版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
內(nèi)蒙古包頭市2023年中考數(shù)學試卷一、選擇題:本大題共有10小題,每小題3分,共30分。每小題只有一個正確選項,請將答題卡上對應題目的答案標號涂黑。1.下列各式計算結果為的是()A. B. C. D.【解析】【解答】解:A、,A不符合題意;
B、,B不符合題意;
C、,C符合題意;
D、,D不符合題意;
故答案為:C.
(2)同底數(shù)冪的除法,底數(shù)不變,指數(shù)相減;
(3)同底數(shù)冪的乘法,底數(shù)不變,指數(shù)相加;
(4)負次冪等于正次冪的倒數(shù).2.關于的一元一次不等式的解集在數(shù)軸上的表示如圖所示,則的值為()A.3 B.2 C.1 D.0【解析】【解答】解:由得,x≤m+1,
由數(shù)軸知,不等式的解集為x≤3,
∴m+1=3,解得m=2.
故答案為:B.
3.定義新運算“”,規(guī)定:,則的運算結果為()A.-5 B.-3 C.5 D.3【解析】【解答】解:∵,
∴,
故答案為:D.
,代入計算即可。4.如圖,直線,直線與直線a,b分別相交于點A,B,點在直線上,且,若,則的度數(shù)為()A. B. C. D.【解析】【解答】解:∵CA=CB,∠1=32°,
∴
∵a∥b,
∴∠2=∠ABC=74°.
故答案為:C.
5.幾個大小相同的小正方體搭成幾何體的俯視圖如圖所示,圖中小正方形中數(shù)字表示對應位置小正方體的個數(shù),該幾何體的主視圖是()A. B.C. D.【解析】【解答】解:觀察圖形可知,該幾何體的主視圖有3列,從左到右正方形的個數(shù)分別為1、2、2,即故選:D.6.從1,2,3這三個數(shù)中隨機抽取兩個不同的數(shù),分別記作和.若點的坐標記作,則點在雙曲線上的概率是()A. B. C. D.【解析】【解答】解:從1,2,3這三個數(shù)中隨機抽取兩個不同的數(shù),點A的坐標共有6種情況:(1,2),(2,1),(1,3),(3,1),(2,3),(3,2),并且它們出現(xiàn)的可能性相等,點A坐標在雙曲線上有2種情況:(2,3),(3,2),所以,點在雙曲線上的概率為.故答案為:A.上的概率。7.下圖源于我國漢代數(shù)學家趙爽的弦圖,它是由四個全等直角三角形與一個小正方形拼成的一個大正方形.若小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為,則的值為()A. B. C. D.【解析】【解答】解:∵小正方形的面積為1,大正方形的面積為25,
∴小正方形的邊長是1,大正方形的邊長是5,設直角三角形較短的直角邊為a,則較長的直角邊為a+1,其中a>0,
由勾股定理得,a2+(a+1)2=52,
解得,a1=3,a2=-4(舍去),
∴a=3,
∴.
故答案為:D.8.在平面直角坐標系中,將正比例函數(shù)的圖象向右平移3個單位長度得到一次函數(shù)的圖象,則該一次函數(shù)的解析式為()A. B. C. D.【解析】【解答】解:正比例函數(shù)的圖象向右平移3個單位長度得到y(tǒng)=-2(x-3),
∴y=-2x+6.
故答案為:B.
9.如圖,是銳角三角形ABC的外接圓,,垂足分別為D,E,F(xiàn),連接DE,EF,F(xiàn)D.若的周長為21,則EF的長為()A.8 B.4 C.3.5 D.3【解析】【解答】解:∵OD⊥AB,OE⊥BC,OF⊥AC,∴AD=BD,AF=CF,BE=CE,∴DE,DF,EF是△ABC的中位線,∴,,,∴,∵DE+DF=6.5,∴EF=4,故選:B.10.如圖,在平面直角坐標系中,三個頂點的坐標分別為,,,與關于直線OB對稱,反比例函數(shù)的圖象與交于點.若,則的值為()A. B. C. D.【解析】【解答】解:如圖,作BD⊥x軸于點D,
∵,,,
∴,BD=1,,
∴
∴tan∠BOD=tan∠BAD=,
∴,∠BOD=∠BAD=30°,
∴∠OBD=60°,∠OBA=120°,
∵與關于直線OB對稱,
∴∠OBA'=∠OBA=120°,
∴∠OBA'+∠OBD=180°,
∴A'、B、D共線,∵A‘B=AB=2,A‘C=BC,∴BC=1,CD=2,
∴C的坐標為,
∵反比例函數(shù)的圖象與交于點
∴.
故答案為:A.二、填空題:本大題共有6小題,每小題3分,共18分。請將答案填在答題卡上對應的橫線上。11.若a,b為兩個連續(xù)整數(shù),且,則.【解析】【解答】解:∵1<3<4,
∴,
∴a=1,b=2,
∴a+b=3,
故答案為:3.
在1和2之間,從而得出a和b的值,計算出a+b的值。12.若是一元二次方程的兩個實數(shù)根,則.【解析】【解答】解:∵是一元二次方程的兩個實數(shù)根,
∴x1+x2=2,x1x2=-8,
∴,
故答案為:.
1+x2=2,x1x2=-8,再代入求得的值.13.如圖,正方形ABCD的邊長為2,對角線AC,BD相交于點,以點為圓心,對角線BD的長為半徑畫弧,交BC的延長線于點,則圖中陰影部分的面積為.【解析】【解答】解:∵四邊形ABCD是正方形,∴AO=CO,BO=DO,AD=CD,∠DBE=45°,∴△AOD≌△COB(SSS),∵正方形ABCD的邊長為2,∴,∴陰影部分的面積為扇形BED的面積,即.故答案為:π14.已知二次函數(shù),若點在該函數(shù)的圖象上,且,則的值為.【解析】【解答】解:∵P(m,3)在二次函數(shù)圖象上,
∴-am2+2am+3=3,
∴-am(m-2)=0,
∵a>0,m≠0,
∴m-2=0,
∴m=2.
故答案為:2.
15.如圖,在Rt中,,將繞點逆時針方向旋轉,得到.連接,交AC于點,則的值為.【解析】【解答】解:如圖,作DE⊥AB于點E,
∵∠ACB=90°,AC=3,BC=1,
∴,
∵△ABC繞點A逆時針方向旋轉90°,
∴,∠BAB'=90°,
∴∠ABB'=45°,∵DE⊥AB,∠DEB=45°,∴△DFB是等腰直角三角形,∴DE=BE,∵∠EAD=∠CAB,∠DEA=∠BCA=90°,
∴△ADE∽△ABC,
∴,
∴AE=3DE=3BE,
∴AB=4DE,
∴,
∴,
∴,
∴,
∴.
故答案為:5..16.如圖,AC,AD,CE是正五邊形ABCDE的對角線,AD與CE相交于點.下列結論:
①CF平分;②;③四邊形ABCF是菱形;④
其中正確的結論是.(填寫所有正確結論的序號)【解析】【解答】解:①∵五邊形ABCDE是正五邊形,
∴AB=BC=CD=DE=AE,,
∴在△ABC中,AB=BC,∠ABC=108°,
∴∠ACB=∠BAC=36°,
同理,∠DCE=36°,
∴∠ACE=∠BCD-∠ACB-∠DCE=108°-36°-36°=36°,
∴∠ACE=∠DCE,
∴CF平分∠ACD,
故①正確;
②∵∠CED=∠ACE=36°,
∴AC∥DE,
∴,
∵AC≠2AB,
∴AF≠2DF,
故②不正確;
③∵AB=BC,AE=ED,∠ABC=∠AED=108°,
∴∠BAC=36°,∠EAD=36°,
∴∠CAD=36°,
∴∠ACB=∠CAD,
∴BC∥AF,
同理,AB∥CF,∴四邊形ABCF是平行四邊形,又∵AB=BC∴四邊形ABCF是菱形,
故③正確;
④∵∠ADE=∠CED=36°,∠EAD=∠ADE=36°,
∴△ADE∽△DEF,
∴,
∴,
∵AB=DE,
∴.故④正確;
故答案為:①③④.
(2)利用三角形相似得到,再判斷比值不能是2;
(3)先證明四邊形ABCF是平行四邊形,再利用菱形定義判斷四邊形ABCF是菱形;
(4)利用△ADE∽△DEF得到,從而得出。三、解答題:本大題共有7小題,共72分。請將必要的文字說明、計算過程或推理過程寫在答題卡的對應位置。17.(1)先化簡,再求值:,其中.(2)解方程:.【解析】
(2)按照解分式方程的步驟進行計算即可.18.在推進碳達峰、碳中和進程中,我國新能源汽車產(chǎn)銷兩旺,連續(xù)8年保持全球第一.圖為我國某自主品牌車企2022年下半年新能源汽車的月銷量統(tǒng)計圖.請根據(jù)所給信息,解答下列問題:(1)通過計算判斷該車企2022年下半年的月均銷量是否超過20萬輛;(2)通過分析數(shù)據(jù)說明該車企2022年下半年月銷量的特點(寫出一條即可),并提出一條增加月銷量的合理化建議.【解析】
(2)利用條形統(tǒng)計圖的數(shù)據(jù)從中位數(shù)、銷售量、月均銷量、極值等方面選擇一種合理闡述即可。19.為了增強學生體質、針煉學生意志,某校組織一次定向越野拉練活動.如圖,A點為出發(fā)點,途中設置兩個檢查點,分別為點和點,行進路線為.點在點的南偏東方向處,點在點的北偏東方向,行進路線AB和BC所在直線的夾角為.⑴求行進路線BC和CA所在直線的夾角的度數(shù);⑵求檢查點和之間的距離(結果保留根號).【解析】
(2)過點A作AD⊥BC于點D,在△ABD中,利用45°的三角函數(shù)求出AD和BD長,在△ACD中,利用60°的三角函數(shù)求出CD長,進而得出BC的長.20.隨著科技的發(fā)展,掃地機器人已廣泛應用于生活中。某公司推出一款新型掃地機器人,經(jīng)統(tǒng)計該產(chǎn)品2022年每個月的銷售情況發(fā)現(xiàn),每臺的銷售價格隨銷售月份的變化而變化.設該產(chǎn)品2022年第(為整數(shù))個月每臺的銷售價格為(單位:元),與的函數(shù)關系如圖所示(圖中ABC為一折線).
(1)當1≤≤10時,求每臺的銷售價格與之間的函數(shù)關系式;(2)設該產(chǎn)品2022年第個月的銷售數(shù)量為(單位:萬臺),與的關系可以用來描述.求哪個月的銷售收入最多,最多為多少萬元?(銷售收入=每臺的銷售價格銷售數(shù)量)【解析】與之間的函數(shù)關系式為,利用待定系數(shù)法求出表達式即可;
(2)根據(jù)銷售收入=每臺的銷售價格銷售數(shù)量,設銷售收入為萬元,分別求出1≤x≤10和10<x≤12時w的函數(shù)關系式,再利用二次函數(shù)和一次函數(shù)的性質,分別求出最大銷售收入,比較得到第5個月的銷售收入最多.21.如圖,AB是的直徑,AC是弦,是上一點,是AB延長線上一點,連接AD,DC,CP.(1)求證:∠ADC-∠BAC=90°;(請用兩種證法解答)(2),的半徑為,求AP的長.【解析】(2)由∠ACP=∠ADC以及OA=OC,再結合(1)的結論,得出∠OCP=90°,利用勾股定理求出OP的長,從而得出AP的長.22.如圖,在菱形ABCD中,對角線AC,BD相交于點,點P,Q分別是邊BC,線段OD上的點,連接AP,QP,AP與OB相交于點.(1)如圖1,連接QA.當時,試判斷點是否在線段PC的垂直平分線上,并說明理由;(2)如圖2,,且,①求證:;②當時,設,求PQ的長(用含a的代數(shù)式表示).【解析】
(2)①根據(jù)菱形的性質得出AB=BC=CD=DA,再由各角之間的關系得∠BAP=∠ABD=∠CBD=30°,由含30度角的直角三角形的性質求解即可;
②連接QC.利用等邊三角形的判定和性質得出AE=2a,AP=3a,再由正切函數(shù)及全等三角形的判定和性質及勾股定理求解即可.23.如圖,在平面直角坐標系中,拋物線交軸于點,直線交拋物線于B,C兩點(點B在點的左側),交軸于點,交軸于點.(1)求點D,E,C的坐標;(2)F是線段OE上一點,連接AF,DF,CF,且.①求證:是直角三角形;②的平分線FK交線段DC于點K,P是直線BC上方拋物線上一動點,當時,求點的坐標.【解析】,求出點D、E的坐標,根據(jù)直線與二次函數(shù)交于點C,聯(lián)立求出點C的坐標;(2)①設F(m,0),由勾股定理得出AF2和EF2的表
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45111-2024保護層分析(LOPA)、安全完整性等級(SIL)定級和驗證質量控制導則
- BIM工程師-全國《BIM應用技能資格》考前沖刺2
- 浙江省溫州市龍港市2024年中考數(shù)學二模試題附答案
- 電子政務提高公共服務效率
- 幼兒園大班數(shù)學測試題
- 高一化學教案:第二單元化學反應中的熱量
- 2024高中地理第1章區(qū)域地理環(huán)境與人類活動第4節(jié)第1課時資源跨區(qū)域調(diào)配精練含解析湘教版必修3
- 2024高中語文第6單元墨子蚜第1課兼愛訓練含解析新人教版選修先秦諸子蚜
- 2024高中語文第六單元文無定格貴在鮮活種樹郭橐駝傳作業(yè)含解析新人教版選修中國古代詩歌散文欣賞
- 2024高考化學一輪復習第一部分考點10氯及其化合物強化訓練含解析
- 2025湖北襄陽市12345政府熱線話務員招聘5人高頻重點提升(共500題)附帶答案詳解
- 2025年河北省職業(yè)院校技能大賽智能節(jié)水系統(tǒng)設計與安裝(高職組)考試題庫(含答案)
- 2024年下半年鄂州市城市發(fā)展投資控股集團限公司社會招聘【27人】易考易錯模擬試題(共500題)試卷后附參考答案
- GB/T 29498-2024木門窗通用技術要求
- 《職業(yè)院校與本科高校對口貫通分段培養(yǎng)協(xié)議書》
- 人教版(2024)英語七年級上冊單詞表
- 中醫(yī)養(yǎng)生產(chǎn)業(yè)現(xiàn)狀及發(fā)展趨勢分析
- 2023年浙江省溫州市中考數(shù)學真題含解析
- 司庫體系建設
- 居間合同范本解
- 機電傳動單向數(shù)控平臺-礦大-機械電子-有圖
評論
0/150
提交評論