版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆甘肅省東鄉(xiāng)族自治縣八年級數(shù)學第二學期期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題3分,共30分)1.如圖,折線ABCDE描述了一汽車在某一直路上行駛時汽車離出發(fā)地的距離s(千米)和行駛時間t(小時)間的變量關(guān)系,則下列結(jié)論正確的是()A.汽車共行駛了120千米B.汽車在行駛途中停留了2小時C.汽車在整個行駛過程中的平均速度為每小時24千米D.汽車自出發(fā)后3小時至5小時間行駛的速度為每小時60千米2.一組數(shù)據(jù)的眾數(shù)、中位數(shù)分別是()A. B. C. D.3.如圖四邊形是菱形,頂點在軸上,,點在第一象限,且菱形的面積為,坐標為,則頂點的坐標為()A. B. C. D.4.下列圖案中,既是中心對稱又是軸對稱的圖案是()A. B. C. D.5.下列各點中,在函數(shù)y=2x-5圖象上的點是()A.(0,0) B.(,-4) C.(3,-1) D.(-5,0)6.若關(guān)于x的一元二次方程有實數(shù)根,則整數(shù)a的最大值是()A.4 B.5 C.6 D.77.下列函數(shù)中,表示y是x的正比例函數(shù)的是()A.y=﹣0.1x B.y=2x2 C.y2=4x D.y=2x+18.如圖,在?ABCD中,連接AC,∠ABC=∠CAD=45°,AB=,則BC的長是()A. B.2 C.2 D.49.下列各式-3x,,,-,,,中,分式的個數(shù)為()A.1 B.2 C.3 D.410.某校七年級體操比賽中,各班代表隊得分如下(單位:分):9,7,8,7,9,7,6,則各班代表隊得分的中位數(shù)和眾數(shù)分別是()A.7,7 B.7,8 C.8,7 D.8,8二、填空題(每小題3分,共24分)11.如圖,在?ABCD中,AD=8,點E、F分別是BD、CD的中點,則EF=_____.12.若代數(shù)式有意義,則x的取值范圍是__________.13.某中學規(guī)定:學生的學期體育綜合成績滿分為100分,其中,期中考試成績占40%,期末考試成績占60%,小海這個學期的期中、期末成績(百分制)分別是80分、90分,則小海這個學期的體育綜合成績是分.14.一次函數(shù)y=(m+2)x+3-m,若y隨x的增大而增大,函數(shù)圖象與y軸的交點在x軸的上方,則m的取值范圍是____.15.如圖,在平面直角坐標系xOy中,A是雙曲線y=1x在第一象限的分支上的一個動點,連接AO并延長與這個雙曲線的另一分支交于點B,以AB為底邊作等腰直角三角形ABC,使得點(1)點C與原點O的最短距離是________;(2)沒點C的坐標為((x,y)(x>0),點A在運動的過程中,y隨x的變化而變化,y關(guān)于x的函數(shù)關(guān)系式為________。16.如圖,矩形ABCD中,AB=6,BC=8,E是BC上一點(不與B、C重合),點P在邊CD上運動,M、N分別是AE、PE的中點,線段MN長度的最大值是_____.17.現(xiàn)用甲、乙兩種汽車將噸防洪物資運往災(zāi)區(qū),甲種汽車載重噸,乙種汽車載重噸,若一共安排輛汽車運送這些物資,則甲種汽車至少應(yīng)安排_________輛.18.把多項式n(n﹣2)+m(2﹣n)分解因式的結(jié)果是_____.三、解答題(共66分)19.(10分)解不等式組.20.(6分)幾何學的產(chǎn)生,源于人們對土地面積測量的需要,以面積早就成為人們認識圖形性質(zhì)與幾何證明的有效工具,可以說幾何學從一開始便與面積結(jié)下了不解之緣.我們已經(jīng)掌握了平行四邊形面積的求法,但是一般四邊形的面積往往不易求得,那么我們能否將其轉(zhuǎn)化為平行四邊形來求呢?(1)方法1:如圖①,連接四邊形的對角線,,分別過四邊形的四個頂點作對角線的平行線,所作四條線相交形成四邊形,易證四邊形是平行四邊形.請直接寫出S四邊形ABCD和之間的關(guān)系:_______________.方法2:如圖②,取四邊形四邊的中點,,,,連接,,,,(2)求證:四邊形是平行四邊形;(3)請直接寫出S四邊形ABCD與之間的關(guān)系:_____________.方法3:如圖③,取四邊形四邊的中點,,,,連接,交于點.先將四邊形繞點旋轉(zhuǎn)得到四邊形,易得點,,在同一直線上;再將四邊形繞點旋轉(zhuǎn)得到四邊形,易得點,,在同一直線上;最后將四邊形沿方向平移,使點與點重合,得到四邊形;(4)由旋轉(zhuǎn)、平移可得_________,_________,所以,所以點,,在同一直線上,同理,點,,也在同一點線上,所以我們拼接成的圖形是一個四邊形.(5)求證:四邊形是平行四邊形.(注意:請考生在下面2題中任選一題作答如果多做,則按所做的第一題計分)(6)應(yīng)用1:如圖④,在四邊形中,對角線與交于點,,,,則S四邊形ABCD=.(7)應(yīng)用2:如圖⑤,在四邊形中,點,,,分別是,,,的中點,連接,交于點,,,,則S四邊形ABCD=___________21.(6分)如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線.(1)求證:△ADE≌△CBF;(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.22.(8分)閱讀對人成長的影響是巨大的,一本好書往往能改變?nèi)说囊簧磕甑?月23日被聯(lián)合國教科文組織確定為“世界讀書日”某校本學年開展了讀書活動,在這次活動中,八年級班40名學生讀書冊數(shù)的情況如表讀書冊數(shù)45678人數(shù)人6410128根據(jù)表中的數(shù)據(jù),求:(1)該班學生讀書冊數(shù)的平均數(shù);(2)該班學生讀書冊數(shù)的中位數(shù).23.(8分)如圖1,為坐標原點,矩形的頂點,,將矩形繞點按順時針方向旋轉(zhuǎn)一定的角度得到矩形,此時邊、直線分別與直線交于點、.(1)連接,在旋轉(zhuǎn)過程中,當時,求點坐標.(2)連接,當時,若為線段中點,求的面積.(3)如圖2,連接,以為斜邊向上作等腰直角,請直接寫出在旋轉(zhuǎn)過程中的最小值.24.(8分)已知a滿足以下三個條件:①a是整數(shù);②關(guān)于x的一元二次方程ax2+4x﹣2=0有兩個不相等的實數(shù)根;③反比例函數(shù)的圖象在第二、四象限.(1)求a的值.(2)求一元二次方程ax2+4x﹣2=0的根.25.(10分)解方程(本題滿分8分)(1)(x-5)2=2(5-x)(2)2x2-4x-6=0(用配方法);26.(10分)如圖,矩形中,點在邊上,將沿折疊,點落在邊上的點處,過點作交于點,連接.(1)求證:四邊形是菱形;(2)若,求四邊形的面積.
參考答案一、選擇題(每小題3分,共30分)1、D【解題分析】
根據(jù)觀察圖象的橫坐標、縱坐標,可得行駛的路程與時間的關(guān)系,根據(jù)路程與時間的關(guān)系,可得速度.【題目詳解】A、由圖象可以看出,最遠處到達距離出發(fā)地120千米處,但又返回原地,所以行駛的路程為240千米,錯誤,不符合題意;B、停留的時候,時間增加,路程不變,所以停留的時間為2-1.5=0.5小時,錯誤,不符合題意;C、平均速度為總路程÷總時間,總路程為240千米,總時間為5小時,所以平均速度為240÷5=48千米/時,錯誤,不符合題意;D、汽車自出發(fā)后3小時至5小時間行駛的速度為120÷(5-3)=60千米/時,正確,符合題意,故選D.【題目點撥】本題考查利用函數(shù)的圖象解決實際問題,正確理解函數(shù)圖象橫縱坐標表示的意義,理解問題的過程,就能夠通過圖象得到函數(shù)問題的相應(yīng)解決;用到的知識點為:平均速度=總路程÷總時間.2、B【解題分析】
利用眾數(shù)和中位數(shù)的定義分析,即可得出.【題目詳解】眾數(shù):出現(xiàn)次數(shù)最多的數(shù),故眾數(shù)為5;中位數(shù):從小到大排列,中間的數(shù).將數(shù)據(jù)從小到大排列:2,3,4,5,5;故中位數(shù)為4;故選B【題目點撥】本題考查了統(tǒng)計中的眾數(shù)和中位數(shù),屬于基礎(chǔ)題,注意求中位數(shù)時,要重新排列數(shù)字,再找中位數(shù).3、C【解題分析】
過點C作x軸的垂線,垂足為E,由面積可求得CE的長,在Rt△BCE中可求得BE的長,可求得AE,結(jié)合A點坐標可求得AO,可求出OE,可求得C點坐標.【題目詳解】如圖,過點C作x軸的垂線,垂足為E,∵S菱形ABCD=20,∴AB?CE=20,即5CE=20,∴CE=4,在Rt△BCE中,BC=AB=5,CE=4,∴BE=3,∴AE=AB+BE=5+3=8.又∵A(?2,0),∴OA=2,∴OE=AE?OA=8?2=6,∴C(6,4),故選C.【題目點撥】此題考查菱形的性質(zhì),坐標與圖形性質(zhì),解題關(guān)鍵在于作輔助線4、D【解題分析】
根據(jù)軸對稱圖形與中心對稱圖形的概念即可求解.【題目詳解】A.是軸對稱圖形,不是中心對稱圖形.故選項錯誤;B.不是軸對稱圖形,是中心對稱圖形.故選項錯誤;C.是軸對稱圖形,不是中心對稱圖形.故選項錯誤;D.是軸對稱圖形,也是中心對稱圖形.故選項正確;故選D.【題目點撥】本題考查了軸對稱圖形與中心對稱圖形的識別,牢記軸對稱圖形和中心對稱圖形的概念是解答本題的關(guān)鍵.5、B【解題分析】
只要把點的坐標代入一次函數(shù)的解析式,若左邊=右邊,則點在函數(shù)的圖象上,反之就不在函數(shù)的圖象上,代入檢驗即可.【題目詳解】解:A、把(0,0)代入y=2x-5得:左邊=0,右邊=2×(0-1)-5=-5,左邊≠右邊,故A選項錯誤;
B、把(,-4)代入y=2x-5得:左邊=-4,右邊=2×-5=-4,左邊=右邊,故B選項正確;
C、把(3,-1)代入y=2x-5得:左邊=-1,右邊=2×3-5=1,左邊≠右邊,故C選項錯誤;
D、把(-5,0)代入y=2x-5得:左邊=0,右邊=2×(-5)-5=-15,左邊≠右邊,故D選項錯誤.
故選:B.【題目點撥】本題主要考查對一次函數(shù)圖象上點的坐標特征的理解和掌握,能根據(jù)點的坐標判斷是否在函數(shù)的圖象上是解此題的關(guān)鍵.6、B【解題分析】
根據(jù)一元二次方程的定義和判別式的意義得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再求出兩不等式的公共部分得到a≤且a≠6,然后找出此范圍內(nèi)的最大整數(shù)即可.【題目詳解】根據(jù)題意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,解得a≤且a≠6,所以整數(shù)a的最大值為5.故選B.【題目點撥】本題考查一元二次方程的定義和跟的判別式,一元二次方程的二次項系數(shù)不能為0;當一元二次方程有實數(shù)根時,△≥0.7、A【解題分析】
A選項:y=-0.1x,符合正比例函數(shù)的含義,故本選項正確.
B選項:y=2x2,自變量次數(shù)不為1,故本選項錯誤;
C選項:y2=4x,y不是x的函數(shù),故本選項錯誤;
D選項:y=2x+1是一次函數(shù),故本選項錯誤;
故選A.8、B【解題分析】
根據(jù)平行四邊形的性質(zhì)可得出CD=AB=、∠D=∠CAD=45°,由等角對等邊可得出AC=CD=,再利用勾股定理即可求出BC的長度.【題目詳解】∵四邊形ABCD是平行四邊形,∴CD=AB=,BC=AD,∠D=∠ABC=∠CAD=45°,∴AC=CD=,∠ACD=90°,即△ACD是等腰直角三角形,∴BC=AD==1.故選:B.【題目點撥】本題考查了平行四邊形的性質(zhì)、等腰三角形的性質(zhì)以及勾股定理,根據(jù)平行四邊形的性質(zhì)結(jié)合∠ABC=∠CAD=45°,找出△ACD是等腰直角三角形是解題的關(guān)鍵.9、D【解題分析】
根據(jù)分母中是否含有未知數(shù)解答,如果分母含有未知數(shù)是分式,如果分母不含未知數(shù)則不是分式.【題目詳解】-3x,,-的分母中均不含未知數(shù),因此它們是整式,不是分式,,,,分母中含有未知數(shù),因此是分式,∴分式共有4個,故選D.【題目點撥】本題考查的是分式的定義,在解答此題時要注意分式是形式定義,只要是分母中含有未知數(shù)的式子即為分式.10、A【解題分析】
根據(jù)眾數(shù)與中位數(shù)的定義分別進行解答即可.【題目詳解】由于共有7個數(shù)據(jù),則中位數(shù)為第4個數(shù)據(jù),即中位數(shù)為7,
這組數(shù)據(jù)中出現(xiàn)次數(shù)最多的是7分,一共出現(xiàn)了3次,則眾數(shù)為7,
故選:A.【題目點撥】考查了眾數(shù)與中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會出錯;眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).二、填空題(每小題3分,共24分)11、1【解題分析】
由四邊形ABCD是平行四邊形,根據(jù)平行四邊形的對邊相等,可得BC=AD=8,又由點E、F分別是BD、CD的中點,利用三角形中位線的性質(zhì),即可求得答案.【題目詳解】解:∵四邊形ABCD是平行四邊形,
∴BC=AD=8,
∵點E、F分別是BD、CD的中點,
∴EF=BC=×8=1.故答案為1.【題目點撥】此題考查了平行四邊形的性質(zhì)與三角形中位線的性質(zhì).熟練掌握相關(guān)性質(zhì)是解題關(guān)鍵.12、且【解題分析】
結(jié)合二次根式和分式有意義的條件,列式求解即可得到答案;【題目詳解】解:∵代數(shù)式有意義,∴,解得:且,故答案為:且.【題目點撥】本題主要考查了二次根式和分式有意義的條件;對于二次根式,被開方數(shù)不能為負;對于分式,分母不能為0;掌握這兩個知識點是解題的關(guān)鍵.13、1【解題分析】
利用加權(quán)平均數(shù)的公式直接計算.用80分,90分分別乘以它們的百分比,再求和即可.【題目詳解】小海這學期的體育綜合成績=(80×40%+90×60%)=1(分).故答案為1.14、-2<m<1【解題分析】
解:由已知得:,解得:-2<m<1.故答案為:-2<m<1.15、2y=-1【解題分析】
(1)先根據(jù)反比例函數(shù)的對稱性及等腰直角三角形的性質(zhì)可得OC=OA=OB,利用勾股定理求出AO的長為m2+1m2(2)先證明△AOD≌△COE可得AD=CE,OD=OE,然后根據(jù)點C的坐標表示出A的坐標,再由反比例函數(shù)的圖象與性質(zhì)即可求出y與x的函數(shù)解析式.【題目詳解】解:(1)連接OC,過點A作AD⊥y軸,如圖,,
∵A是雙曲線y=1x在第一象限的分支上的一個動點,延長AO交另一分支于點B∴OA=OB,∵△ABC是等腰直角三角形,∴OC=OA=OB,∴當OA的長最短時,OC的長為點C與原點O的最短距離,設(shè)A(m,1m∴AD=m,OD=1m∴OA=AD2+OD2∵m-1∴當m-1m2=0∴點C與原點O的最短距離為2.故答案為2;(2)過點C作x軸的垂線,垂足為E,如上圖,∴∠ADO=∠CEO=90°,∵△ABC是等腰直角三角形,∴OC=OA=OB,OC⊥AB,∴∠COE+∠AOE=90°,∵∠AOD+∠AOE=90°,∴∠AOD=∠COE,∴△AOD≌△COE(AAS),∴AD=CE,OD=OE,∵點C的坐標為(x,y)(x>0),∴OE=x,CE=-y,∴OD=x,AD=-y,∴點A的坐標為(-y,x),∵A是雙曲線y=1∴x=1-y,即∴y關(guān)于x的函數(shù)關(guān)系式為y=-1x(x>0故答案為y=-1x(x>0【題目點撥】本題考查了反比例函數(shù)的綜合應(yīng)用及等腰直角三角形的性質(zhì),全等三角形的判定與性質(zhì).利用配方法求出AO的長的最小值是解題的關(guān)鍵.16、5【解題分析】
由條件可先求得MN=AP,則可確定出當P點運動到點C時,PA有最大值,即可求得MN的最大值【題目詳解】∵M為AE中點,N為EP中點∴MN為△AEP的中位線,∴MN=AP若要MN最大,則AP最大.P在CD上運動,當P運動至點C時PA最大,此時PA=CA是矩形ABCD的對角線AC==10,MN的最大值=AC=5故答案為5【題目點撥】此題考查了三角形中位線定理和矩形的性質(zhì),解題關(guān)鍵在于先求出MN=AP17、6【解題分析】
設(shè)甲種汽車安排x輛,則乙種汽車安排10-x輛,根據(jù)兩輛汽車載重不少于46噸建立不等式求出其解,即可得出答案.【題目詳解】解:設(shè)甲種汽車安排x輛,則乙種汽車安排10-x輛,根據(jù)題意可得:5x+4(10-x)≥46解得:x≥6因此甲種汽車至少應(yīng)安排6輛.【題目點撥】本題主要考查了一元一次不等式的應(yīng)用,關(guān)鍵是以載重不少于46噸作為不等量關(guān)系列出方程求解.18、(n﹣2)(n﹣m).【解題分析】
用提取公因式法分解因式即可.【題目詳解】n(n﹣2)+m(2﹣n)=n(n﹣2)-m(n-2)=(n﹣2)(n﹣m).故答案為(n﹣2)(n﹣m).【題目點撥】本題考查了用提公因式法進行因式分解;一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.三、解答題(共66分)19、【解題分析】
分別求出每一個不等式的解集,根據(jù)口訣:同大取大、同小取小、大小小大中間找、大大小小無解了,確定不等式組的解集.【題目詳解】解:由(1)得:由(2)得:,所以,原不等式組的解為:【題目點撥】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎(chǔ),熟知“同大取大;同小取??;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.20、(1)S四邊形ABCD;(2)見詳解;(1)S四邊形ABCD;(4)AEO,OEB;(5)見詳解;(6);(7)【解題分析】
(1)先證四邊形AEBO,四邊形BFCO,四邊形CGDO,四邊形DHAO都是平行四邊形,可得S△ABO=S四邊形AEBO,S△BCO=S四邊形BFCO,S△CDO=S四邊形CGDO,SADO=S四邊形DHAO,即可得出結(jié)論;(2)證明,和,,即可得出結(jié)論;(1)由,可得S四邊形MNHE=S△ABD,S四邊形MNGF=S△CBD,即可得出結(jié)論;(4)有旋轉(zhuǎn)的定義即可得出結(jié)論;(5)先證,得到,再證,即可得出結(jié)論;(6)應(yīng)用方法1,過點H作HM⊥EF與點M,再計算即可得出答案;(7)應(yīng)用方法1,過點O作OM⊥IK與點M,再計算即可得出答案.【題目詳解】解:方法一:如圖,∵EF∥AC∥HD,EH∥DB∥FG,∴四邊形AEBO,四邊形BFCO,四邊形CGDO,四邊形DHAO都是平行四邊形,∴S△ABO=S四邊形AEBO,S△BCO=S四邊形BFCO,S△CDO=S四邊形CGDO,SADO=S四邊形DHAO,∴.故答案為.方法二:如圖,連接.(1),分別為,中點..,分別為,中點.,四邊形為平行四邊形(2),分別為,中點..∴S四邊形MNHE=S△ABD,S四邊形MNGF=S△CBD,∴故答案為.方法1.(1)有旋轉(zhuǎn)可知;.故答案為∠AEO;∠OEB.(2)證明:有旋轉(zhuǎn)知..旋轉(zhuǎn).四邊形為平行四邊形應(yīng)用1:如圖,應(yīng)用方法1,過點H作HM⊥EF與點M,∵,∴∠AEM=60°,∠EHM=10°,∵,,∴EM=1,EH=6,EF=8,∴HM==,∴=EF·HM=24∴=,故答案為.應(yīng)用2:如圖,應(yīng)用方法1,過點O作OM⊥IK與點M,,∵,∴∠MIO=60°,∠IOM=10°,∵,,∴IM=1,OI=6,IK=8,∴OM==,∴=KI·OM=24∴S四邊形ABCD=,故答案為.【題目點撥】此題主要考查了平行四邊形的判定與性質(zhì),旋轉(zhuǎn),三角形的中位線,三角形和平行四邊形的面積,選擇合適的方法來求面積是解決問題的關(guān)鍵.21、(1)證明見解析;(2)若∠ADB是直角,則四邊形BEDF是菱形,理由見解析.【解題分析】
(1)由四邊形ABCD是平行四邊形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分別為邊AB、CD的中點,可證得AE=CF,然后由SAS,即可判定△ADE≌△CBF;(2)先證明BE與DF平行且相等,然后根據(jù)一組對邊平行且相等的四邊形是平行四邊形證明四邊形BEDF是平行四邊形,再連接EF,可以證明四邊形AEFD是平行四邊形,所以AD∥EF,又AD⊥BD,所以BD⊥EF,根據(jù)菱形的判定可以得到四邊形是菱形.【題目詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AD=BC,AB=CD,∠A=∠C,∵E、F分別為邊AB、CD的中點,∴AE=AB,CF=CD,∴AE=CF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)若∠ADB是直角,則四邊形BEDF是菱形,理由如下:解:由(1)可得BE=DF,又∵AB∥CD,∴BE∥DF,BE=DF,∴四邊形BEDF是平行四邊形,連接EF,在?ABCD中,E、F分別為邊AB、CD的中點,∴DF∥AE,DF=AE,∴四邊形AEFD是平行四邊形,∴EF∥AD,∵∠ADB是直角,∴AD⊥BD,∴EF⊥BD,又∵四邊形BFDE是平行四邊形,∴四邊形BFDE是菱形.【題目點撥】1、平行四邊形的性質(zhì);2、全等三角形的判定與性質(zhì);3、菱形的判定22、(1)該班學生讀書冊數(shù)的平均數(shù)為冊.(2)該班學生讀書冊數(shù)的中位數(shù)為冊.【解題分析】
(1)根據(jù)平均數(shù)=讀書冊數(shù)總數(shù)÷讀書總?cè)藬?shù),求出該班同學讀書冊數(shù)的平均數(shù);(2)將圖表中的數(shù)據(jù)按照從小到大的順序排列,再根據(jù)中位數(shù)的概念求解即可.【題目詳解】解:該班學生讀書冊數(shù)的平均數(shù)為:冊,答:該班學生讀書冊數(shù)的平均數(shù)為冊.將該班學生讀書冊數(shù)按照從小到大的順序排列,由圖表可知第20名和第21名學生的讀書冊數(shù)分別是6冊和7冊,故該班學生讀書冊數(shù)的中位數(shù)為:冊.答:該班學生讀書冊數(shù)的中位數(shù)為冊.【題目點撥】本題考查了中位數(shù)和平均數(shù)的知識,解答本題的關(guān)鍵在于熟練掌握求解平均數(shù)的公式和中位數(shù)的概念:將一組數(shù)據(jù)按照從小到大(或從大到小)的順序排列,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù);如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).23、(1)P(﹣4,6);(2);(3)【解題分析】
(1)利用∠PAO=∠POA得出PA=PO,進而得出AE=EO=4,即可得出P點坐標;(2)首先得出Rt△OCQ≌Rt△OC'Q(HL),進而利用平行線的性質(zhì)求出∠POQ=∠PQO,即可得出BP=PO,再利用勾股定理得出PQ的長,進而求出△OPQ的面積;(3)先構(gòu)造一組手拉手的相似三角形,將CM的長轉(zhuǎn)化為,然后通過垂線段最短及全等三角形求解即可.【題目詳解】解:如圖1,過點P作PE⊥AO于點E,∵,∴AO=8,∵∠PAO=∠POA∴PA=PO,∵PE⊥AO,∴AE=EO=4,∴P(﹣4,6);(2)如圖2,在Rt△OCQ和Rt△OC'Q中,,∴Rt△OCQ≌Rt△OC'Q(HL),∴∠OQC=∠OQC',又∵OP∥C'Q,∵∠POQ=∠OQC',∴∠POQ=∠PQO,∴PO=PQ,∵點P為BQ的中點,∴BP=QP,∴設(shè)BP=OP=x,在Rt△OPC中,OP2=PC2+OC2,∴x2=(8﹣x)2+62,解得:x=.故S△OPQ=×CO×PQ=×6×=.(3)如圖3,連接CM、AC,在AC的右側(cè)以AC為腰,∠ACG為直角作等腰直角三角形ACG,連接QG,∵△AMQ與△ACG為等腰直角三角形,∴,∠MAQ=∠CAG=45°,∴,∠MAC=∠QAG∴△MAC∽△QAC,∴,∴,∵點Q在直線BC上,∴當GQ⊥BC時,GQ取得最小值,如圖3,作GH⊥BC,則GQ的最小值為線段GH的長,∵∠ACG=∠B=90°,∴∠ACB+∠GCH=∠ACB+∠BAC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年戶內(nèi)木門原材進口與加工合作采購合同
- 2025年度購物體驗店租賃管理合同范本
- 2025年度國際物流運輸服務(wù)國際貨物買賣合同規(guī)范
- 2025年度股票代持信托服務(wù)合同(專項)
- 2025年度羊毛產(chǎn)業(yè)綠色生產(chǎn)與循環(huán)經(jīng)濟合作合同
- 2025年度高性能合金熱處理外協(xié)加工服務(wù)合同
- 2025年度互聯(lián)網(wǎng)廣告合同管理與效果評估服務(wù)合同
- 2025年地暖裝修與室內(nèi)照明系統(tǒng)合同范本
- 2025年度花卉苗木種植基地節(jié)水灌溉系統(tǒng)采購合同
- 2025年度二手車融資租賃合同范本及還款計劃2篇
- 2024年北京東城社區(qū)工作者招聘筆試真題
- 黑龍江省哈爾濱市2024屆中考數(shù)學試卷(含答案)
- 高三日語一輪復(fù)習助詞「と」的用法課件
- 無子女離婚協(xié)議書范文百度網(wǎng)盤
- 一年級數(shù)學個位數(shù)加減法口算練習題大全(連加法-連減法-連加減法直接打印版)
- 五年級上冊數(shù)學試題試卷(8篇)
- 五年級上冊小數(shù)遞等式計算200道及答案
- 冀教版五年級下冊數(shù)學全冊教學課件
- T-SDASTC 006-2023 眩暈病中西醫(yī)結(jié)合基層診療指南
- 安全個人承諾書范文個人承諾書范文
- 遠視儲備培訓課件
評論
0/150
提交評論