版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
基本初等函數(shù)及函數(shù)與方程
習(xí)題部分:
一.指數(shù)函數(shù)2------------7
二.對數(shù)函數(shù)8-----------16
三.事函數(shù).17---------24
四.函數(shù)與方程24---------31
答案部分:
一.指數(shù)函數(shù)32-------45
二.對數(shù)函數(shù)45-------73
三.幕函數(shù).74---------105
四.函數(shù)與方程105——127
指數(shù)函數(shù)
(2010年真題)
1.(2010遼寧文)(10)設(shè)2"=5"=加,且2+』=2,則優(yōu)=
ab
(A)VlO(B)10(C)20(D)100
q27271
5
2.(2010安徽文)(7)設(shè)a=(2)5,/?=(W)5,c=(-)則a,b>c的大小關(guān)系是
555
(A)a>c>b(B)a>b>c(C)c>a>b(D)b>c>a
3.(2010北京文)⑹給定函數(shù)①y=x"②y=log1(x+l),x-11,@y-2X+',
2
期中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號是
(A)①②(B)②③(C)③④(D)①④
4.(2010四川文)(22)(本小題滿分14分)
設(shè)"工)=匕幺(。>0且。。1),g(x)是/U)的反函數(shù).
1一優(yōu)
<I)求g(x);
(II)當(dāng)xe[2,6]時(shí),恒有g(shù)(x)>log“「~------成立,求t的取值范圍;
(x--l)(7-x)
(III)當(dāng)0<aw|時(shí),試比較f(l)+f⑵+…+f(n)與〃+4的大小,并說明理由.
(2009年真題)
1.(2009年廣東卷文)若函數(shù)y=/(x)是函數(shù)y=a%a>0,且的反函數(shù),且
/(2)=1,則/(x)=
1
X
A.log9xB.—C.logjxD.2~
2"5
2.(2009年廣東卷文)函數(shù)/(x)=(x-3)ex的單調(diào)遞增區(qū)間是
A.(-8,2)B.(0,3)C.(l,4)D,(2,+8)
X.-X
3.(2009山東卷理)函數(shù)),=-一-的圖像大致為().
4.(2009廣東卷理)若函數(shù)y=/(x)是函數(shù)?=優(yōu)(。>0,且4。1)的反函數(shù),其圖像經(jīng)
過點(diǎn)(、石M),則/(x)=
,,12
A.log2xB.log,xC.—D.x
22"
5.(2009四川卷文)函數(shù)y=2向(xeR)的反函數(shù)是
A.y=1+log2x(x>0)B.y=log2(x-l)(x>1)
C.y=-1+log2x(x>0)D.y=log2(x+l)(x>-1)
6.(2009全國卷H理)設(shè)。=log?力力=log?=logj后,則
A.a>b>cB.a>c>bC.b>a>cD.b>c>a
7.(2009湖南卷文)log?后的值為【D】
A.一B.\[2,C.---D.—
22
8.(2009湖南卷文)設(shè)函數(shù)y=/(x)在(-8,+8)內(nèi)有定義,對于給定的正數(shù)K,定義函數(shù)
f(x),f(x)<K,
/K(X)=?
K,f(x)>K.
取函數(shù)/(犬)=2%。當(dāng)長=;時(shí),函數(shù)人(幻的單調(diào)遞增區(qū)間為【】
A.(-00,0)B.(0,+℃))C.(-oo,-l)D.(1,+°0)
9.(2009遼寧卷文)已知函數(shù)/(x)滿足:x》4,則f(x)=(―『;當(dāng)xV4時(shí)/(x)=f{x+1),
則/(2+岫3)=
1113
(A)—(B)—(C)-(D)-
241288
10.(2009遼寧卷理)若%滿足2x+2'=5,2x+21og2(x-l)=5,/+x2=
,、57
(A)-(B)3(C)-(D)4
11.(2009四川卷文)函數(shù)y=2'T(xeR)的反函數(shù)是
A.y=l+log2x(x>0)B.y=log2(x-l)(x>1)
C.y=-l+log2x(x>0)D.y=log2(x+l)(x>-1)
12.(2009湖南卷理)若log2a<0,(1)fc>1,貝ij(D)
A.a>l,b>0B.a>l,b<0C.0<a<l,b>0D.0<a<l,b<0
13.(2009福建卷文)定義在R上的偶函數(shù)的部分圖像如右圖所示,則在(-2,0)上,
下列函數(shù)中與J,(x)的單調(diào)性不同的是
A.y=x2+1
B.y=|x|+l
2x+l,x>0
C.y
x+l,x<0
14.(2009福建卷文)若函數(shù)/(x)的零點(diǎn)與g(x)=4'+2x-2的零點(diǎn)之差的絕對值不超
過0.25,則“X)可以是
A./(x)=4x-lB./(x)=(x-l)2
C./(x)=e'-lD./(x)=/n
64.19.(2009重慶卷文)把函數(shù)/(x)=d-3x的圖像G向右平移瓜個(gè)單位長度,再向下平
移丫個(gè)單位長度后得到圖像C”若對任意的“>0,曲線G與C2至多只有個(gè)交點(diǎn),則v
的最小值為()
A.2B.4C.6D.8
15.(2009重慶卷理)若/(x)=-^—+a是奇函數(shù),則。=____________
2—1
x<0
16.(2009北京理)若函數(shù)/(x)={x則不等式|/(x)巨工的解集為
IS)i\x>03
J5-1
17.(2009江蘇卷)已知4=—--,函數(shù)/(x)=a*,若實(shí)數(shù)機(jī)、〃滿足/(〃?)>/(〃),
則m、n的大小關(guān)系為.
18.(2009江蘇卷)已知集合4={刈082%w2},8=(—8,4),若AQ8則實(shí)數(shù)。的取值范
圍是(c,+8),其中c=,
19.(2009山東卷理)若函數(shù)f(x)=ax-x-a(a>0且aH1)有兩個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍
是:
20.(2009寧夏海南卷文)曲線y=xe'+2x+l在點(diǎn)(0,1)處的切線方程為。
21.(2009北京理)(本小題共13分)
設(shè)函數(shù)/(x)=x*(A,0)
(I)求曲線y=/*)在點(diǎn)(0J(0))處的切線方程:
(II)求函數(shù)/(x)的單調(diào)區(qū)間;
(III)若函數(shù)”X)在區(qū)間(—1,1)內(nèi)單調(diào)遞增,求上的取值范圍.
22.(2009江西卷理)(本小題滿分12分)
設(shè)函數(shù)/(%)=—
x
(1)求函數(shù)/(X)的單調(diào)區(qū)間;
(2)若k>0,求不等式/(x)+k(l—x)/(x)>0的解集.
23(2009寧夏海南卷理)(本小題滿分12分)
已知函數(shù)/(x)=(x3+3x2+ax+b)e-x
(I)如a=b=—3,求/(x)的單調(diào)區(qū)間;
(II)若/。)在(一8,二),(2,夕)單調(diào)增加,在(區(qū)2),(夕,+8)單調(diào)減少,證明
B—a<6.
24.(2009天津卷理)(本小題滿分12分)
己知函數(shù)/(x)=(x2+ax—2a2+3a)e'(xwR),其中aeR
(1)當(dāng)a=0時(shí),求曲線>=/(x)在點(diǎn)(1,/(I))處的切線的斜率;
2
(2)當(dāng)a。]時(shí),求函數(shù)/(x)的單調(diào)區(qū)間與極值。
(2008年真題)
1.(2008安徽理)在同一平面直角坐標(biāo)系中,函數(shù)y=g(x)的圖象與y=。'的圖象關(guān)于直
線y=x對稱。而函數(shù)>,=/(x)的圖象與y=g(x)的圖象關(guān)于y軸對稱,若
/(〃?)=一1,則用的值是()
11
A.-eB.---C.€D.一
2.(2008安徽理)若函數(shù)/(x),g(x)分別是R上的奇函數(shù)、偶函數(shù),且滿足/(x)-g(x)=",
則有()
A.〃2)</(3)<g(0)B.g(0)</(3)</(2)
C./(2)<g(0)</(3)D.g(0)</(2)</(3)
3.(2008廣東文)設(shè)aeR,若函數(shù)y=e*+ax,xeR有大于零的極值點(diǎn),則()
A.a<—1B.a>—1C.a>—D.a<—
ee
4.(2008廣東理)設(shè)awR,若函數(shù)y=e以+3x,xwR有大于零的極值點(diǎn),則()
A.a>—3B.〃<—3C.a>—D.。<—
33
5.(2008遼寧文、理)將函數(shù)y=2、+1的圖象按向量a平移得到函數(shù)y=2川的圖象,則
()
A.a-(—b—1)B.a=(b-1)C.a=(1,1)D.a—(—LI)
6.(2008全國II卷文、理)若x£(e,l),a=Inx,b=21nx,c=In3x,貝ij()
A.a<b<cB.c<a<bC.h<a<cD.h<c<a
7.(2008山東文)已知函數(shù)f(x)=k)g“(2x+Z?—l)m〉0,awl)的圖象如圖所示,則o,。滿
足的關(guān)系是()Ay
A.0<a~[<b<lB.----
C.0<b~]<a<-\D.0<a~'<b''<\
8.(2008陜西文\S)已知函數(shù)/(x)=2"3,尸(x)是〃x)的反函數(shù),若/;g耳
(用,R+),則+⑺的值為()
A.10B.4C.1D.-2
9.(2008四川文)函數(shù)y=ln(2x+l)[x>-g)的反函數(shù)是()
(A)y=;e*-l(xeR)(B)y=e2i'-l(xeR)
1.i
(C)^=-(ex-l)(xe/?)(D)y=〃—l(xeR)
10.(2008重慶文)函數(shù)戶10&(0<xWl=的反函數(shù)是()
(A)y=_Jl+lgx(x>')(B)y=Jl+lgxa>5)
(C)y=_Jl+lgx(2VxWl)(D)y=Jl+lgx(1〈xWl)
11.(2008湖北文)方程2-*+f=3的實(shí)數(shù)解的個(gè)數(shù)為.
12.(2008遼寧文)函數(shù)y=e2"i(-8<x<+8)的反函數(shù)是
x+1,x<0,
13.(2008遼寧理)函數(shù)y的反函數(shù)是
'x20一
V8
14.(2008山東文)已知/(3)=4xlog23+233,則/(2)+/(4)+48)+…+/(2)的值等
于_
15.(2008上海文)若函數(shù)外)的反函數(shù)為/T(x)=log2X,則/(x)=.
13\_}_」
16.(2008重慶文)若xA0,則(2X%+35)2X」35)-4X_5=.
L4
17.(2008重慶理)已知a2=一包>0),則log,a=.
9i
18.(2008上海文、理)已知函數(shù)/G)=2'一由
⑴若,(x)=2,求x的值
⑵若21/(2?)+m/(r)20對于七[1,2]恒成立,求實(shí)數(shù)m的取值范圍
19.(2008山東文)設(shè)函數(shù)/(X)=%2e*T+?!?+^%2,已知%=-2和x=l為/(x)的極值點(diǎn).
(I)求a和b的值;
(II)討論/(x)的單調(diào)性;
2
(III)設(shè)g(X)=§x3—x2,試比較/*)與g(X)的大小.
對數(shù)函數(shù)
(2010年真題)
1.(2010全國卷2理)(2).函數(shù)y=1+-1).a>:的反函數(shù)是
(A)y=e2x+1-l(x>0)(B)=e2x+i+l(x>0)
(C)y=e2x+,-l(xeR)(D)y=e2t+,+1(XGR)
2.(2010全國卷2文)(4)函數(shù)y=l+ln(xT)(x>l)的反函數(shù)是
(A)y=ex+1-l(x>0)(B)y=ex_|+1(x>0)
(C)y=eA+1-l(xeR)(D)y=et-1+l(xGR)
3.(2010山東文)(3)函數(shù)/(冗)=1。82(3'+1)的值域?yàn)?/p>
A.(0,+°°)B.[0,+8)C.(1,+co)D.[l,+8)
I
4.(2010北京文)(6)給定函數(shù)①y=一,②y=bg](x+l),③y=|x—l|,④>=2小,
2
期中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號是
(A)①②(B)②③(C)③④(D)①④
5.(2010四川理)(3)21og510+log60.25=
(A)0(B)1(C)2(D)4
25
6.(2010天津文)(6)設(shè)a=logs4,b=(log53),c=log4,則
(A)a<c<b(B))b<c<a(C))a<b<c(D))b<a<c
7.(2010全國卷1文)⑺已知函數(shù)/(x)=|lgx|.若aHb且,于(a)=f(b),則a+b的
取值范圍是
(A)(l,+oo)(B)[l,+oo)(C)(2,+8)(D)[2,+8)
8.(2010四川文)(2)函數(shù)尸/磔x的圖象大致是
9.(2010上海文)9.函數(shù)〃x)=log3(x+3)的反函數(shù)的圖像與y軸的交點(diǎn)坐標(biāo)
是。
10.(2010四川理)(22)(本小題滿分14分)
設(shè)="a(。>0且。,1),g(x)是/V)的反函數(shù).
\-a
(I)設(shè)關(guān)于X的方程求----------=g(x)在區(qū)間[2,6]上有實(shí)數(shù)解,求r的取
(X-l)(l-x)
值范圍:
(II)當(dāng)a=e(e為自然對數(shù)的底數(shù))時(shí),證明:£g(k)>/;
k=2yj2n(n+l)
(III)當(dāng)時(shí),試比較忙"3|與4的大小,并說明理由.
hl
11.(2010四川文)(22)(本小題滿分14分)
設(shè)/(%)=匕C(。>0且aHl),g(x)是/Xx)的反函數(shù).
l-a
(I)求g(x);
(II)當(dāng)xe[2,6]時(shí),恒有g(shù)(x)>k)g.「----------成立,求t的取值范圍;
(x-1)(7-%)
(III)當(dāng)0Vww1時(shí),試比較f(l)+f(2)+…+f(n)與〃+4的大小,并說明理山.
乙
(2009年真題)
1.(2009全國卷I理)已知直線y=x+l與曲線y=ln(x+a)相切,則a的值為(B)
(A)l(B)2(C)-l(D)-2
2.(2009北京文)為了得到函數(shù)y=1g—/的圖像,只需把函數(shù)y=lgx的圖像上所有的
點(diǎn)()
A.向左平移3個(gè)單位長度,再向上平移1個(gè)單位長度
B.向右平移3個(gè)單位長度,再向上平移1個(gè)單位長度
C.向左平移3個(gè)單位長度,再向下平移1個(gè)單位長度
D.向右平移3個(gè)單位長度,再向下平移1個(gè)單位長度
3.(2009北京理)為了得到函數(shù)y=lgf的圖像,只需把函數(shù)y=lgx的圖像上所有的
點(diǎn)()
A.向左平移3個(gè)單位長度,再向上平移1個(gè)單位長度
B.向右平移3個(gè)單位長度,再向上平移1個(gè)單位長度
C.向左平移3個(gè)單位長度,再向下平移1個(gè)單位長度
D.向右平移3個(gè)單位長度,再向下平移1個(gè)單位長度
.log(l-x),x<0
4.(2009山東卷理)定義在R上的函數(shù)f(x)滿足f(x)=\,,則f(2009)
的值為()
A.-lB.0C.lD.2
5.(2009全國卷II文)函數(shù)y=y=log,三土的圖像
2+x
(A)關(guān)于原點(diǎn)對稱(B)關(guān)于主線y=-X對稱
(C)關(guān)于y軸對稱(D)關(guān)于直線y=x對稱
6.(2009全國卷H文)設(shè)。=lge/=(愴6)2,,=愴冊則
(A)a>b>c(B)a>c>b(C)c>a>b(D)c>b>a
7.(2009江西卷文)已知函數(shù)/(x)是(-8,+8)上的偶函數(shù),若對于xNO,都有
f(x+2)=f(x),且當(dāng)xe[0,2)時(shí),/(x)=log2(x+l),則〃-2008)+0(2009)的值
為
A.-2B.-1C.1D.2
8.(2009江西卷理)函數(shù)y=Jn'+l)的定義域?yàn)?/p>
—3x+4
A.(-4,-1)B.(-4,1)C.(-1,1)D.(-1,1]
9.(2009天津卷文)設(shè)a=log2b=logi3,c=(2嚴(yán),則
352
Aa<b<cBa<c<bCb<c<aDb<a<c
10.(2009遼寧卷文)已知函數(shù)/(x)滿足:x與4,則/(x)=(―廠;當(dāng)x<4時(shí)/(x)=
/(x+1),則〃2+k)g23)=
1113
(A)—(B)—(C)-(D)-
241288
11.(2009遼寧卷理)若玉滿足2x+2*=5,々滿足2x+21og2(x—l)=5,玉+々=
,、57
(A)-(B)3(C)-(D)4
12.(2009四川卷文)函數(shù)y=2"i(xeR)的反函數(shù)是
A.y=1+log2x(x>0)B.y=log2(x-l)(x>l)
C.y=-l+log2x(x>0)D.y=log2(x4-l)(x>-1)
13.(2009全國卷【文)已知函數(shù)/(x)的反函數(shù)為g(x)=l+21gx(x>0),則/(l)+g(l)=
(A)0(B)1(C)2(D)4
14.(2009湖南卷理)若log?aVO,貝U()
A.a>l,b>0B.a>l,b<0C.0<a<l,b>0D.0<a<l,b<0
15.(2009天津卷理)設(shè)函數(shù)/(x)=>0),則y=/(x)
A在區(qū)間d』),(Le)內(nèi)均有零點(diǎn)。B在區(qū)間(1,1),(1,e)內(nèi)均無零點(diǎn)。
ee
c在區(qū)間d,1)內(nèi)有零點(diǎn),在區(qū)間(1,e)內(nèi)無零點(diǎn)。
e
D在區(qū)間(-,1)內(nèi)無零點(diǎn),在區(qū)間(l,e)內(nèi)有零點(diǎn)。
e
a+log2x(當(dāng)x>2時(shí))
16.(2009四川卷理)已知函數(shù)〃x)=|/_4在點(diǎn)工=2處連續(xù),則常數(shù)。
Lt(當(dāng)尤<2時(shí))
I%—2
的值是
A.2B.3C.4D,5
17.(2009福建卷文)定義在R上的偶函數(shù)/(x)的部分圖像如右圖所示,則在(-2,0)上,
卜列函數(shù)中與“X)的單調(diào)性不同的是
A.y=x2+l
B.y=|x|+l
2x+l,x>0
C.),=
x3+l,x<0
ex,x>o
D.y=
e~\x<0
18.若曲線/(x)=ax2+歷x存在垂直于y軸的切線,則實(shí)數(shù)a的取值范圍是.
19.(2009北京文)已知函數(shù)/(x)=(''若/(x)=2,則工=__________.
-x,x>1,
20.(2009福建卷理)若曲線/(x)=ax3+lnx存在垂直于y軸的切線,則實(shí)數(shù)。取值范圍
是.
21.(2009陜西卷理)設(shè)曲線y=£川("eN*)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)
為五,令=吆%",則%+%+…+。99的值為________________.
22.(2009重慶卷文)記/(x)=log3(x+l)的反函數(shù)為y=/T(x),則方程/T(x)=8的解
X=?
23.(2009安徽卷理)(本小題滿分12分)
2
已知函數(shù)/(x)=x一一+a(2-lnx\(a>0),討論了(x)的單調(diào)性.
x
24.(2009安徽卷文)(本小題滿分14分)
2
/(x)=X—4-1-olux
已知函數(shù)x,a>0,
(I)討論的單調(diào)性;
(II)設(shè)a=3,求油)在區(qū)間{1,『}上值域。期中e=2.71828…是自然對數(shù)的底數(shù)。
25.(2009全國卷H理)(本小題滿分12分)
設(shè)函數(shù)/(x)=%2+a/〃(l+x)有兩個(gè)極值點(diǎn)玉、x2,且玉<々
(I)求a的取值范圍,并討論了(x)的單調(diào)性;
1-27/12
(II)證明:/(x2)>
26.(2009遼寧卷文)(本小題滿分12分)
設(shè)/(x)=,(ax2+x+l),且曲線y=f(x)在x=l處的切線與x軸平行。
(I)求a的值,并討論f(x)的單調(diào)性;
jr
(II)證明:當(dāng)6£[0,耳]時(shí),%cos8)-f(sin6)|<2
27.(2009遼寧卷理)(本小題滿分12分)
1,
已知函數(shù)f(x)=—x--ax+(a—l)lnx,a>1o
(1)討論函數(shù)/(x)的單調(diào)性;
(2)證明:若。<5,則對任意X],x2G(0,+°<)),Xjx2,有"陽)/(%)〉—]0
xx-x2
28.(2009陜西卷理)(本小題滿分12分)
1—Y
已知函數(shù)/(x)=ln(ax+l)H-----,x>0,其中a>0
1+x
(I)若/(x)在x=l處取得極值,求a的值;
(II)求/(x)的單調(diào)區(qū)間;
(川)若/(x)的最小值為1,求a的取值范圍。
29.(2009四川卷理)(本小題滿分12分)
x
已知a>0,且a*1函數(shù)/(x)=loga(l-a)?
(I)求函數(shù)/(x)的定義域,并判斷/(x)的單調(diào)性;
(II)若〃eN*,求lim------;
22a"+a
(III)當(dāng)a=e(e為自然對數(shù)的底數(shù))時(shí),設(shè)人(尤)=(1一〉>)(4一加+1),若函數(shù)〃(x)
的極值存在,求實(shí)數(shù)機(jī)的取值范圍以及函數(shù)力(x)的極值。
30.(2009年上海卷理)(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小
題滿分8分。
有時(shí)可用函數(shù)
0.1+151n-^—,(x<6)
a-x
描述學(xué)習(xí)某學(xué)科知識的掌握程度,其中x表示某學(xué)科知識的學(xué)習(xí)次數(shù)(xeN"),/(x)表
示對該學(xué)科知識的掌握程度,正實(shí)數(shù)a與學(xué)科知識有關(guān)。
(1)證明:當(dāng)》27時(shí)一,掌握程度的增加量/(x+l)—/(x)總是下降;
(2)根據(jù)經(jīng)驗(yàn),學(xué)科甲、乙、丙對應(yīng)的a的取值區(qū)間分別為
(115,121],(121,127],(121,133].當(dāng)學(xué)習(xí)某學(xué)科知識6次時(shí),掌握程度是85%,請
確定相應(yīng)的學(xué)科。
31.(2009重慶卷理)(本小題滿分13分,(I)問5分,(H)問8分)
設(shè)函數(shù)/(x)=a/+公+%僅>0)在x=0處取得極值,且曲線y=/(x)在點(diǎn)(1J(l))
處的切線垂直于直線x+2),+1=0.
(I)求a]的值;
(II)若函數(shù)g(x)=-^,討論g(x)的單調(diào)性.
/(x)
(2008年真題)
1.(2008北京文)若a=log3?r,b=log76,c=log20.8,則()
(A)a>b>c(B)b>a>c(C)c>a>b(D)b>c>a
2兀
2.(2008北京理)若。=2。$,b=log兀3,c=log2sin—,貝ij()
A.a>b>cB.b>a>cC.c>a>bD.b>c>a
3、(2008海南、寧夏文)設(shè)/a)=xlnx,若/(為)=2,則與=()
In21a
A.e~2B.cC.---D.In2
2
4.(2008湖北理)若心)=一;./+從11。+2)在(-1,+8)上是減函數(shù),則b的取值范圍是()
A.[-l,+8]B.(-1,+8)C.(-8,.1)D.(-8,.J)
5.(2008廣東文)命題“若函數(shù)/(x)=log.x(a>0,aHl)在其定義域內(nèi)是減函數(shù),則
log“2<0”的逆否命題是()
A.若log。2<0,則函數(shù)/(幻=108“》(。>0,。/1)在其定義域內(nèi)不是減函數(shù)
B.若log〃220,則函數(shù)/(x)=log”x(a>0,aHl)在其定義域內(nèi)不是減函數(shù)
C.若log“2<0,則函數(shù)/(%)=108“%伍>0,。。1)在其定義域內(nèi)是減函數(shù)
D.若log”220,則函數(shù)/。)=噓“》伍>0,。。1)在其定義域內(nèi)是減函數(shù)
6.(2008湖北文、理)函數(shù)/(x)=1山(Jx2-3x+2)+J-/-3x+4的定義域?yàn)?)
X
A.(-~,-4)U[2,+8]B.(-4,0)U(0,l)C.[-4,0)U(0,l]D.[-4,0)U(0,1)
7.(2008湖南文)下面不等式成立的是()
A.log32<log23<log25B.log32<log25<log23
C.log23<log32<log25D.log23<log25<log32
8.(2008江西文)若0<x<y<l,則()
A.3、<3'B.log,3<log,3C.log4x<log4yD.(:)'<(;)>
9.(2008遼寧文)已知
0<a<1,x=log?V2+log0G,y=1log((5,z=logaV21-logaG,則()
A.x>y>zB.z>y>xC.y>x>zD.z>x>y
10.(2008全國I卷文)若函數(shù)y=/(x)的圖象與函數(shù)y=In4+1的圖象關(guān)于直線y=x對
稱,則/(x)=(A)
A.e2t-2B.e2xC.e2v+1D.e2x-2
11.(2008全國I卷理)若函數(shù)y=f(x-l)的圖像與函數(shù)y=In?+1的圖像關(guān)于直線
y=x對稱,則/(x)=()
A.e2x~'B.e2xC.e2x+,D.e2x+2
12.(2008全國II卷文、理)若xe(e,l),a=Inx,b=2lnx,c=In3x,貝U()
A.a<b<cB.c<a<bC.b<a<cD.b<c<a
13.(2008山東文)已知函數(shù)/(x)=log“(2'+b-l)(a>0,aHl)的圖象如圖所示,則a,b
滿足的關(guān)系是()
A.0<a~l<h<\B.0<h<a''<1
C.0<b''<a<-\D.0<a-1<b~'<I
/
x>—g)的反函數(shù)是()
14.(2008四川文)函數(shù)y=ln(2x+l)
(A)y=;e'—l(xeR)(B)y=e2T"eR)
i2
(C)好5z優(yōu)-l)(xeR)(D)y=e2-l(xe/?)
15.(2008天津文)設(shè)a>1,若對于任意的xe[a,2。],都有滿足方程
log?x+log“y=3,這時(shí)a的取值的集合為()
A.{a|l<aW2}B.{a|a?2}C.{《2WaW3}
D.{2,3}
16.(2008重慶文)函數(shù)y=103(0<xWl=的反函數(shù)是()
(A)y=-Jl+lgx(x>')(B)y=Jl+lgx(x>七)
(C)y=_Jl+[gx$VxWl)(D)y=Jl+lgx(,〈xWl)
Jx—2—1
17.(2008安徽文、理)函數(shù)/(x)=V-------的定義域?yàn)開____.
log2(x-l)
18.(2008遼寧文)函數(shù)y=e2x+1(-o0<x<+°°)的反函數(shù)是
x+1,x<0,
\19.(2008遼寧理)函數(shù)y的反函數(shù)是_________.
e\x20
8
20.(2008山東文)已知/(3')=4xlog23+233,貝U/(2)+/(4)+/(8)+…+/(2)的值等
于.
21.(2008上海文)若函數(shù)兀v)的反函數(shù)為/T(x)=log2X,則/(x)=.
22.(2008上海理)設(shè)函數(shù)/(X)是定義在R上的奇函數(shù),若當(dāng)xd(0,+8)時(shí),f(x)=lgx,則
滿足/(x)>0的x的取值范圍是
23.(2008安徽理)設(shè)函數(shù)/(x)=—!—(x>0且XW1)
xlnx
(I)求函數(shù)/(x)的單調(diào)區(qū)間;
(II)已知2^>£對任意xe(0,l)成立,求實(shí)數(shù)a的取值范圍。
24.(2008福建理)己知函數(shù)/尸ln(l+x)-xi
(I)求加)的單調(diào)區(qū)間;
(II)記兀。在區(qū)間[0,兀|(〃eN*)上的最小值為以令%=ln(l+〃)-bx.
(III)如果對一切小不等式府YJ仁-力匚恒成立,求實(shí)數(shù)c的取值范圍;
也+2
(IV)求證:幺+如++%%"2"一:匹百-1.
a
a2a2a4a2a42,,'
v-2
25..(2008湖南理)已知函數(shù)Ax尸h?(l+x).
1+x
(I)求函數(shù)/(x)的單調(diào)區(qū)間;
(II)若不等式(1+1)"+"We對任意的〃eN*都成立(其中e是自然對數(shù)的底數(shù)).
n
求a的最大值.
Inx
26.(2008遼寧理)設(shè)函數(shù)/(x)=---Inx+ln(x+1).
1+x
(I)求y(x)的單調(diào)區(qū)間和極值;
(II)是否存在實(shí)數(shù)a,使得關(guān)于x的不等式/(x)2。的解集為(0,+8)?若存在,求
。的取值范圍;若不存在,試說明理由.
27.(2008四川理)已知x=3是函數(shù)/(x)=aln(l+x)+x2-10x的一個(gè)極值點(diǎn)。
(1)求a;(II)求函數(shù)/(x)的單調(diào)區(qū)間;
(III)若直線y=6與函數(shù)y=/(x)的圖象有3個(gè)交點(diǎn),求匕的取值范圍。
三.鬲函數(shù)
(2010年真題)
1.(2010陜西文)7.下列四類函數(shù)中,個(gè)有性質(zhì)“對任意的x>0,y>0,函數(shù)f(x)滿足
+y)=f(x)f(y)w的是
(A)黑函數(shù)(B)對數(shù)函數(shù)(C)指數(shù)函數(shù)(D)余弦函數(shù)
a2y3o2
2.(2010安徽文)(7)設(shè)a=(2)5,6=心)5,c=(*)5,則a,b,c的大小關(guān)系是
555
(A)a>c>b(B)a>b>c(C)c>a>b(D)b>c>a
3.(2010安徽文)(6)設(shè)"c>0,二次函數(shù)/(幻=。/+桁+。的圖像可能是
4.(2010浙江文〉2.已知函數(shù)/(x)=log/x+l),若/(a)=l,a=
(A)0(B)l(C)2(D)3
5.(2010北京文)(6)給定函數(shù)①y=—,②y=log1(x+l),③-1|,@y^2x+],
2
期中在區(qū)間(0,1)上單調(diào)遞減的函數(shù)序號是
(A)①②(B)②③(C)③④(D)①④
6.(2010北京文)⑷若a,b是非零向量,且。A.b,同,網(wǎng),則函數(shù)/(x)=(xa+0>(M-a)
是
(A)一次函數(shù)且是奇函數(shù)(B)一次函數(shù)但不是奇函數(shù)
(C)二次函數(shù)且是偶函數(shù)(D)二次函數(shù)但不是偶函數(shù)
7.(2010安徽理)6、設(shè)。兒>0,二次函數(shù)〃x)=ax2+bx+c的圖象可能是
(2009年真題)
1.(2009江西卷文)若存在過點(diǎn)(1,0)的直線與曲線〉=》3和〉=汗+”》_9都相切,則
4
。等于
A.-1或-至,421725D.-1或7
B.-1或一C.--^-―
6444644
2.(2009湖北卷理)設(shè)a為非零實(shí)數(shù),函數(shù),=匕竺(xeR,月/H-,)的反函數(shù)是
1+axa
\-ax.門口1、1+QX/人口1、
A、y=------(XER,且xW——)B、y=------(xcR,且xW——)
l+axa\-axa
]+x1—Y
c、y=—~-(xeD、y=-------(XGR,且%W-1)
a(l-x)Q(1+X)
3.(2009陜西卷文)設(shè)曲線y=x向(〃wN*)在點(diǎn)(1,1)處的切線與x軸的交點(diǎn)的橫坐標(biāo)
為X",則X]?尤2.......X”的值為
11n
(A)-(B)--(C)--(D)1
nn+l〃+l
4.(2009天津卷理)設(shè)函數(shù)/(x)=;x—lnx(x>0),則y=/(x)
A在區(qū)間(Ll),(l,e)內(nèi)均有零點(diǎn)。B在區(qū)間(L1),(1,e)內(nèi)均無零點(diǎn)。
ee
c在區(qū)間d,1)內(nèi)有零點(diǎn),在區(qū)間(1,e)內(nèi)無零點(diǎn)。
e
D在區(qū)間(2,1)內(nèi)無零點(diǎn),在區(qū)間(1,e)內(nèi)有零點(diǎn)。
e
5.(2009福建卷文)定義在R上的偶函數(shù)/(x)的部分圖像如右圖所示,則在(-2,0)上,
下列函數(shù)中與/(x)的單調(diào)性不同的是
A.y=x2+1
B.y=|x|+l
[2x+l,x>0
C.y=<?
[x3+l,x<0
ex,x>o
D.y=,
"e~\x<0
6.(2009福建卷文)若函數(shù)/(x)的零點(diǎn)與g(x)=4'+2x-2的零點(diǎn)之差的絕對值不超過
0.25,則“X)可以是
A./(x)=4x-lB./(x)=(x-l)2
C./(x)=ev-lD.f(x)=In|
\2)
.(2009重慶卷文)把函數(shù)/(x)=V—3x的圖像G向右平移〃個(gè)單位長度,再向下平移u個(gè)
單位長度后得到圖像若對任意的〃>0,曲線G與。2至多只有一個(gè)交點(diǎn),則u的最小
值為()
A.2B.4C.6D.8
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 愛心流水燈課程設(shè)計(jì)
- 網(wǎng)球初學(xué)者教學(xué)課程設(shè)計(jì)
- 預(yù)見2025:中國行業(yè)趨勢報(bào)告-羅蘭貝格-202501
- 汽車行業(yè)品牌推廣咨詢
- 紡織服裝行業(yè)業(yè)務(wù)代表工作報(bào)告
- 教育行業(yè)人才選拔經(jīng)驗(yàn)交流
- 2024年秋季小學(xué)開學(xué)典禮方案
- 2024年美發(fā)店管理制度
- 分布式電力供應(yīng)合同(2篇)
- 2024年臘八節(jié)的賀詞
- 呼吸內(nèi)科臨床診療指南及操作規(guī)范
- 學(xué)生管理教育課件
- 物業(yè)經(jīng)理轉(zhuǎn)正述職
- 貿(mào)易崗位招聘面試題及回答建議(某大型國企)2025年
- 世界職業(yè)院校技能大賽高職組“關(guān)務(wù)實(shí)務(wù)組”賽項(xiàng)參考試題及答案
- 高中歷史教師資格考試面試試題及解答參考(2024年)
- 北師大版(2024新版)生物七年級上冊期末考點(diǎn)復(fù)習(xí)提綱
- 期末 試題 -2024-2025學(xué)年人教PEP版英語六年級上冊 (含答案)
- 2024年理論中心組學(xué)習(xí)心得體會模版(2篇)
- 浙江省杭州市2023-2024學(xué)年六年級上學(xué)期語文期末試卷(含答案)
- 環(huán)保行業(yè)工業(yè)廢氣污染防治技術(shù)路線方案
評論
0/150
提交評論