)列性質(zhì)可得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0由上兩式消去SKIPIF1<0可得SKIPIF1<0.特別地,若方程組(*)有一對共扼虛根SKIPIF1<0通過復(fù)數(shù)三角形式運算不難求得此時數(shù)列的通項公式為SKIPIF1<0其中SKIPIF1<0、SKIPIF1<0可由初始條件求出。若方程組(*)有兩組相等的解SKIPIF1<0,易證此時SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0是等差數(shù)列,由等差數(shù)列性質(zhì)可知SKIPIF1<0,所以SKIPIF1<0.這樣,我們通過將遞推數(shù)列轉(zhuǎn)化為等比(差)數(shù)列的方法,求得二階線性遞推數(shù)列的通項,若將方程組(*)消去SKIPIF1<0(或SKIPIF1<0)即得SKIPIF1<0此方程的兩根即為特征方程SKIPIF1<0的兩根,讀者不難發(fā)現(xiàn)它們的結(jié)論是完全一致的,這正是特征方程法求遞推數(shù)列通項公式的根源所在。斐波那契數(shù)列SKIPIF1<0,求通項公式SKIPIF1<0。解此數(shù)列對應(yīng)特征方程為SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0,設(shè)此數(shù)列的通項公式為SKIPIF1<0,由初始條件SKIPIF1<0可知,SKIPIF1<0SKIPIF1<0,解之得SKIPIF1<0,所以SKIPIF1<0。已知數(shù)列SKIPIF1<0且SKIPIF1<0,求通項公式SKIPIF1<0。解此數(shù)列對應(yīng)特征方程為SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0,設(shè)此數(shù)列的通項公式為SKIPIF1<0,由初始條件SKIPIF1<0可知,SKIPIF1<0SKIPIF1<0,解之得SKIPIF1<0,所以SKIPIF1<0。已知數(shù)列SKIPIF1<0且SKIPIF1<0,求通項公式SKIPIF1<0。解此數(shù)列對應(yīng)特征方程為SKIPIF1<0即SKIPIF1<0,解得SKIPIF1<0,設(shè)此數(shù)列的通項公式為SKIPIF1<0,由初始條件SKIPIF1<0可知,SKIPIF1<0SKIPIF1<0,解之得SKIPIF1<0,所以SKIPIF1<0。最后我們指出,上述結(jié)論在求一類數(shù)列通項公式時固然有用,但將遞推數(shù)列轉(zhuǎn)化為等比(等差)數(shù)列的方法更為重要。如對于高階線性遞推數(shù)列和分式線性遞推數(shù)列,我們也可借鑒前面的參數(shù)法,求得通項公式。例4、設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0解:對等式兩端同加參數(shù)SKIPIF1<0得SKIPIF1<0SKIPIF1<0,SKIPIF1<0,代入SKIPIF1<0,得SKIPIF1<0相除得SKIPIF1<0即SKIPIF1<0的等比數(shù)列,SKIPIF1<0。類型一:SKIPIF1<0求解方法:方法一:SKIPIF1<0則有:SKIPIF1<0(2)-(1)得:SKIPIF1<0∴SKIPIF1<0是公比為k的等比數(shù)列,∴SKIPIF1<0∴SKIPIF1<0SKIPIF1<0SKIPIF1<0方法二:∵SKIPIF1<0的特征方程為SKIPIF1<0,其根為SKIPIF1<0∴由SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0是公比為k的等比數(shù)列,∴SKIPIF1<0∴SKIPIF1<0例題:(2008安徽文)設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0其中SKIPIF1<0為實數(shù),且SKIPIF1<0(Ⅰ)求數(shù)列SKIPIF1<0的通項公式(Ⅱ)設(shè)SKIPIF1<0,SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0;(Ⅲ)若SKIPIF1<0對任意SKIPIF1<0成立,證明SKIPIF1<0解(1)方法一:SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時,SKIPIF1<0是首項為SKIPIF1<0,公比為SKIPIF1<0的等比數(shù)列。SKIPIF1<0,即SKIPIF1<0。當(dāng)SKIPIF1<0時,SKIPIF1<0仍滿足上式。SKIPIF1<0數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0SKIPIF1<0。方法二由題設(shè)得:當(dāng)SKIPIF1<0時,SKIPIF1<0SKIPIF1<0SKIPIF1<0時,SKIPIF1<0也滿足上式。SKIPIF1<0數(shù)列SKIPIF1<0的通項公式為SKIPIF1<0SKIPIF1<0。(2)由(1)得SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0由(1)知SKIPIF1<0若SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0由SKIPIF1<0對任意SKIPIF1<0成立,知SKIPIF1<0。下面證SKIPIF1<0,用反證法方法一:假設(shè)SKIPIF1<0,由函數(shù)SKIPIF1<0的函數(shù)圖象知,當(dāng)SKIPIF1<0趨于無窮大時,SKIPIF1<0趨于無窮大SKIPIF1<0不能對SKIPIF1<0恒成立,導(dǎo)致矛盾。SKIPIF1<0。SKIPIF1<0方法二:假設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0即SKIPIF1<0恒成立(*)SKIPIF1<0為常數(shù),SKIPIF1<0(*)式對SKIPIF1<0不能恒成立,導(dǎo)致矛盾,SKIPIF1<0SKIPIF1<0練習(xí)題:1.海灘上有一堆桃子是山上五只猴子的共同財產(chǎn),它們相約一天一起到海灘平分這批財產(chǎn),到了這一天,第一只猴子早早下了山,來到海灘,左等右等,不見其它猴子到來,于是它將這批桃子分成五等份,發(fā)現(xiàn)多了一只壞了的桃子,于是它將這只壞了的桃子拋向大海,拿走了其中的一份上山去了,拉著第二只猴子又下了山,來到海灘,左等右等,不見其它猴子到來,于是它將這批桃子分成五等份,發(fā)現(xiàn)多了一只壞了的桃子,于是它將這只壞了的桃子拋向大海,拿走了其中的一份上山去了,依此類推,第三、四、五只猴子相繼來到海灘,都將這批剩下的桃子分成五等份,發(fā)現(xiàn)多了一只壞了的桃子,于是它將這只壞了的桃子拋向大海,拿走了其中的一份上山去了。問海灘上原有桃子至少有多少個?類型二:SKIPIF1<0求解方法:方法一:由SKIPIF1<0……(1)SKIPIF1<0SKIPIF1<0……(2)(2)-(1)得:SKIPIF1<0記SKIPIF1<0,則有:SKIPIF1<0,這樣就化歸類型一,按類型的方法先求出數(shù)列SKIPIF1<0的通項,再用累差法即可求出數(shù)列SKIPIF1<0的通項。方法二:設(shè)SKIPIF1<0SKIPIF1<0SKIPIF1<0將上式與SKIPIF1<0比較得:SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0∴數(shù)列SKIPIF1<0是公比為k的等比數(shù)列?!鄶?shù)列SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0例題(2006年山東卷)已知數(shù)列{SKIPIF1<0}中,SKIPIF1<0在直線y=x上,其中n=1,2,3….(Ⅰ)令SKIPIF1<0(Ⅱ)求數(shù)列SKIPIF1<0(Ⅲ)設(shè)SKIPIF1<0SKIPIF1<0SKIPIF1<0的前n項和,是否存在實數(shù)SKIPIF1<0,使得數(shù)列SKIPIF1<0為等差數(shù)列?若存在,試求出SKIPIF1<0.若不存在,則說明理由.解:(=1\*ROMANI)由已知得SKIPIF1<0SKIPIF1<0又SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0是以SKIPIF1<0為首項,以SKIPIF1<0為公比的等比數(shù)列.(=2\*ROMANII)由(=1\*ROMANI)知,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(=3\*ROMANIII)解法一:存在SKIPIF1<0,使數(shù)列SKIPIF1<0是等差數(shù)列.SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0數(shù)列SKIPIF1<0是等差數(shù)列的充要條件是SKIPIF1<0、SKIPIF1<0是常數(shù)SKIPIF1<0即SKIPIF1<0又SKIPIF1<0SKIPIF1<0.SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0,即SKIPIF1<0時,數(shù)列SKIPIF1<0為等差數(shù)列.解法二:存在SKIPIF1<0,使數(shù)列SKIPIF1<0是等差數(shù)列.由(=1\*ROMANI)、(=2\*ROMANII)知,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0.又SKIPIF1<0.SKIPIF1<0.SKIPIF1<0當(dāng)且僅當(dāng)SKIPIF1<0時,數(shù)列SKIPIF1<0是等差數(shù)列.類型三:SKIPIF1<0求解方法:方法一:SKIPIF1<0SKIPIF1<0SKIPIF1<0記SKIPIF1<0,則SKIPIF1<0,這樣就化歸為類型一,按類型一的方法先求出數(shù)列SKIPIF1<0的通項,再用SKIPIF1<0即可求出數(shù)列SKIPIF1<0的通項。方法二:設(shè)SKIPIF1<0SKIPIF1<0SKIPIF1<0將上式與SKIPIF1<0比較得:SKIPIF1<0SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0∴數(shù)列SKIPIF1<0是公比為k的等比數(shù)列∴SKIPIF1<0SKIPIF1<0SKIPIF1<0注:當(dāng)k=q時,只能用方法一做。例題:用紅、黃、蘭三種顏色給一個標(biāo)號為1,2,3,…,n(SKIPIF1<0)的矩形紙帶涂色(如圖所示),要求相鄰的區(qū)域不能同色,但并不要求三種顏色都要使用。(1)求矩形紙帶不同涂色種數(shù)SKIPIF1<0。(2)如果將矩形紙帶卷成一個圓筒,即使第1個小矩形與第n個小矩形對接,并且要求圓筒側(cè)面相鄰矩形不同色,但并不要求三種顏色都要使用,如果用SKIPIF1<0表示n個矩形卷成圓筒后的不同涂色種數(shù),求SKIPIF1<0的表達式。解:(1)由于第1個矩形有3種不同的涂色方法,以后n-1個小矩形每個都有2種不同的涂色方法,由分步計數(shù)原理得SKIPIF1<0(2)由(1)知SKIPIF1<0,i)當(dāng)?shù)?個矩形與第n個矩形同色時,卷成圓筒后可將第1個矩形與第n個矩形合并成一個矩形,故有SKIPIF1<0種涂色方法,ii)當(dāng)?shù)?個矩形與第n個矩形不同色時,卷成圓筒后則有SKIPIF1<0種不同的涂色方法?!郤KIPIF1<0且SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0是以SKIPIF1<0為公比的等比數(shù)列,得出:SKIPIF1<0SKIPIF1<0SKIPIF1<0。練習(xí)題:(2008全國Ⅰ卷文)在數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0.(Ⅰ)設(shè)SKIPIF1<0.證明:數(shù)列SKIPIF1<0是等差數(shù)列;(Ⅱ)求數(shù)列SKIPIF1<0的前SKIPIF1<0項和SKIPIF1<0.類型四:SKIPIF1<0求解方法:方法一:SKIPIF1<0SKIPIF1<0SKIPIF1<0記SKIPIF1<0,則SKIPIF1<0,這樣就化歸為類型二,按類型二的方法先求出數(shù)列SKIPIF1<0的通項,再用SKIPIF1<0即可求出數(shù)列SKIPIF1<0的通項。例題:已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,(1)求SKIPIF1<0的通項公式;(2)求SKIPIF1<0中的最大項。(3)若SKIPIF1<0,記SKIPIF1<0,求SKIPIF1<0。解:(1)∵SKIPIF1<0SKIPIF1<0SKIPIF1<0令SKIPIF1<0,則有:SKIPIF1<0且SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0。(2)由SKIPIF1<0SKIPIF1<0∵SKIPIF1<0SKIPIF1<0即數(shù)列SKIPIF1<0前5項單調(diào)遞增且SKIPIF1<0,∴數(shù)列SKIPIF1<0的最大項為SKIPIF1<0,(3)由(2)知SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0……①SKIPIF1<0……②①-②得:SKIPIF1<0SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0練習(xí)題:在數(shù)列SKIPIF1<0中,已知,SKIPIF1<0,SKIPIF1<0,求數(shù)列SKIPIF1<0的通項。類型五:SKIPIF1<0求解方法:方法一:設(shè)遞推數(shù)列:SKIPIF1<0的特征方程SKIPIF1<0的根為:SKIPIF1<0、SKIPIF1<0則SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0∴數(shù)列SKIPIF1<0是公比為SKIPIF1<0的等比數(shù)列,∴SKIPIF1<0即SKIPIF1<0,這樣就化歸為類型三,按類型三的方法即可求出數(shù)列SKIPIF1<0的通項。圖2圖1例題:在一個單位圓中的n(SKIPIF1<0)條半徑將圓分成n個不同的扇形區(qū)域(如圖1所示),現(xiàn)需將這n個扇形區(qū)域用三種不同顏色涂色,要求相鄰的區(qū)域不能同色,但不要求三種顏色都要使用。如果把含有n(SKIPIF1<0)個扇形區(qū)域的涂色方法數(shù)記為SKIPIF1<0。圖2圖1(1)求:SKIPIF1<0、SKIPIF1<0;(2)試用SKIPIF1<0、SKIPIF1<0表示SKIPIF1<0(只要求寫出關(guān)系式),并證明數(shù)列SKIPIF1<0(SKIPIF1<0)是等比數(shù)列;(3)求數(shù)列SKIPIF1<0(SKIPIF1<0)的通項公式。解析:(1)SKIPIF1<0;SKIPIF1<0(2)如果我們在含有n區(qū)域的圓中的某一區(qū)域內(nèi)再插入一個區(qū)域(如圖3所示),則共有n+2個區(qū)域,而此時插入的這個區(qū)域有2種涂色方法,故此時n+2個區(qū)域共有2SKIPIF1<0種涂色方法;圖3如果我們在含有n+1區(qū)域的圓中的某兩個相鄰的交界線上再插入一個區(qū)域(如圖4所示),則共有n+2個區(qū)域,而此時插入的這個區(qū)域只有1種涂色方法,故此時n+2個區(qū)域共有SKIPIF1<0種涂色方法;所以:圖3SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,圖4∴SKIPIF1<0(SKIPIF1<0)是以2為公比的等比數(shù)列圖4(3)由(3)可知:SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0∴SKIPIF1<0是公比為-1的等比數(shù)列,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0(SKIPIF1<0)練習(xí)題:(2008廣東文)設(shè)數(shù)列SKIPIF1<0滿足SKIPIF1<0(n=3,4,…),數(shù)列SKIPIF1<0滿足SKIPIF1<0是非零整數(shù),且對任意的正整數(shù)m和自然數(shù)k,都有SKIPIF1<0(1)求數(shù)列SKIPIF1<0和SKIPIF1<0的通項公式;(2)若SKIPIF1<0,求數(shù)列SKIPIF1<0的前n項和SKIPIF1<0.類型六:SKIPIF1<0求解方法:方法一:設(shè)是遞推數(shù)列:SKIPIF1<0的特征方程SKIPIF1<0的根為SKIPIF1<0、SKIPIF1<0。由SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0……(1)由SKIPIF1<0SKIPIF1<0SKIPIF1<0……(2)將(1)代入(2)得:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0令SKIPIF1<0,則有:SKIPIF1<0這樣就化歸為類型一,按類型一的方法先求出數(shù)列SKIPIF1<0的通項,再由SKIPIF1<0即可求出數(shù)列SKIPIF1<0的通項。方法二:當(dāng)特征方程SKIPIF1<0的兩根不等時,我們還可用如下的方法求通項:由SKIPIF1<0SKIPIF1<0設(shè)方程SKIPIF1<0的兩根為SKIPIF1<0則有:SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0……(1)SKIPIF1<0……(2)由SKIPIF1<0SKIPIF1<0SKIPIF1<0……(3)將(1)、(2)式代入(3)式得:SKIPIF1<0SKIPIF1<0SKIPIF1<0∴數(shù)列{SKIPIF1<0}是公比為SKIPIF1<0(易證:SKIPIF1<0)的等比數(shù)列.∴SKIPIF1<0=SKIPIF1<0SKIPIF1<0SKIPIF1<0.練習(xí)題:已知數(shù)列{an}中,a1=3,SKIPIF1<0,求{an}的通項。(答案:SKIPIF1<0)說明:當(dāng)特征方程有虛根時,數(shù)列必為周期數(shù)列例如:已知數(shù)列{an}中,a1=2,SKIPIF1<0,求{an}的通項。上題用迭代法不難證明其周期為4。類型七:SKIPIF1<0由SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0記SKIPIF1<0,則有:SKIPIF1<0,∴數(shù)列SKIPIF1<0為等比數(shù)列。先求出SKIPIF1<0后,再求出SKIPIF1<0。例題:設(shè)SKIPIF1<0為奇函數(shù),且SKIPIF1<0,數(shù)列{an}與{bn}滿足如下關(guān)系:a1=2,SKIPIF1<0(1)求SKIPIF1<0的解析表達式;(2)證明:當(dāng)SKIPIF1<0.解(1)由f(x)是奇函數(shù)得:b=c=0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<01.有關(guān)概念:我們在研究數(shù)列{an}時,如果任一項an與它的前一項SKIPIF1<0(或幾項)間的關(guān)系可以用一個公式來表示,則此公式就稱為數(shù)列的遞推公式。通過遞推公式給出的數(shù)列,一般我們也稱之為遞推數(shù)列。主要有以下幾種方法:構(gòu)造法:通過構(gòu)造特殊的數(shù)列(一般為等差數(shù)列或等列),利用特殊數(shù)列的通項求遞推數(shù)列的通項.迭代法:將遞推式適當(dāng)變形后,用下標(biāo)較小的項代替某些下標(biāo)較大的項,在一般項和初始之間建立某種聯(lián)系,從而求出通項.代換法:包括代數(shù)代換、三角代換等待定系數(shù)法:先設(shè)定通項的基本形式,再根據(jù)題設(shè)條件求出待定的系數(shù)。3.思想策略:構(gòu)造新數(shù)列的思想。4.常見類型:類型Ⅰ:SKIPIF1<0(一階遞歸)類型II:分式線性遞推數(shù)列:SKIPIF1<0二、例題:例1:SKIPIF1<0,SKIPIF1<0,求通項SKIPIF1<0分析:構(gòu)造輔助數(shù)列,SKIPIF1<0,則SKIPIF1<0求通項過程中,多次利用遞推的思想方法以及把一般數(shù)列轉(zhuǎn)化為等差、等比數(shù)列去討論,從而求出了通項公式SKIPIF1<0。[一般形式]已知SKIPIF1<0,SKIPIF1<0,其中p,q,a為常數(shù),求通項SKIPIF1<0[同類變式]已知數(shù)列SKIPIF1<0滿足SKIPIF1<0,且SKIPIF1<0,求通項SKIPIF1<0分析:(待定系數(shù)),構(gòu)造數(shù)列SKIPIF1<0使其為等比數(shù)列,即SKIPIF1<0,解得SKIPIF1<0求得SKIPIF1<0[歸納]:類型Ⅰ:SKIPIF1<0(一階遞歸)其特例為:(1)SKIPIF1<0時,SKIPIF1<0利用累加法,將SKIPIF1<0,SKIPIF1<0SKIPIF1<0+SKIPIF1<0,SKIPIF1<0SKIPIF1<0+SKIPIF1<0…,各式相加,得SKIPIF1<0SKIPIF1<0+SKIPIF1<0(nSKIPIF1<02)(2)SKIPIF1<0時,SKIPIF1<0;利用累乘法,SKIPIF1<0(3)SKIPIF1<0時,SKIPIF1<0解題方法:利用待定系數(shù)法構(gòu)造類似于“等比數(shù)列”的新數(shù)列法1:(常數(shù)變易法)設(shè)SKIPIF1<0則SKIPIF1<0,從而SKIPIF1<0亦即數(shù)列SKIPIF1<0是以SKIPIF1<0為首項,公比為p的等比數(shù)列,從而可得:SKIPIF1<0,SKIPIF1<0SKIPIF1<0法2:SKIPIF1<0利用SKIPIF1<0成等比數(shù)列求出SKIPIF1<0,再利用迭代或迭另法求出SKIPIF1<0法3:由SKIPIF1<0,則可得SKIPIF1<0,從而又可得SKIPIF1<0即SKIPIF1<0SKIPIF1<0(4)SKIPIF1<0SKIPIF1<0時,SKIPIF1<0兩邊同除以SKIPIF1<0例2:數(shù)列SKIPIF1<0的前n項和為SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0=SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式.例3:數(shù)列SKIPIF1<0中,且SKIPIF1<0,SKIPIF1<0,求數(shù)列SKIPIF1<0的通項公式.[提示]SKIPIF1<0[歸納]:類型II:分式線性遞推數(shù)列:SKIPIF1<0練習(xí):1.已知數(shù)列SKIPIF1<0中,SKIPIF1<0是其前SKIPIF1<0項和,并且SKIPIF1<0,⑴設(shè)數(shù)列SKIPIF1<0,求證:數(shù)列SKIPIF1<0是等比數(shù)列;⑵設(shè)數(shù)列SKIPIF1<0,求證:數(shù)列SKIPIF1<0是等差數(shù)列;⑶求數(shù)列SKIPIF1<0的通項公式及前SKIPIF1<0項和。分析:由于{bSKIPIF1<0}和{cSKIPIF1<0}中的項都和{aSKIPIF1<0}中的項有關(guān),{aSKIPIF1<0}中又有SSKIPIF1<0=4aSKIPIF1<0+2,可由SSKIPIF1<0-SSKIPIF1<0作切入點探索解題的途徑.解:(1)由SSKIPIF1<0=4aSKIPIF1<0,SSKIPIF1<0=4aSKIPIF1<0+2,兩式相減,得SSKIPIF1<0-SSKIPIF1<0=4(aSKIPIF1<0-aSKIPIF1<0),即aSKIPIF1<0=4aSKIPIF1<0-4aSKIPIF1<0.(根據(jù)bSKIPIF1<0的構(gòu)造,如何把該式表示成bSKIPIF1<0與bSKIPIF1<0的關(guān)系是證明的關(guān)鍵,注意加強恒等變形能力的訓(xùn)練)aSKIPIF1<0-2aSKIPIF1<0=2(aSKIPIF1<0-2aSKIPIF1<0),又bSKIPIF1<0=aSKIPIF1<0-2aSKIPIF1<0,所以bSKIPIF1<0=2bSKIPIF1<0①已知SSKIPIF1<0=4aSKIPIF1<0+2,aSKIPIF1<0=1,aSKIPIF1<0+aSKIPIF1<0=4aSKIPIF1<0+2,解得aSKIPIF1<0=5,bSKIPIF1<0=aSKIPIF1<0-2aSKIPIF1<0=3②由①和②得,數(shù)列{bSKIPIF1<0}是首項為3,公比為2的等比數(shù)列,故bSKIPIF1<0=3·2SKIPIF1<0.當(dāng)n≥2時,SSKIPIF1<0=4aSKIPIF1<0+2=2SKIPIF1<0(3n-4)+2;當(dāng)n=1時,SSKIPIF1<0=aSKIPIF1<0=1也適合上式.綜上可知,所求的求和公式為SSKIPIF1<0=2SKIPIF1<0(3n-4)+2.說明:1.本例主要復(fù)習(xí)用等差、等比數(shù)列的定義證明一個數(shù)列為等差,等比數(shù)列,求數(shù)列通項與前SKIPIF1<0項和。解決本題的關(guān)鍵在于由條件SKIPIF1<0得出遞推公式。2.解綜合題要總攬全局,尤其要注意上一問的結(jié)論可作為下面論證的已知條件,在后面求解的過程中適時應(yīng)用.練習(xí):2.設(shè)二次方程SKIPIF1<0xSKIPIF1<0-SKIPIF1<0x+1=0(n∈N)有兩根α和β,且滿足6α-2αβ+6β=3.(1)試用SKIPIF1<0表示aSKIPIF1<0;例9.?dāng)?shù)列SKIPIF1<0中,SKIPIF1<0且滿足SKIPIF1<0SKIPIF1<0⑴求數(shù)列SKIPIF1<0的通項公式;⑵設(shè)SKIPIF1<0,求SKIPIF1<0;⑶設(shè)SKIPIF1<0=SKIPIF1<0SKIPIF1<0,是否存在最大的整數(shù)SKIPIF1<0,使得對任意SKIPIF1<0,均有SKIPIF1<0SKIPIF1<0成立?若存在,求出SKIPIF1<0的值;若不存在,請說明理由。解:(1)由題意,SKIPIF1<0,SKIPIF1<0為等差數(shù)列,設(shè)公差為SKIPIF1<0,由題意得SKIPIF1<0,SKIPIF1<0.(2)若SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0時,SKIPIF1<0SKIPIF1<0故SKIPIF1<0SKIPIF1<0SKIPIF1<0(3)SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0若SKIPIF1<0對任意SKIPIF1<0成立,即SKIPIF1<0對任意SKIPIF1<0成立,SKIPIF1<0的最小值是SKIPIF1<0,SKIPIF1<0SKIPIF1<0的最大整數(shù)值是7。即存在最大整數(shù)SKIPIF1<0使對任意SKIPIF1<0,均有SKIPIF1<0說明:本例復(fù)習(xí)數(shù)列通項,數(shù)列求和以及有關(guān)數(shù)列與不等式的綜合問題。特征方程法求解遞推關(guān)系中的數(shù)列通項考慮一個簡單的線性遞推問題.aa1=ban+1=can+d設(shè)已知數(shù)列SKIPIF1<0的項滿足其中SKIPIF1<0求這個數(shù)列的通項公式.采用數(shù)學(xué)歸納法可以求解這一問題,然而這樣做太過繁瑣,而且在猜想通項公式中容易出錯,本文提出一種易于被學(xué)生掌握的解法——特征方程法:針對問題中的遞推關(guān)系式作出一個方程SKIPIF1<0稱之為特征方程;借助這個特征方程的根快速求解通項公式.下面以定理形式進行闡述.定理1.設(shè)上述遞推關(guān)系式的特征方程的根為SKIPI
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 初三生活指南模板
- 財務(wù)風(fēng)險管理報告模板
- 家屬追悼會致辭范文六篇
- 課程設(shè)計營銷
- 2024年幼兒園中班語言教案含反思
- 二零二五年度面包磚施工安全生產(chǎn)責(zé)任合同4篇
- 2024年心理咨詢師題庫及完整答案(易錯題)
- 二零二五年社區(qū)圖書館圖書采購合同2篇
- 二零二五年度在線教育平臺學(xué)員免責(zé)協(xié)議書范本4篇
- 高分子防水卷材施工方案
- 2024年醫(yī)銷售藥銷售工作總結(jié)
- GB/T 44888-2024政務(wù)服務(wù)大廳智能化建設(shè)指南
- 2023-2024學(xué)年江西省萍鄉(xiāng)市八年級(上)期末物理試卷
- 四則混合運算100道題四年級上冊及答案
- 四川省高職單招電氣技術(shù)類《電子基礎(chǔ)》歷年考試真題試題庫(含答案)
- 2024年江西生物科技職業(yè)學(xué)院單招職業(yè)技能測試題庫帶解析答案
- 橋本甲狀腺炎-90天治療方案
- (2024年)安全注射培訓(xùn)課件
- 2024版《建設(shè)工程開工、停工、復(fù)工安全管理臺賬表格(流程圖、申請表、報審表、考核表、通知單等)》模版
- 酒店人防管理制度
- 油田酸化工藝技術(shù)
評論
0/150
提交評論