福建省柘榮一中、寧德高中2023-2024學(xué)年高三第四次模擬考試數(shù)學(xué)試卷含解析_第1頁
福建省柘榮一中、寧德高中2023-2024學(xué)年高三第四次模擬考試數(shù)學(xué)試卷含解析_第2頁
福建省柘榮一中、寧德高中2023-2024學(xué)年高三第四次模擬考試數(shù)學(xué)試卷含解析_第3頁
福建省柘榮一中、寧德高中2023-2024學(xué)年高三第四次模擬考試數(shù)學(xué)試卷含解析_第4頁
福建省柘榮一中、寧德高中2023-2024學(xué)年高三第四次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省柘榮一中、寧德高中2023-2024學(xué)年高三第四次模擬考試數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)i為虛數(shù)單位,若復(fù)數(shù),則復(fù)數(shù)z等于()A. B. C. D.02.已知四棱錐的底面為矩形,底面,點在線段上,以為直徑的圓過點.若,則的面積的最小值為()A.9 B.7 C. D.3.若實數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.4.某中學(xué)2019年的高考考生人數(shù)是2016年高考考生人數(shù)的1.2倍,為了更好地對比該校考生的升學(xué)情況,統(tǒng)計了該校2016年和2019年的高考情況,得到如圖柱狀圖:則下列結(jié)論正確的是().A.與2016年相比,2019年不上線的人數(shù)有所增加B.與2016年相比,2019年一本達線人數(shù)減少C.與2016年相比,2019年二本達線人數(shù)增加了0.3倍D.2016年與2019年藝體達線人數(shù)相同5.已知雙曲線:的焦點為,,且上點滿足,,,則雙曲線的離心率為A. B. C. D.56.兩圓和相外切,且,則的最大值為()A. B.9 C. D.17.已知,,若,則向量在向量方向的投影為()A. B. C. D.8.已知函數(shù)在區(qū)間有三個零點,,,且,若,則的最小正周期為()A. B. C. D.9.已知復(fù)數(shù)滿足,其中是虛數(shù)單位,則復(fù)數(shù)在復(fù)平面中對應(yīng)的點到原點的距離為()A. B. C. D.10.若,則的虛部是()A. B. C. D.11.設(shè)集合,,若,則的取值范圍是()A. B. C. D.12.已知函數(shù)(,且)在區(qū)間上的值域為,則()A. B. C.或 D.或4二、填空題:本題共4小題,每小題5分,共20分。13.內(nèi)角,,的對邊分別為,,,若,則__________.14.設(shè)滿足約束條件,則目標(biāo)函數(shù)的最小值為_.15.如圖,在棱長為2的正方體中,點、分別是棱,的中點,是側(cè)面正方形內(nèi)一點(含邊界),若平面,則線段長度的取值范圍是______.16.已知雙曲線(a>0,b>0)的一條漸近線方程為,則該雙曲線的離心率為_______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)以平面直角坐標(biāo)系的原點為極點,軸的正半軸為極軸,且在兩種坐標(biāo)系中取相同的長度單位,建立極坐標(biāo)系,已知曲線,曲線(為參數(shù)),求曲線交點的直角坐標(biāo).18.(12分)已知等比數(shù)列是遞增數(shù)列,且.(1)求數(shù)列的通項公式;(2)若,求數(shù)列的前項和.19.(12分)在直角坐標(biāo)系中,已知曲線的參數(shù)方程為(為參數(shù)),以原點為極點,軸的非負半軸為極軸建立極坐標(biāo)系,射線的極坐標(biāo)方程為,射線的極坐標(biāo)方程為.(Ⅰ)寫出曲線的極坐標(biāo)方程,并指出是何種曲線;(Ⅱ)若射線與曲線交于兩點,射線與曲線交于兩點,求面積的取值范圍.20.(12分)已知橢圓經(jīng)過點,離心率為.(1)求橢圓的方程;(2)過點的直線交橢圓于、兩點,若,在線段上取點,使,求證:點在定直線上.21.(12分)在直角坐標(biāo)系xOy中,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,已知:,:,:.(1)求與的極坐標(biāo)方程(2)若與交于點A,與交于點B,,求的最大值.22.(10分)已知,且.(1)請給出的一組值,使得成立;(2)證明不等式恒成立.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)復(fù)數(shù)除法的運算法則,即可求解.【詳解】.故選:B.【點睛】本題考查復(fù)數(shù)的代數(shù)運算,屬于基礎(chǔ)題.2、C【解析】

根據(jù)線面垂直的性質(zhì)以及線面垂直的判定,根據(jù)勾股定理,得到之間的等量關(guān)系,再用表示出的面積,利用均值不等式即可容易求得.【詳解】設(shè),,則.因為平面,平面,所以.又,,所以平面,則.易知,.在中,,即,化簡得.在中,,.所以.因為,當(dāng)且僅當(dāng),時等號成立,所以.故選:C.【點睛】本題考查空間幾何體的線面位置關(guān)系及基本不等式的應(yīng)用,考查空間想象能力以及數(shù)形結(jié)合思想,涉及線面垂直的判定和性質(zhì),屬中檔題.3、B【解析】

根據(jù)所給不等式組,畫出不等式表示的可行域,將目標(biāo)函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標(biāo)函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當(dāng)經(jīng)過原點時截距最小,;當(dāng)經(jīng)過時,截距最大值,,所以線性目標(biāo)函數(shù)的取值范圍為,故選:B.【點睛】本題考查了線性規(guī)劃的簡單應(yīng)用,線性目標(biāo)函數(shù)取值范圍的求法,屬于基礎(chǔ)題.4、A【解析】

設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,通過簡單的計算逐一驗證選項A、B、C、D.【詳解】設(shè)2016年高考總?cè)藬?shù)為x,則2019年高考人數(shù)為,2016年高考不上線人數(shù)為,2019年不上線人數(shù)為,故A正確;2016年高考一本人數(shù),2019年高考一本人數(shù),故B錯誤;2019年二本達線人數(shù),2016年二本達線人數(shù),增加了倍,故C錯誤;2016年藝體達線人數(shù),2019年藝體達線人數(shù),故D錯誤.故選:A.【點睛】本題考查柱狀圖的應(yīng)用,考查學(xué)生識圖的能力,是一道較為簡單的統(tǒng)計類的題目.5、D【解析】

根據(jù)雙曲線定義可以直接求出,利用勾股定理可以求出,最后求出離心率.【詳解】依題意得,,,因此該雙曲線的離心率.【點睛】本題考查了雙曲線定義及雙曲線的離心率,考查了運算能力.6、A【解析】

由兩圓相外切,得出,結(jié)合二次函數(shù)的性質(zhì),即可得出答案.【詳解】因為兩圓和相外切所以,即當(dāng)時,取最大值故選:A【點睛】本題主要考查了由圓與圓的位置關(guān)系求參數(shù),屬于中檔題.7、B【解析】

由,,,再由向量在向量方向的投影為化簡運算即可【詳解】∵∴,∴,∴向量在向量方向的投影為.故選:B.【點睛】本題考查向量投影的幾何意義,屬于基礎(chǔ)題8、C【解析】

根據(jù)題意,知當(dāng)時,,由對稱軸的性質(zhì)可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個零點,,,當(dāng)時,,∴由對稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【點睛】本題考查正弦型函數(shù)的最小正周期,涉及函數(shù)的對稱性的應(yīng)用,考查計算能力.9、B【解析】

利用復(fù)數(shù)的除法運算化簡z,復(fù)數(shù)在復(fù)平面中對應(yīng)的點到原點的距離為利用模長公式即得解.【詳解】由題意知復(fù)數(shù)在復(fù)平面中對應(yīng)的點到原點的距離為故選:B【點睛】本題考查了復(fù)數(shù)的除法運算,模長公式和幾何意義,考查了學(xué)生概念理解,數(shù)學(xué)運算,數(shù)形結(jié)合的能力,屬于基礎(chǔ)題.10、D【解析】

通過復(fù)數(shù)的乘除運算法則化簡求解復(fù)數(shù)為:的形式,即可得到復(fù)數(shù)的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點睛】本題考查復(fù)數(shù)的代數(shù)形式的混合運算,復(fù)數(shù)的基本概念,屬于基礎(chǔ)題.11、C【解析】

由得出,利用集合的包含關(guān)系可得出實數(shù)的取值范圍.【詳解】,且,,.因此,實數(shù)的取值范圍是.故選:C.【點睛】本題考查利用集合的包含關(guān)系求參數(shù),考查計算能力,屬于基礎(chǔ)題.12、C【解析】

對a進行分類討論,結(jié)合指數(shù)函數(shù)的單調(diào)性及值域求解.【詳解】分析知,.討論:當(dāng)時,,所以,,所以;當(dāng)時,,所以,,所以.綜上,或,故選C.【點睛】本題主要考查指數(shù)函數(shù)的值域問題,指數(shù)函數(shù)的值域一般是利用單調(diào)性求解,側(cè)重考查數(shù)學(xué)運算和數(shù)學(xué)抽象的核心素養(yǎng).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】∵,∴,即,∴,∴.14、【解析】

根據(jù)滿足約束條件,畫出可行域,將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時的點,此時,目標(biāo)函數(shù)取得最小值.【詳解】由滿足約束條件,畫出可行域如圖所示陰影部分:將目標(biāo)函數(shù),轉(zhuǎn)化為,平移直線,找到直線在軸上截距最小時的點此時,目標(biāo)函數(shù)取得最小值,最小值為故答案為:-1【點睛】本題主要考查線性規(guī)劃求最值,還考查了數(shù)形結(jié)合的思想方法,屬于基礎(chǔ)題.15、【解析】

取中點,連結(jié),,推導(dǎo)出平面平面,從而點在線段上運動,作于,由,能求出線段長度的取值范圍.【詳解】取中點,連結(jié),,在棱長為2的正方體中,點、分別是棱、的中點,,,,,平面平面,是側(cè)面正方形內(nèi)一點(含邊界),平面,點在線段上運動,在等腰△中,,,作于,由等面積法解得:,,線段長度的取值范圍是,.故答案為:,.【點睛】本題考查線段長的取值范圍的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運算求解能力,是中檔題.16、【解析】

根據(jù)題意,由雙曲線的漸近線方程可得,即a=2b,進而由雙曲線的幾何性質(zhì)可得cb,由雙曲線的離心率公式計算可得答案.【詳解】根據(jù)題意,雙曲線的漸近線方程為y=±x,又由該雙曲線的一條漸近線方程為x﹣2y=0,即yx,則有,即a=2b,則cb,則該雙曲線的離心率e;故答案為:.【點睛】本題考查雙曲線的幾何性質(zhì),關(guān)鍵是分析a、b之間的關(guān)系,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、【解析】

利用極坐標(biāo)方程與普通方程、參數(shù)方程間的互化公式化簡即可.【詳解】因為,所以,所以曲線的直角坐標(biāo)方程為.由,得,所以曲線的普通方程為.由,得,所以(舍),所以,所以曲線的交點坐標(biāo)為.【點睛】本題考查極坐標(biāo)方程與普通方程,參數(shù)方程與普通方程間的互化,考查學(xué)生的計算能力,是一道容易題.18、(1)(2)【解析】

(1)先利用等比數(shù)列的性質(zhì),可分別求出的值,從而可求出數(shù)列的通項公式;(2)利用錯位相減求和法可求出數(shù)列的前項和.【詳解】解:(1)由是遞增等比數(shù)列,,聯(lián)立,解得或,因為數(shù)列是遞增數(shù)列,所以只有符合題意,則,結(jié)合可得,∴數(shù)列的通項公式:;(2)由,∴;∴;那么,①則,②將②﹣①得:.【點睛】本題考查了等比數(shù)列的性質(zhì),考查了等比數(shù)列的通項公式,考查了利用錯位相減法求數(shù)列的前項和.19、(Ⅰ),曲線是以為圓心,為半徑的圓;(Ⅱ).【解析】

(Ⅰ)由曲線的參數(shù)方程能求出曲線的普通方程,由此能求出曲線的極坐標(biāo)方程.(Ⅱ)令,,則,利用誘導(dǎo)公式及二倍角公式化簡,再由余弦函數(shù)的性質(zhì)求出面積的取值范圍;【詳解】解:(Ⅰ)由(為參數(shù))化為普通方程為,整理得曲線是以為圓心,為半徑的圓.(Ⅱ)令,,,,面積的取值范圍為【點睛】本題考查曲線的極坐標(biāo)方程的求法,考查三角形的面積的求法,考查參數(shù)方程、直角坐標(biāo)方程、極坐標(biāo)方程的互化等基礎(chǔ)知識,考查運算求解能力,屬于中檔題.20、(1);(2)見解析.【解析】

(1)根據(jù)題意得出關(guān)于、、的方程組,解出、的值,進而可得出橢圓的標(biāo)準方程;(2)設(shè)點、、,設(shè)直線的方程為,將該直線的方程與橢圓的方程聯(lián)立,并列出韋達定理,由向量的坐標(biāo)運算可求得點的坐標(biāo)表達式,并代入韋達定理,消去,可得出點的橫坐標(biāo),進而可得出結(jié)論.【詳解】(1)由題意得,解得,.所以橢圓的方程是;(2)設(shè)直線的方程為,、、,由,得.,則有,,由,得,由,可得,,,綜上,點在定直線上.【點睛】本題考查橢圓方程的求解,同時也考查了點在定直線上的證明,考查計算能力與推理能力,屬于中等題.21、(1)的極坐標(biāo)方程為;的極坐標(biāo)方程為:(2)【解析】

(1)根據(jù),代入即可轉(zhuǎn)化.(2)由:,可得,代入與的極坐標(biāo)方程求出,從而可得,再利用二倍角公式、輔助角公式,借助三角函數(shù)的性質(zhì)即可求解.【詳解】(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論