2024屆山西省呂梁市聯(lián)盛中學(xué)高三第三次模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
2024屆山西省呂梁市聯(lián)盛中學(xué)高三第三次模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
2024屆山西省呂梁市聯(lián)盛中學(xué)高三第三次模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
2024屆山西省呂梁市聯(lián)盛中學(xué)高三第三次模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
2024屆山西省呂梁市聯(lián)盛中學(xué)高三第三次模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆山西省呂梁市聯(lián)盛中學(xué)高三第三次模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知正項(xiàng)數(shù)列滿足:,設(shè),當(dāng)最小時(shí),的值為()A. B. C. D.2.達(dá)芬奇的經(jīng)典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數(shù)百年來(lái)讓無(wú)數(shù)觀賞者人迷.某業(yè)余愛好者對(duì)《蒙娜麗莎》的縮小影像作品進(jìn)行了粗略測(cè)繪,將畫中女子的嘴唇近似看作一個(gè)圓弧,在嘴角處作圓弧的切線,兩條切線交于點(diǎn),測(cè)得如下數(shù)據(jù):(其中).根據(jù)測(cè)量得到的結(jié)果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對(duì)應(yīng)的圓心角大約等于()A. B. C. D.3.已知拋物線上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)到拋物線焦點(diǎn)的距離為()A.2 B.3 C.4 D.54.某四棱錐的三視圖如圖所示,記S為此棱錐所有棱的長(zhǎng)度的集合,則()A.B.C.D.5.已知函數(shù),若曲線上始終存在兩點(diǎn),,使得,且的中點(diǎn)在軸上,則正實(shí)數(shù)的取值范圍為()A. B. C. D.6.若復(fù)數(shù)為虛數(shù)單位在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)在虛軸上,則實(shí)數(shù)a為()A. B.2 C. D.7.執(zhí)行如圖所示的程序框圖,若輸出的值為8,則框圖中①處可以填().A. B. C. D.8.在平面直角坐標(biāo)系中,已知點(diǎn),,若動(dòng)點(diǎn)滿足,則的取值范圍是()A. B.C. D.9.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.函數(shù)的圖象大致是()A. B.C. D.11.已知分別為雙曲線的左、右焦點(diǎn),點(diǎn)是其一條漸近線上一點(diǎn),且以為直徑的圓經(jīng)過(guò)點(diǎn),若的面積為,則雙曲線的離心率為()A. B. C. D.12.已知點(diǎn)是拋物線:的焦點(diǎn),點(diǎn)為拋物線的對(duì)稱軸與其準(zhǔn)線的交點(diǎn),過(guò)作拋物線的切線,切點(diǎn)為,若點(diǎn)恰好在以,為焦點(diǎn)的雙曲線上,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,那么______.14.在數(shù)列中,,,曲線在點(diǎn)處的切線經(jīng)過(guò)點(diǎn),下列四個(gè)結(jié)論:①;②;③;④數(shù)列是等比數(shù)列;其中所有正確結(jié)論的編號(hào)是______.15.展開式中項(xiàng)的系數(shù)是__________16.給出下列等式:,,,…請(qǐng)從中歸納出第個(gè)等式:______.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知.(1)若曲線在點(diǎn)處的切線也與曲線相切,求實(shí)數(shù)的值;(2)試討論函數(shù)零點(diǎn)的個(gè)數(shù).18.(12分)已知,.(1)解;(2)若,證明:.19.(12分)已知函數(shù).(Ⅰ)當(dāng)時(shí),求函數(shù)在上的值域;(Ⅱ)若函數(shù)在上單調(diào)遞減,求實(shí)數(shù)的取值范圍.20.(12分)設(shè)函數(shù),,其中,為正實(shí)數(shù).(1)若的圖象總在函數(shù)的圖象的下方,求實(shí)數(shù)的取值范圍;(2)設(shè),證明:對(duì)任意,都有.21.(12分)設(shè),(1)求的單調(diào)區(qū)間;(2)設(shè)恒成立,求實(shí)數(shù)的取值范圍.22.(10分)2019年9月26日,攜程網(wǎng)發(fā)布《2019國(guó)慶假期旅游出行趨勢(shì)預(yù)測(cè)報(bào)告》,2018年國(guó)慶假日期間,西安共接待游客1692.56萬(wàn)人次,今年國(guó)慶有望超過(guò)2000萬(wàn)人次,成為西部省份中接待游客量最多的城市.旅游公司規(guī)定:若公司某位導(dǎo)游接待旅客,旅游年總收人不低于40(單位:萬(wàn)元),則稱該導(dǎo)游為優(yōu)秀導(dǎo)游.經(jīng)驗(yàn)表明,如果公司的優(yōu)秀導(dǎo)游率越高,則該公司的影響度越高.已知甲、乙家旅游公司各有導(dǎo)游40名,統(tǒng)計(jì)他們一年內(nèi)旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數(shù)分布表如下:分組頻數(shù)(1)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?(2)從甲、乙兩家公司旅游總收人在(單位:萬(wàn)元)的導(dǎo)游中,隨機(jī)抽取3人進(jìn)行業(yè)務(wù)培訓(xùn),設(shè)來(lái)自甲公司的人數(shù)為,求的分布列及數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當(dāng)且僅當(dāng)時(shí)取得最小值,此時(shí).故選:B【點(diǎn)睛】本題主要考查了數(shù)列中的最值問(wèn)題,遞推公式的應(yīng)用,基本不等式求最值,考查了學(xué)生的運(yùn)算求解能力.2、A【解析】

由已知,設(shè).可得.于是可得,進(jìn)而得出結(jié)論.【詳解】解:依題意,設(shè).則.,.設(shè)《蒙娜麗莎》中女子的嘴唇視作的圓弧對(duì)應(yīng)的圓心角為.則,.故選:A.【點(diǎn)睛】本題考查了直角三角形的邊角關(guān)系、三角函數(shù)的單調(diào)性、切線的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.3、D【解析】試題分析:拋物線焦點(diǎn)在軸上,開口向上,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,因?yàn)辄c(diǎn)A的縱坐標(biāo)為4,所以點(diǎn)A到拋物線準(zhǔn)線的距離為,因?yàn)閽佄锞€上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,所以點(diǎn)A與拋物線焦點(diǎn)的距離為5.考點(diǎn):本小題主要考查應(yīng)用拋物線定義和拋物線上點(diǎn)的性質(zhì)拋物線上的點(diǎn)到焦點(diǎn)的距離,考查學(xué)生的運(yùn)算求解能力.點(diǎn)評(píng):拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,這條性質(zhì)在解題時(shí)經(jīng)常用到,可以簡(jiǎn)化運(yùn)算.4、D【解析】

如圖所示:在邊長(zhǎng)為的正方體中,四棱錐滿足條件,故,得到答案.【詳解】如圖所示:在邊長(zhǎng)為的正方體中,四棱錐滿足條件.故,,.故,故,.故選:.【點(diǎn)睛】本題考查了三視圖,元素和集合的關(guān)系,意在考查學(xué)生的空間想象能力和計(jì)算能力.5、D【解析】

根據(jù)中點(diǎn)在軸上,設(shè)出兩點(diǎn)的坐標(biāo),,().對(duì)分成三類,利用則,列方程,化簡(jiǎn)后求得,利用導(dǎo)數(shù)求得的值域,由此求得的取值范圍.【詳解】根據(jù)條件可知,兩點(diǎn)的橫坐標(biāo)互為相反數(shù),不妨設(shè),,(),若,則,由,所以,即,方程無(wú)解;若,顯然不滿足;若,則,由,即,即,因?yàn)?,所以函?shù)在上遞減,在上遞增,故在處取得極小值也即是最小值,所以函數(shù)在上的值域?yàn)?,?故選D.【點(diǎn)睛】本小題主要考查平面平面向量數(shù)量積為零的坐標(biāo)表示,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,考查利用導(dǎo)數(shù)研究函數(shù)的最小值,考查分析與運(yùn)算能力,屬于較難的題目.6、D【解析】

利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由實(shí)部為求得值.【詳解】解:在復(fù)平面內(nèi)所對(duì)應(yīng)的點(diǎn)在虛軸上,,即.故選D.【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.7、C【解析】

根據(jù)程序框圖寫出幾次循環(huán)的結(jié)果,直到輸出結(jié)果是8時(shí).【詳解】第一次循環(huán):第二次循環(huán):第三次循環(huán):第四次循環(huán):第五次循環(huán):第六次循環(huán):第七次循環(huán):第八次循環(huán):所以框圖中①處填時(shí),滿足輸出的值為8.故選:C【點(diǎn)睛】此題考查算法程序框圖,根據(jù)循環(huán)條件依次寫出每次循環(huán)結(jié)果即可解決,屬于簡(jiǎn)單題目.8、D【解析】

設(shè)出的坐標(biāo)為,依據(jù)題目條件,求出點(diǎn)的軌跡方程,寫出點(diǎn)的參數(shù)方程,則,根據(jù)余弦函數(shù)自身的范圍,可求得結(jié)果.【詳解】設(shè),則∵,∴∴∴為點(diǎn)的軌跡方程∴點(diǎn)的參數(shù)方程為(為參數(shù))則由向量的坐標(biāo)表達(dá)式有:又∵∴故選:D【點(diǎn)睛】考查學(xué)生依據(jù)條件求解各種軌跡方程的能力,熟練掌握代數(shù)式轉(zhuǎn)換,能夠利用三角換元的思想處理軌跡中的向量乘積,屬于中檔題.求解軌跡方程的方法有:①直接法;②定義法;③相關(guān)點(diǎn)法;④參數(shù)法;⑤待定系數(shù)法9、D【解析】

,不能得到,成立也不能推出,即可得到答案.【詳解】因?yàn)閤,,當(dāng)時(shí),不妨取,,故時(shí),不成立,當(dāng)時(shí),不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點(diǎn)睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.10、A【解析】

根據(jù)復(fù)合函數(shù)的單調(diào)性,同增異減以及采用排除法,可得結(jié)果.【詳解】當(dāng)時(shí),,由在遞增,所以在遞增又是增函數(shù),所以在遞增,故排除B、C當(dāng)時(shí),若,則所以在遞減,而是增函數(shù)所以在遞減,所以A正確,D錯(cuò)誤故選:A【點(diǎn)睛】本題考查具體函數(shù)的大致圖象的判斷,關(guān)鍵在于對(duì)復(fù)合函數(shù)單調(diào)性的理解,記住常用的結(jié)論:增+增=增,增-減=增,減+減=減,復(fù)合函數(shù)單調(diào)性同增異減,屬中檔題.11、B【解析】

根據(jù)題意,設(shè)點(diǎn)在第一象限,求出此坐標(biāo),再利用三角形的面積即可得到結(jié)論.【詳解】由題意,設(shè)點(diǎn)在第一象限,雙曲線的一條漸近線方程為,所以,,又以為直徑的圓經(jīng)過(guò)點(diǎn),則,即,解得,,所以,,即,即,所以,雙曲線的離心率為.故選:B.【點(diǎn)睛】本題主要考查雙曲線的離心率,解決本題的關(guān)鍵在于求出與的關(guān)系,屬于基礎(chǔ)題.12、D【解析】

根據(jù)拋物線的性質(zhì),設(shè)出直線方程,代入拋物線方程,求得k的值,設(shè)出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F(xiàn)1(0,),F(xiàn)2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設(shè)雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點(diǎn)睛】本題考查拋物線及雙曲線的方程及簡(jiǎn)單性質(zhì),考查轉(zhuǎn)化思想,考查計(jì)算能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由已知利用誘導(dǎo)公式可求,進(jìn)而根據(jù)同角三角函數(shù)基本關(guān)系即可求解.【詳解】∵,∴,,∴.故答案為:.【點(diǎn)睛】本小題主要考查誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系式,屬于基礎(chǔ)題.14、①③④【解析】

先利用導(dǎo)數(shù)求得曲線在點(diǎn)處的切線方程,由此求得與的遞推關(guān)系式,進(jìn)而證得數(shù)列是等比數(shù)列,由此判斷出四個(gè)結(jié)論中正確的結(jié)論編號(hào).【詳解】∵,∴曲線在點(diǎn)處的切線方程為,則.∵,∴,則是首項(xiàng)為1,公比為的等比數(shù)列,從而,,.故所有正確結(jié)論的編號(hào)是①③④.故答案為:①③④【點(diǎn)睛】本小題主要考查曲線的切線方程的求法,考查根據(jù)遞推關(guān)系式證明等比數(shù)列,考查等比數(shù)列通項(xiàng)公式和前項(xiàng)和公式,屬于基礎(chǔ)題.15、-20【解析】

根據(jù)二項(xiàng)式定理的通項(xiàng)公式,再分情況考慮即可求解.【詳解】解:展開式中項(xiàng)的系數(shù):二項(xiàng)式由通項(xiàng)公式當(dāng)時(shí),項(xiàng)的系數(shù)是,當(dāng)時(shí),項(xiàng)的系數(shù)是,故的系數(shù)為;故答案為:【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用,注意分情況考慮,屬于基礎(chǔ)題.16、【解析】

通過(guò)已知的三個(gè)等式,找出規(guī)律,歸納出第個(gè)等式即可.【詳解】解:因?yàn)椋?,,,等式的右邊系?shù)是2,且角是等比數(shù)列,公比為,則角滿足:第個(gè)等式中的角,所以;故答案為:.【點(diǎn)睛】本題主要考查歸納推理,注意已知表達(dá)式的特征是解題的關(guān)鍵,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)答案不唯一具體見解析【解析】

(1)利用導(dǎo)數(shù)的幾何意義,設(shè)切點(diǎn)的坐標(biāo),用不同的方式求出兩種切線方程,但兩條切線本質(zhì)為同一條,從而得到方程組,再構(gòu)造函數(shù)研究其最大值,進(jìn)而求得;(2)對(duì)函數(shù)進(jìn)行求導(dǎo)后得,對(duì)分三種情況進(jìn)行一級(jí)討論,即,,,結(jié)合函數(shù)圖象的單調(diào)性及零點(diǎn)存在定理,可得函數(shù)零點(diǎn)情況.【詳解】解:(1)曲線在點(diǎn)處的切線方程為,即.令切線與曲線相切于點(diǎn),則切線方程為,∴,∴,令,則,記,于是,在上單調(diào)遞增,在上單調(diào)遞減,∴,于是,.(2),①當(dāng)時(shí),恒成立,在上單調(diào)遞增,且,∴函數(shù)在上有且僅有一個(gè)零點(diǎn);②當(dāng)時(shí),在R上沒(méi)有零點(diǎn);③當(dāng)時(shí),令,則,即函數(shù)的增區(qū)間是,同理,減區(qū)間是,∴.ⅰ)若,則,在上沒(méi)有零點(diǎn);ⅱ)若,則有且僅有一個(gè)零點(diǎn);ⅲ)若,則.,令,則,∴當(dāng)時(shí),單調(diào)遞增,.∴又∵,∴在R上恰有兩個(gè)零點(diǎn),綜上所述,當(dāng)時(shí),函數(shù)沒(méi)有零點(diǎn);當(dāng)或時(shí),函數(shù)恰有一個(gè)零點(diǎn);當(dāng)時(shí),恰有兩個(gè)零點(diǎn).【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義、切線方程、零點(diǎn)等知識(shí),求解切線有關(guān)問(wèn)題時(shí),一定要明確切點(diǎn)坐標(biāo).以導(dǎo)數(shù)為工具,研究函數(shù)的圖象特征及性質(zhì),從而得到函數(shù)的零點(diǎn)個(gè)數(shù),此時(shí)如果用到零點(diǎn)存在定理,必需說(shuō)明在區(qū)間內(nèi)單調(diào)且找到兩個(gè)端點(diǎn)值的函數(shù)值相乘小于0,才算完整的解法.18、(1);(2)見解析.【解析】

(1)在不等式兩邊平方化簡(jiǎn)轉(zhuǎn)化為二次不等式,解此二次不等式即可得出結(jié)果;(2)利用絕對(duì)值三角不等式可證得成立.【詳解】(1),,由得,不等式兩邊平方得,即,解得或.因此,不等式的解集為;(2),,由絕對(duì)值三角不等式可得.因此,.【點(diǎn)睛】本題考查含絕對(duì)值不等式的求解,同時(shí)也考查了利用絕對(duì)值三角不等式證明不等式,考查推理能力與運(yùn)算求解能力,屬于中等題.19、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)把代入,可得,令,求出其在上的值域,利用對(duì)數(shù)函數(shù)的單調(diào)性即可求解.(Ⅱ)根據(jù)對(duì)數(shù)函數(shù)的單調(diào)性可得在上單調(diào)遞增,再利用二次函數(shù)的圖像與性質(zhì)可得解不等式組即可求解.【詳解】(Ⅰ)當(dāng)時(shí),,此時(shí)函數(shù)的定義域?yàn)?因?yàn)楹瘮?shù)的最小值為.最大值為,故函數(shù)在上的值域?yàn)?;(Ⅱ)因?yàn)楹瘮?shù)在上單調(diào)遞減,故在上單調(diào)遞增,則解得,綜上所述,實(shí)數(shù)的取值范圍.【點(diǎn)睛】本題主要考查了利用對(duì)數(shù)函數(shù)的單調(diào)性求值域、利用對(duì)數(shù)型函數(shù)的單調(diào)區(qū)間求參數(shù)的取值范圍以及二次函數(shù)的圖像與性質(zhì),屬于中檔題.20、(1)(2)證明見解析【解析】

(1)據(jù)題意可得在區(qū)間上恒成立,利用導(dǎo)數(shù)討論函數(shù)的單調(diào)性,從而求出滿足不等式的的取值范圍;(2)不等式整理為,由(1)可知當(dāng)時(shí),,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性從而證明在區(qū)間上成立,從而證明對(duì)任意,都有.【詳解】(1)解:因?yàn)楹瘮?shù)的圖象恒在的圖象的下方,所以在區(qū)間上恒成立.設(shè),其中,所以,其中,.①當(dāng),即時(shí),,所以函數(shù)在上單調(diào)遞增,,故成立,滿足題意.②當(dāng),即時(shí),設(shè),則圖象的對(duì)稱軸,,,所以在上存在唯一實(shí)根,設(shè)為,則,,,所以在上單調(diào)遞減,此時(shí),不合題意.綜上可得,實(shí)數(shù)的取值范圍是.(2)證明:由題意得,因?yàn)楫?dāng)時(shí),,,所以.令,則,所以在上單調(diào)遞增,,即,所以,從而.由(1)知當(dāng)時(shí),在上恒成立,整理得.令,則要證,只需證.因?yàn)椋栽?/p>

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論