![2023-2024學(xué)年遼寧省丹東市通遠(yuǎn)堡高中高考沖刺模擬數(shù)學(xué)試題含解析_第1頁](http://file4.renrendoc.com/view11/M02/3B/1F/wKhkGWXC42OAYh3qAAHalxZDcHY808.jpg)
![2023-2024學(xué)年遼寧省丹東市通遠(yuǎn)堡高中高考沖刺模擬數(shù)學(xué)試題含解析_第2頁](http://file4.renrendoc.com/view11/M02/3B/1F/wKhkGWXC42OAYh3qAAHalxZDcHY8082.jpg)
![2023-2024學(xué)年遼寧省丹東市通遠(yuǎn)堡高中高考沖刺模擬數(shù)學(xué)試題含解析_第3頁](http://file4.renrendoc.com/view11/M02/3B/1F/wKhkGWXC42OAYh3qAAHalxZDcHY8083.jpg)
![2023-2024學(xué)年遼寧省丹東市通遠(yuǎn)堡高中高考沖刺模擬數(shù)學(xué)試題含解析_第4頁](http://file4.renrendoc.com/view11/M02/3B/1F/wKhkGWXC42OAYh3qAAHalxZDcHY8084.jpg)
![2023-2024學(xué)年遼寧省丹東市通遠(yuǎn)堡高中高考沖刺模擬數(shù)學(xué)試題含解析_第5頁](http://file4.renrendoc.com/view11/M02/3B/1F/wKhkGWXC42OAYh3qAAHalxZDcHY8085.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年遼寧省丹東市通遠(yuǎn)堡高中高考沖刺模擬數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.過雙曲線左焦點(diǎn)的直線交的左支于兩點(diǎn),直線(是坐標(biāo)原點(diǎn))交的右支于點(diǎn),若,且,則的離心率是()A. B. C. D.2.已知全集,集合,則=()A. B.C. D.3.執(zhí)行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關(guān)于的判斷條件是()A. B. C. D.4.已知三棱錐的外接球半徑為2,且球心為線段的中點(diǎn),則三棱錐的體積的最大值為()A. B. C. D.5.已知,是兩條不重合的直線,,是兩個(gè)不重合的平面,則下列命題中錯(cuò)誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則6.如圖,已知平面,,、是直線上的兩點(diǎn),、是平面內(nèi)的兩點(diǎn),且,,,,.是平面上的一動(dòng)點(diǎn),且直線,與平面所成角相等,則二面角的余弦值的最小值是()A. B. C. D.7.已知為虛數(shù)單位,復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.已知函數(shù),若,則的最小值為()參考數(shù)據(jù):A. B. C. D.9.如圖,平面ABCD,ABCD為正方形,且,E,F(xiàn)分別是線段PA,CD的中點(diǎn),則異面直線EF與BD所成角的余弦值為()A. B. C. D.10.設(shè),,,則的大小關(guān)系是()A. B. C. D.11.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時(shí),,則()A.2 B. C.1 D.12.已知,若則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.記復(fù)數(shù)z=a+bi(i為虛數(shù)單位)的共軛復(fù)數(shù)為,已知z=2+i,則_____.14.若函數(shù)()的圖象與直線相切,則______.15.現(xiàn)有一塊邊長為a的正方形鐵片,鐵片的四角截去四個(gè)邊長均為x的小正方形,然后做成一個(gè)無蓋方盒,該方盒容積的最大值是________.16.現(xiàn)有5人要排成一排照相,其中甲與乙兩人不相鄰,且甲不站在兩端,則不同的排法有____種.(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在數(shù)列中,已知,且,.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè),數(shù)列的前項(xiàng)和為,證明:.18.(12分)如圖所示,已知平面,,為等邊三角形,為邊上的中點(diǎn),且.(Ⅰ)求證:面;(Ⅱ)求證:平面平面;(Ⅲ)求該幾何體的體積.19.(12分)求下列函數(shù)的導(dǎo)數(shù):(1)(2)20.(12分)已知函數(shù),其中.(1)當(dāng)時(shí),求在的切線方程;(2)求證:的極大值恒大于0.21.(12分)已知函數(shù).(1)求不等式的解集;(2)若關(guān)于的不等式在上恒成立,求實(shí)數(shù)的取值范圍.22.(10分)已知橢圓的離心率為,橢圓C的長軸長為4.(1)求橢圓C的方程;(2)已知直線與橢圓C交于兩點(diǎn),是否存在實(shí)數(shù)k使得以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
如圖,設(shè)雙曲線的右焦點(diǎn)為,連接并延長交右支于,連接,設(shè),利用雙曲線的幾何性質(zhì)可以得到,,結(jié)合、可求離心率.【詳解】如圖,設(shè)雙曲線的右焦點(diǎn)為,連接,連接并延長交右支于.因?yàn)?,故四邊形為平行四邊形,?又雙曲線為中心對稱圖形,故.設(shè),則,故,故.因?yàn)闉橹苯侨切?,故,解?在中,有,所以.故選:D.【點(diǎn)睛】本題考查雙曲線離心率,注意利用雙曲線的對稱性(中心對稱、軸對稱)以及雙曲線的定義來構(gòu)造關(guān)于的方程,本題屬于難題.2、D【解析】
先計(jì)算集合,再計(jì)算,最后計(jì)算.【詳解】解:,,.故選:.【點(diǎn)睛】本題主要考查了集合的交,補(bǔ)混合運(yùn)算,注意分清集合間的關(guān)系,屬于基礎(chǔ)題.3、B【解析】
根據(jù)程序框圖,逐步執(zhí)行,直到的值為63,結(jié)束循環(huán),即可得出判斷條件.【詳解】執(zhí)行框圖如下:初始值:,第一步:,此時(shí)不能輸出,繼續(xù)循環(huán);第二步:,此時(shí)不能輸出,繼續(xù)循環(huán);第三步:,此時(shí)不能輸出,繼續(xù)循環(huán);第四步:,此時(shí)不能輸出,繼續(xù)循環(huán);第五步:,此時(shí)不能輸出,繼續(xù)循環(huán);第六步:,此時(shí)要輸出,結(jié)束循環(huán);故,判斷條件為.故選B【點(diǎn)睛】本題主要考查完善程序框圖,只需逐步執(zhí)行框圖,結(jié)合輸出結(jié)果,即可確定判斷條件,屬于??碱}型.4、C【解析】
由題可推斷出和都是直角三角形,設(shè)球心為,要使三棱錐的體積最大,則需滿足,結(jié)合幾何關(guān)系和圖形即可求解【詳解】先畫出圖形,由球心到各點(diǎn)距離相等可得,,故是直角三角形,設(shè),則有,又,所以,當(dāng)且僅當(dāng)時(shí),取最大值4,要使三棱錐體積最大,則需使高,此時(shí),故選:C【點(diǎn)睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎(chǔ)題5、D【解析】
根據(jù)線面平行和面面平行的性質(zhì),可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項(xiàng)A:若,,根據(jù)線面平行和面面平行的性質(zhì),有或,故A正確;選項(xiàng)B:若,,,由線面平行的判定定理,有,故B正確;選項(xiàng)C:若,,,故,所成的二面角為,則,故C正確;選項(xiàng)D,若,,有可能,故D不正確.故選:D【點(diǎn)睛】本題考查了空間中的平行垂直關(guān)系判斷,考查了學(xué)生邏輯推理,空間想象能力,屬于中檔題.6、B【解析】
為所求的二面角的平面角,由得出,求出在內(nèi)的軌跡,根據(jù)軌跡的特點(diǎn)求出的最大值對應(yīng)的余弦值【詳解】,,,,同理為直線與平面所成的角,為直線與平面所成的角,又,在平面內(nèi),以為軸,以的中垂線為軸建立平面直角坐標(biāo)系則,設(shè),整理可得:在內(nèi)的軌跡為為圓心,以為半徑的上半圓平面平面,,為二面角的平面角,當(dāng)與圓相切時(shí),最大,取得最小值此時(shí)故選【點(diǎn)睛】本題主要考查了二面角的平面角及其求法,方法有:定義法、三垂線定理及其逆定理、找公垂面法、射影公式、向量法等,依據(jù)題目選擇方法求出結(jié)果.7、B【解析】
求出復(fù)數(shù),得出其對應(yīng)點(diǎn)的坐標(biāo),確定所在象限.【詳解】由題意,對應(yīng)點(diǎn)坐標(biāo)為,在第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義,考查復(fù)數(shù)的除法運(yùn)算,屬于基礎(chǔ)題.8、A【解析】
首先的單調(diào)性,由此判斷出,由求得的關(guān)系式.利用導(dǎo)數(shù)求得的最小值,由此求得的最小值.【詳解】由于函數(shù),所以在上遞減,在上遞增.由于,,令,解得,所以,且,化簡得,所以,構(gòu)造函數(shù),.構(gòu)造函數(shù),,所以在區(qū)間上遞減,而,,所以存在,使.所以在上大于零,在上小于零.所以在區(qū)間上遞增,在區(qū)間上遞減.而,所以在區(qū)間上的最小值為,也即的最小值為,所以的最小值為.故選:A【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查分段函數(shù)的圖像與性質(zhì),考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于難題.9、C【解析】
分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標(biāo)系.設(shè).則.故異面直線EF與BD所成角的余弦值為.故選:C【點(diǎn)睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學(xué)生對這些知識(shí)的理解掌握水平.10、A【解析】
選取中間值和,利用對數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因?yàn)閷?shù)函數(shù)在上單調(diào)遞增,所以,因?yàn)閷?shù)函數(shù)在上單調(diào)遞減,所以,因?yàn)橹笖?shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點(diǎn)睛】本題考查利用對數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識(shí)的綜合運(yùn)用能力;選取合適的中間值是求解本題的關(guān)鍵;屬于中檔題、??碱}型.11、D【解析】
說明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結(jié)合奇偶性計(jì)算函數(shù)值.【詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【點(diǎn)睛】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎(chǔ).12、C【解析】
根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因?yàn)椋杂薪?,即有解,所以,得,,所以,又因?yàn)?,所以,即,可化為,因?yàn)椋缘慕饧?,所以或,解得,故選:C【點(diǎn)睛】本題主要考查一元二次不等式的解法及集合的關(guān)系的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題,二、填空題:本題共4小題,每小題5分,共20分。13、3﹣4i【解析】
計(jì)算得到z2=(2+i)2=3+4i,再計(jì)算得到答案.【詳解】∵z=2+i,∴z2=(2+i)2=3+4i,則.故答案為:3﹣4i.【點(diǎn)睛】本題考查了復(fù)數(shù)的運(yùn)算,共軛復(fù)數(shù),意在考查學(xué)生的計(jì)算能力.14、2【解析】
設(shè)切點(diǎn)由已知可得,即可解得所求.【詳解】設(shè),因?yàn)椋?,即,又?所以,即,.故答案為:.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,難度較易.15、【解析】
由題意容積,求導(dǎo)研究單調(diào)性,分析即得解.【詳解】由題意:容積,,則,由得或(舍去),令則為V在定義域內(nèi)唯一的極大值點(diǎn)也是最大值點(diǎn),此時(shí).故答案為:【點(diǎn)睛】本題考查了導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用,考查了學(xué)生數(shù)學(xué)建模,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.16、36【解析】
先優(yōu)先考慮甲、乙兩人不相鄰的排法,在此條件下,計(jì)算甲不排在兩端的排法,最后相減即可得到結(jié)果.【詳解】由題意得5人排成一排,甲、乙兩人不相鄰,有種排法,其中甲排在兩端,有種排法,則6人排成一排,甲、乙兩人不相鄰,且甲不排在兩端,共有(種)排法.所以本題答案為36.【點(diǎn)睛】排列、組合問題由于其思想方法獨(dú)特,計(jì)算量龐大,對結(jié)果的檢驗(yàn)困難,所以在解決這類問題時(shí)就要遵循一定的解題原則,如特殊元素、位置優(yōu)先原則、先取后排原則、先分組后分配原則、正難則反原則等,只有這樣我們才能有明確的解題方向.同時(shí)解答組合問題時(shí)必須心思細(xì)膩、考慮周全,這樣才能做到不重不漏,正確解題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析.【解析】
(1)由已知變形得到,從而是等差數(shù)列,然后利用等差數(shù)列的通項(xiàng)公式計(jì)算即可;(2)先求出數(shù)列的通項(xiàng),再利用裂項(xiàng)相消法求出即可.【詳解】(1)由已知,,即,又,則數(shù)列是以1為首項(xiàng)3為公差的等差數(shù)列,所以,即.(2)因?yàn)椋瑒t,所以,又是遞增數(shù)列,所以,綜上,.【點(diǎn)睛】本題考查由遞推公式求數(shù)列通項(xiàng)公式、裂項(xiàng)相消法求數(shù)列的和,考查學(xué)生的計(jì)算能力,是一道基礎(chǔ)題.18、(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ).【解析】
(I)取的中點(diǎn),連接,通過證明四邊形為平行四邊形,證得,由此證得平面.(II)利用,證得平面,從而得到平面,由此證得平面平面.(III)作交于點(diǎn),易得面,利用棱錐的體積公式,計(jì)算出棱錐的體積.【詳解】(Ⅰ)取的中點(diǎn),連接,則,,故四邊形為平行四邊形.故.又面,平面,所以面.(Ⅱ)為等邊三角形,為中點(diǎn),所以.又,所以面.又,故面,所以面平面.(Ⅲ)幾何體是四棱錐,作交于點(diǎn),即面,.【點(diǎn)睛】本小題主要考查線面平行的證明,考查面面垂直的證明,考查四棱錐體積的求法,考查空間想象能力,所以中檔題.19、(1);(2).【解析】
(1)根據(jù)復(fù)合函數(shù)的求導(dǎo)法則可得結(jié)果.(2)同樣根據(jù)復(fù)合函數(shù)的求導(dǎo)法則可得結(jié)果.【詳解】(1)令,,則,而,,故.(2)令,,則,而,,故,化簡得到.【點(diǎn)睛】本題考查復(fù)合函數(shù)的導(dǎo)數(shù),此類問題一般是先把函數(shù)分解為簡單函數(shù)的復(fù)合,再根據(jù)復(fù)合函數(shù)的求導(dǎo)法則可得所求的導(dǎo)數(shù),本題屬于容易題.20、(1)(2)證明見解析【解析】
(1)求導(dǎo),代入,求出在處的導(dǎo)數(shù)值及函數(shù)值,由此即可求得切線方程;(2)分類討論得出極大值即可判斷.【詳解】(1),當(dāng)時(shí),,,則在的切線方程為;(2)證明:令,解得或,①當(dāng)時(shí),恒成立,此時(shí)函數(shù)在上單調(diào)遞減,∴函數(shù)無極值;②當(dāng)時(shí),令,解得,令,解得或,∴函數(shù)在上單調(diào)遞增,在,上單調(diào)遞減,∴;③當(dāng)時(shí),令,解得,令,解得或,∴函數(shù)在上單調(diào)遞增,在,上單調(diào)遞減,∴,綜上,函數(shù)的極大值恒大于0.【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求切線方程,考查利用導(dǎo)數(shù)研究函數(shù)的極值,考查分類討論的數(shù)學(xué)思想方法,屬于中檔題.21、(1)或;(2).【解析】
(1)利用絕對值的幾何意義,將不等式,轉(zhuǎn)化為不等式或或求解.(2)根據(jù)-2在R上恒成立,由絕對值三角不等式求得的最小值即可.【詳解】(1)原不等式等價(jià)于或或,解得:或,∴不等式的解集為或.(2)因?yàn)?2在R上恒成立,而,所以,解得,所以實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查絕對值不等式的解法和不等式恒成立問題,還考查了運(yùn)算求解的能力,屬于中檔題.22、(1);(2)存在,當(dāng)時(shí),以線段為直徑的圓恰好經(jīng)過坐標(biāo)原點(diǎn)O.【解析】
(1)設(shè)橢圓的焦半距為,利用離心率為,橢圓的長軸長為1.列出方程組求解,推出,即可得到橢圓的方程.(2)存在實(shí)數(shù)使得以線段為直徑的圓
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年噴灌機(jī)項(xiàng)目可行性研究報(bào)告
- 2020-2025年中國面館行業(yè)市場調(diào)查研究及投資戰(zhàn)略咨詢報(bào)告
- 2025年中國災(zāi)備中心市場競爭態(tài)勢及行業(yè)投資潛力預(yù)測報(bào)告
- 生產(chǎn)安全管理體系的構(gòu)建與優(yōu)化
- 2024年AI教育行業(yè)發(fā)展前景預(yù)測及投資戰(zhàn)略研究報(bào)告
- 2025年高強(qiáng)滌綸寶塔線項(xiàng)目投資可行性研究分析報(bào)告
- 單位汽車租賃合同范本
- 中介廠房居間合同范本
- 網(wǎng)絡(luò)直播室改造居間
- 2025年湘泉婦炎康項(xiàng)目可行性研究報(bào)告
- 2025年蛇年年度營銷日歷營銷建議【2025營銷日歷】
- 攝影入門課程-攝影基礎(chǔ)與技巧全面解析
- 司法考試2024年知識(shí)點(diǎn)背誦版-民法
- 冀少版小學(xué)二年級(jí)下冊音樂教案
- 【龍集鎮(zhèn)稻蝦綜合種養(yǎng)面臨的問題及優(yōu)化建議探析(論文)13000字】
- 25 黃帝的傳說 公開課一等獎(jiǎng)創(chuàng)新教案
- 人教版音樂三年級(jí)下冊第一單元 朝景 教案
- 《師范硬筆書法教程(第2版)》全套教學(xué)課件
- 中國聯(lián)通H248技術(shù)規(guī)范
- 孫權(quán)勸學(xué)省公共課一等獎(jiǎng)全國賽課獲獎(jiǎng)?wù)n件
- DL-T-692-2018電力行業(yè)緊急救護(hù)技術(shù)規(guī)范
評(píng)論
0/150
提交評(píng)論