




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
朽木易折,金石可鏤。千里之行,始于足下。第頁/共頁第二章思量題1試寫出導(dǎo)熱傅里葉定律的普通形式,并說明其中各個(gè)符號的意義。答:傅立葉定律的普通形式為:,其中:為空間某點(diǎn)的溫度梯度;是通過該點(diǎn)的等溫線上的法向單位矢量,指向溫度升高的方向;為該處的熱流密度矢量。2已知導(dǎo)熱物體中某點(diǎn)在x,y,z三個(gè)方向上的熱流密度分離為及,如何獲得該點(diǎn)的熱密度矢量?答:,其中分離為三個(gè)方向的單位矢量量。3試說明得出導(dǎo)熱微分方程所根據(jù)的基本定律。答:導(dǎo)熱微分方程式所根據(jù)的基本定律有:傅立葉定律和能量守恒定律。4試分離用數(shù)學(xué)語言將傳熱學(xué)術(shù)語說明導(dǎo)熱問題三種類型的邊界條件。答:①第一類邊界條件:②第二類邊界條件:③第三類邊界條件:5試說明串聯(lián)熱阻疊加原則的內(nèi)容及其使用條件。答:在一個(gè)串聯(lián)的熱量傳遞過程中,倘若通過每個(gè)環(huán)節(jié)的熱流量都相同,則各串聯(lián)環(huán)節(jié)的總熱阻等于各串聯(lián)環(huán)節(jié)熱阻的和。使用條件是對于各個(gè)傳熱環(huán)節(jié)的傳熱面積必須相等。7.通過圓筒壁的導(dǎo)熱量僅與內(nèi)、外半徑之比有關(guān)而與半徑的絕對值無關(guān),而通過球殼的導(dǎo)熱量計(jì)算式卻與半徑的絕對值有關(guān),怎樣理解?答:因?yàn)橥ㄟ^圓筒壁的導(dǎo)熱熱阻僅和圓筒壁的內(nèi)外半徑比值有關(guān),而通過球殼的導(dǎo)熱熱阻卻和球殼的絕對直徑有關(guān),所以絕對半徑不同時(shí),導(dǎo)熱量不一樣。6發(fā)生在一個(gè)短圓柱中的導(dǎo)熱問題,在下列哪些情形下可以按一維問題來處理?答:當(dāng)采用圓柱坐標(biāo)系,沿半徑方向的導(dǎo)熱就可以按一維問題來處理。8擴(kuò)展表面中的導(dǎo)熱問題可以按一維問題來處理的條件是什么?有人認(rèn)為,只要擴(kuò)展表面細(xì)長,就可按一維問題來處理,你愿意這種觀點(diǎn)嗎?答:只要滿意等截面的直肋,就可按一維問題來處理。不肯意,因?yàn)楫?dāng)擴(kuò)展表面的截面不均時(shí),不同截面上的熱流密度不勻稱,不可看作一維問題。9肋片高度增強(qiáng)引起兩種效果:肋效率下降及散熱表面積增強(qiáng)。因而有人認(rèn)為,隨著肋片高度的增強(qiáng)會浮上一個(gè)臨界高度,超過這個(gè)高度后,肋片導(dǎo)熱熱數(shù)流量反而會下降。試分析這一觀點(diǎn)的準(zhǔn)確性。答:錯(cuò)誤,因?yàn)楫?dāng)肋片高度達(dá)到一定值時(shí),通過該處截面的熱流密度為零。通過肋片的熱流已達(dá)到最大值,不會因?yàn)楦叨鹊脑鰪?qiáng)而發(fā)生變化。10在式(2-57)所給出的分析解中,不浮上導(dǎo)熱物體的導(dǎo)熱系數(shù),請你提供理論根據(jù)。答:因?yàn)槭剑?-57)所描述的問題為穩(wěn)態(tài)導(dǎo)熱,且物體的導(dǎo)熱系數(shù)沿x方向和y方向的數(shù)值相等并為常數(shù)。11有人對二維矩形物體中的穩(wěn)態(tài)無內(nèi)熱源常物性的導(dǎo)熱問題舉行了數(shù)值計(jì)算。矩形的一個(gè)邊絕熱,其余三個(gè)邊均與溫度為的流體發(fā)生對流換熱。你能預(yù)測他所得的溫度場的解嗎?答:能,因?yàn)樵谝贿吔^熱其余三邊為相同邊界條件時(shí),矩形物體內(nèi)部的溫度分布應(yīng)為關(guān)于絕熱邊的中央線對稱分布。習(xí)題平板2-1用平底鍋燒開水,與水相接觸的鍋底溫度為111℃,熱流密度為42400。使用一段時(shí)光后,鍋底結(jié)了一層平均厚度為3mm的水垢。假設(shè)此時(shí)與水相接觸的水垢的表面溫度及熱流密度分離等于本來的值,試計(jì)算水垢與金屬鍋底接觸面的溫度。水垢的導(dǎo)熱系數(shù)取為1W/(m.K)。解:由題意得w/m2所以t=238.2℃2-2一冷藏室的墻由鋼皮礦渣棉及石棉板三層疊合構(gòu)成,各層的厚度依次為0.794mm.,152mm及9.5mm,導(dǎo)熱系數(shù)分離為45,0.07及0.1。冷藏室的有效換熱面積為37.2,室內(nèi)外氣溫分離為-2℃及30℃,室內(nèi)外壁面的表面?zhèn)鳠嵯禂?shù)可分離按1.5及2.5計(jì)算。為維持冷藏室溫度恒定,試決定冷藏室內(nèi)的冷卻排管每小時(shí)需帶走的熱量。解:由題意得==357.14W357.14×3600=1285.6KJ2-3有一厚為20mm的平板墻,導(dǎo)熱系數(shù)為1.3。為使每平方米墻的熱損失不超過1500W,在外表面上籠罩了一層導(dǎo)熱系數(shù)為0.12的保溫材料。已知復(fù)合壁兩側(cè)的溫度分離為750℃及55℃,試決定此時(shí)保溫層的厚度。解:根據(jù)題意,有,解得:2-4一烘箱的爐門由兩種保溫材料A及B組成,且(見附圖)。已知,,烘箱內(nèi)空氣溫度℃,內(nèi)壁面的總表面?zhèn)鳠嵯禂?shù)。為安全起見,希翼烘箱爐門的外表面溫度不得高于50℃。設(shè)可把爐門導(dǎo)熱作為一維問題處理,試決定所需保溫材料的厚度。環(huán)境溫度25℃,外表面總傳熱系數(shù)。解:熱損失為又℃;聯(lián)立得2-5對于無限大平板內(nèi)的一維導(dǎo)熱問題,試說明在三類邊界條件中,兩側(cè)邊界條件的哪些組合可以使平板中的溫度場獲得決定的解?解:兩側(cè)面的第一類邊界條件;一側(cè)面的第一類邊界條件和第二類邊界條件;一側(cè)面的第一類邊界條件和另一側(cè)面的第三類邊界條件;一側(cè)面的第一類邊界條件和另一側(cè)面的第三類邊界條件。平壁導(dǎo)熱2-6一火箭發(fā)動機(jī)燃燒室是直徑為130mm的圓筒體,厚2.1mm,導(dǎo)熱系數(shù)為23.2W/(m·K)。圓筒壁外用液體冷卻,外壁溫度為240℃。測得圓筒體的熱流密度為4.8×106W/㎡,其材料的最高允許溫度為700解:2-7如附圖所示的不銹鋼平底鍋置于電器灶具上被加熱,灶具的功率為1000W,其中85%用于加熱平底鍋。鍋底厚δ=3㎜,平底部分直徑d=200㎜,不銹剛的導(dǎo)熱系數(shù)λ=18W/(m·K),鍋內(nèi)湯料與鍋底的對流傳熱表面?zhèn)鳠嵯禂?shù)為2500W/(㎡·K),流體平均溫度tf=95℃解:2-8一種用比較法測定導(dǎo)熱系數(shù)裝置的原理示于附圖中。將導(dǎo)熱系數(shù)已知的標(biāo)準(zhǔn)材料與被測材料做成相同直徑的圓柱,且標(biāo)準(zhǔn)材料的兩段圓柱分離壓緊置于被測材料的兩端。在三段試樣上分離布置三對測定相等間距兩點(diǎn)間溫差的熱電偶。試樣的四面絕熱良好(圖中未示出)。已知試樣兩端的溫度分離為th=400℃、tc=300℃、Δtr=2.49℃,Δtt,1=3.56℃、Δtt,2=3.60℃,試決定被測材料的導(dǎo)熱系數(shù),并研究哪些因素會影響Δtt,1解:2-9雙層玻璃窗系由兩層厚為6mm的玻璃及其間的空氣隙所組成,空氣隙厚度為8mm。假設(shè)面向室內(nèi)的玻璃表面溫度與室外的玻璃表面溫度各為20℃及-20℃,試決定該雙層玻璃窗的熱損失。倘若采用單層玻璃窗,其他條件不變,其熱損失是雙層玻璃的多少倍?玻璃窗的尺寸為。不考慮空氣間隙中的天然對流。玻璃的導(dǎo)熱系數(shù)為0.78。解:=116.53W/所以2-10某些嚴(yán)寒地區(qū)采用三層玻璃的窗戶,如附圖所示。已知玻璃厚δg=3㎜,空氣夾層寬δair=6㎜,玻璃的導(dǎo)熱系數(shù)λg=0.8W/(m·K)。玻璃面向室內(nèi)的表面溫度ti=15℃,面向室外的表面溫度to=-10解:2-11提高燃?xì)膺M(jìn)口溫度是提高航空發(fā)動機(jī)效率的有效主意。為了是發(fā)動機(jī)的葉片能承受更高的溫度而不至于損壞,葉片均用耐高溫的合金制成,同時(shí)還提出了在葉片與高溫燃?xì)饨佑|的表面上涂以陶瓷材料薄層的主意,如附圖所示,葉片內(nèi)部通道則由從壓氣機(jī)來的空氣予以冷卻。陶瓷層的導(dǎo)熱系數(shù)為1.3W/(m·K),耐高溫合金能承受的最高溫度為1250K,其導(dǎo)熱系數(shù)為25W/(m·K)。在耐高溫合金與陶瓷層之間有一薄層粘結(jié)材料,其造成的接觸熱阻為10-4㎡·K/W。倘若燃?xì)獾钠骄鶞囟葹?700K,與陶瓷層的表面?zhèn)鳠嵯禂?shù)為1000W/(㎡·K),冷卻空氣的平均溫度為400K,與內(nèi)壁間的表面?zhèn)鳠嵯禂?shù)為500W/(㎡·K),試分析此時(shí)耐高溫合金是否可以安全地工作?解:2-12在某一產(chǎn)品的發(fā)明過程中,厚為1.0mm的基板上緊貼了一層透明的薄膜,其厚度為0.2mm。薄膜表面上有一股冷卻氣流流過,其溫度為20℃,對流換熱表面?zhèn)鳠嵯禂?shù)為40。同時(shí),有一股輻射能透過薄膜投射到薄膜與基板的結(jié)合面上,如附圖所示。基板的另一面維持在溫度℃。生成工藝要求薄膜與基板結(jié)合面的溫度℃,試決定輻射熱流密度q應(yīng)為多大?薄膜的導(dǎo)熱系數(shù),基板的導(dǎo)熱系數(shù)。投射到結(jié)合面上的輻射熱流所有為結(jié)合面所吸收。薄膜對60℃的熱輻射是不透明的。解:按照公式得2-13在附圖所示的平板導(dǎo)熱系數(shù)測定裝置中,試件厚度遠(yuǎn)小于直徑d。因?yàn)榘惭b發(fā)明不好,試件與冷熱表面之間平均存在著一層厚為的空氣隙。設(shè)熱表面溫度℃,冷表面溫度℃,空氣隙的導(dǎo)熱系數(shù)可分離按查取。試計(jì)算空氣隙的存在給導(dǎo)熱系數(shù)測定帶來的誤差。通過空氣隙的輻射換熱可以略而不計(jì)。解:查附表8得℃,℃,無空氣時(shí)有空氣隙時(shí)得所以相對誤差為圓筒體2-14外徑為100mm的蒸氣管道,籠罩密度為20的超細(xì)玻璃棉氈保溫。已知蒸氣管道外壁溫度為400℃,希翼保溫層外表面溫度不超過50℃。且每米長管道上散熱量小于163W解:保溫材料的平均溫度為t=℃由附錄7查得導(dǎo)熱系數(shù)為代入數(shù)據(jù)得到=0.314mm所以2-15外徑為50mm的蒸氣管道外,包覆有厚為40mm平均導(dǎo)熱系數(shù)為0.11的煤灰泡沫磚。絕熱層外表面溫度為50℃,試檢查礦棉渣與煤灰泡沫磚交界面處的溫度是否超過允許值?又。增強(qiáng)煤灰泡沫磚的厚度對熱損失及交界面處的溫度有什么影響?蒸氣管道的表面溫度取為400℃解:由題意多層蒸氣管總熱流量代入數(shù)據(jù)得到由附錄知粉煤灰泡沫磚材料最高允許溫度為300℃由此設(shè)在300℃時(shí)因?yàn)樗圆粫^允許溫度。當(dāng)增強(qiáng)煤灰泡沫磚的厚度會使熱損失增強(qiáng),從而邊界面處溫度下降。2-16一根直徑為3mm的銅導(dǎo)線,每米長的電阻為2.22。導(dǎo)線外包有厚為1mm導(dǎo)熱系數(shù)為0.15的絕緣層。限定絕緣層的最高溫度為65℃,最低溫度為0℃。試決定在這種條件下導(dǎo)線中允許通過的最大電流。解:按照題意有:解得:2-17一蒸汽鍋爐爐膛中的蒸發(fā)受熱面管壁受到溫度為1000℃的煙氣加熱,管內(nèi)沸水溫度為200℃,煙氣與受熱面管子外壁間的復(fù)合換熱表面?zhèn)鳠嵯禂?shù)為100,沸水與內(nèi)壁間的表面?zhèn)鳠嵯禂?shù)為5000,管壁厚6mm,管壁42,外徑為52mm。試計(jì)算下列三種情況下受熱面單位長度上的熱負(fù)荷:換熱表面是整潔的;外表面結(jié)了一層厚為1mm的煙灰,其0.08;內(nèi)表面上有一層厚為2mm的水垢,其1。解:⑴⑵⑶2-18在一根外徑為100mm的熱力管道外擬包覆兩層絕熱材料,一種材料的導(dǎo)熱系數(shù)為0.06,另一種為0.12,兩種材料的厚度都取為75mm,試比較把導(dǎo)熱系數(shù)小的材料緊貼管壁,及把導(dǎo)熱系數(shù)大的材料緊貼管壁這兩種主意對保溫效果的影響,這種影響影響對于平壁的情形是否存在?假設(shè)在兩種做法中,絕熱層內(nèi)外表面的總溫差保持不變。解:將導(dǎo)熱系數(shù)小的材料緊貼壁管將導(dǎo)熱系數(shù)大的材料緊貼壁管則故導(dǎo)熱系數(shù)大的材料緊貼管壁其保溫效果好。若為平壁,則平壁因?yàn)樗圆淮嬖诖藛栴}。2-19向來徑為30mm,壁溫為100℃的管子向溫度為20℃的環(huán)境放熱,熱損失率為100W/m。為把熱損失減少到50W/m,有兩種材料可以同時(shí)被應(yīng)用。材料A的導(dǎo)熱系數(shù)為0.5,可利用度為3.14;材料B的導(dǎo)熱系數(shù)為0.1,可利用度為4.0。試分析如何敷設(shè)這兩種材料才干達(dá)到上述要求。假設(shè)敷設(shè)這兩種材料后,外表面與環(huán)境間的表面?zhèn)鳠嵯禂?shù)與本來一樣。解:按照題意有:,解得h=13.2696按題意有:將導(dǎo)熱系數(shù)大的放在內(nèi)側(cè),,m解方程組得:②,2-20向來徑為d長為l的圓桿,兩端分離與溫度為及的表面接觸,桿的導(dǎo)熱系數(shù)為常數(shù)。試對下列兩種情形列出桿中溫度的微分方程式及邊界條件,并求解之:桿的側(cè)面是絕熱的;桿的側(cè)面與四面流體間有穩(wěn)定的對流換熱,平均表面?zhèn)鳠嵯禂?shù)為h,流體溫度小于及。解:①,,在側(cè)面絕熱時(shí),有得微分方程為:,邊界條件為:解微分方程得:②,按照條件有:得微分方程為:,邊界條件為:解微分方程得:代入邊界條件得:2-21向來徑為20mm,長300mm的鋼柱體,兩端分離與溫度為250℃及60℃的兩個(gè)熱源相接。柱體表面向溫度為30℃的環(huán)境散熱,表面?zhèn)鳠嵯禂?shù)為10。試計(jì)算該鋼柱體在單位時(shí)光內(nèi)從兩個(gè)熱源所獲得的熱量。鋼柱體的40。解:按照上題結(jié)果得:其中:=m=-1549.1=-162.89球殼2-22一個(gè)儲液氨的容器近似的看成為內(nèi)徑為300mm的圓球。球外包有厚為30mm的多層結(jié)構(gòu)的隔熱材料。隔熱材料沿半徑方向的當(dāng)量導(dǎo)熱系數(shù)為,球內(nèi)液氨的溫度為-195.6℃,室溫為25℃,液氨的相變熱為199.6kJ/kg解:2-23有一批置于室外的液化石油氣儲罐,直徑為2m,通過使制冷劑流經(jīng)罐外厚為1cm的夾層來維持罐內(nèi)的溫度為-40℃。夾層外厚為30cm的保溫層,保溫材料的導(dǎo)熱系數(shù)為0.1。在夏天的惡劣條件下,環(huán)境溫度為40℃,保溫層外表面與環(huán)境間的復(fù)合換熱表面?zhèn)鳠嵯禂?shù)可達(dá)30。試決定為維持液化氣-40℃的溫度,對10解:一個(gè)球罐熱流量為所以10個(gè)球罐熱流量為2-24顆粒狀散料的表面導(dǎo)熱系數(shù)常用圓球?qū)醿x來測定。如附圖所示內(nèi)球內(nèi)安置有一電加熱器,被測材料安裝在內(nèi)外球殼間的夾套中,外球外有一水夾層,其中通以進(jìn)口溫度恒定的冷卻水。用熱電偶測定內(nèi)球外壁及外球內(nèi)壁的平均溫度。在一次實(shí)驗(yàn)中測得以下數(shù)據(jù):℃,℃,電加熱功率P=56.5W。試決定此顆粒材料的表觀導(dǎo)熱系數(shù)。倘若因?yàn)榕紶柕氖鹿剩瑴y定外球內(nèi)壁的熱電偶線路遭到破壞,但又急于要獲得該顆粒表觀導(dǎo)熱系數(shù)的近似值,試設(shè)想一個(gè)無需修復(fù)熱電偶線路又可以獲得近似值的測試主意。球殼內(nèi)用鋁制成,其厚度約為3~4mm。解:按照題意:解得:倘若電偶損壞,可近似測量水的出入口溫度,取其平均值代替球外殼溫度計(jì)算。2-25內(nèi)外徑各為0.5m及0.6m的球罐,其中裝滿了具有一定發(fā)射性的化學(xué)廢料,其容積發(fā)熱率為。該罐被置于水流中冷卻,表面?zhèn)鳠嵯禂?shù)h=1000,流體溫度℃。試:(1)決定球罐的外表面溫度;(2)決定球罐的內(nèi)表面溫度。球罐用鉻鎳鋼鋼板制成。解:球罐的體積為:總發(fā)熱熱流為:球的外表溫度:解得:t=30.78℃2-26附圖所示儲罐用厚為20mm的塑料制成,其導(dǎo)熱系數(shù)1.5,儲罐內(nèi)裝滿工業(yè)用油,油中安置了一電熱器,使罐的內(nèi)表面溫度維持在400K。該儲罐置于25℃的空氣中,表面?zhèn)鳠嵯禂?shù)為10。。試決定所需的電加熱功率。2-27人的眼睛在完成生物功能過程中生成的熱量要通過角膜散到周圍環(huán)境中,其散熱條件與是否帶有隱性眼鏡片有關(guān),如附圖所示,設(shè)角膜及隱性鏡片均呈球狀,且兩者間接觸良好,無接觸熱阻。角膜及鏡片所張的中央角占了三分之一的球體。試決定在下列條件下不戴鏡片及戴鏡片時(shí)通過角膜的散熱量:=10mm,=12.5mm,=16.3mm,=37℃℃,=12W/(m2.K),=6W/(m2.K),=0.35W/(m.K),=0.8W/(m.K)。解:不戴鏡片所以有效熱量戴鏡片時(shí)所以即散熱量為2-28一儲存液態(tài)氣體的球形罐由薄金屬板制成,直徑為1.22m,其外包覆有厚為0.45m,導(dǎo)熱系數(shù)為0.043的軟木保溫層。液態(tài)氣體溫度為-62.2℃,與金屬殼體間換熱的表面?zhèn)鳠嵯禂?shù)為21。因?yàn)檐浤颈貙拥拿荛]性不好,大氣中的水蒸氣浸入軟木層,并在一定深度范圍內(nèi)凍結(jié)成了冰。假設(shè)軟木保溫層的導(dǎo)熱系數(shù)不受水蒸氣及所形成的冰層的影響,試決定軟木保溫層中冰層的深度。球形罐金屬殼體的熱阻可不計(jì)。在實(shí)際運(yùn)行中,因保溫層的密閉性不好而在軟木保溫層中浮上的水和冰,對球形罐的保溫性能有何影響?2-29在一電子器件中有一晶體管可視為半徑為0.1mm的半球熱源,如附圖所示。該晶體管被置于一塊很大的硅基板中。硅基板一側(cè)絕熱,其余各面的溫度均為。硅基板導(dǎo)熱系數(shù)。試導(dǎo)出硅基板中溫度分布的表達(dá)式,并計(jì)算當(dāng)晶體管發(fā)熱量為4W時(shí)晶體管表面的溫度值。提醒:相對于0.1mm這樣小的半徑,硅基板的外表面可以視為半徑趨于無窮大的球殼表面。變截面變導(dǎo)熱系數(shù)問題2-30一高為30cm的鋁制圓臺形錐臺,頂面直徑為8.2cm,底面直徑為13cm.。底面及頂面溫度各自勻稱,并分離為520℃及20℃,錐臺側(cè)面絕熱。試決定通過該錐形臺的導(dǎo)熱量。鋁的導(dǎo)熱系數(shù)為100解:按照傅利葉導(dǎo)熱公式得因?yàn)椋旱玫么霐?shù)據(jù)積分得2-31試比較附圖所示的三種一維導(dǎo)熱問題的熱流量大?。和姑驽F臺,圓柱,凹面錐臺。比較的條件是及導(dǎo)熱系數(shù)均相同。三種形狀物體的直徑與x軸的關(guān)系可統(tǒng)一為,其中a及n值如下:凸面錐臺柱體凹面錐臺a0.5060.08m20.24n0.50.01.5。解:對于變截面導(dǎo)熱凸面錐臺=柱體=凹面錐臺=由上分析得2-32某種平板材料厚25mm,兩側(cè)面分離維持在40℃及85℃。測得通過該平板的熱流量為1.82km,導(dǎo)熱面積為0.2決定在此條件下平板的平均導(dǎo)熱系數(shù)。設(shè)平板材料導(dǎo)熱系數(shù)按變化(其中t為局部溫度)。為了決定上述溫度范圍內(nèi)及b值,還需要補(bǔ)充測定什么量?給出此時(shí)決定及b的計(jì)算式。解:由得補(bǔ)充測定中央位置的溫度為又所以(1)代入數(shù)據(jù)解得(2)將(2)代入(1)得到2-33一空心圓柱,在處,處。,t為局部溫度,試導(dǎo)出圓柱中溫度分布的表達(dá)式及導(dǎo)熱量計(jì)算式。解:導(dǎo)熱微分方程式簡化為即所以即當(dāng)在處即(1)處即(2)兩個(gè)式子聯(lián)立得(1)-(2)得(3)將代入(3)得溫度表達(dá)式由傅利葉公式得2-34設(shè)一平板厚為,其兩側(cè)表面分離維持在溫度及。在此溫度范圍內(nèi)平板的局部導(dǎo)熱系數(shù)可以用直線關(guān)系式來表示。試導(dǎo)出計(jì)算平板中某處當(dāng)?shù)責(zé)崃髅芏鹊谋磉_(dá)式,并對b>0,b=0及b<0的三種情況畫出溫度分布的暗示曲線。2-35一圓筒體的內(nèi)外半徑分離為及,相應(yīng)的壁溫為及,其導(dǎo)熱系數(shù)與溫度關(guān)系可表示為的形式,式中及t均為局部值。試導(dǎo)出計(jì)算單位長度上導(dǎo)熱熱流量的表達(dá)式及導(dǎo)熱熱阻的表達(dá)式。2-36q=1000W/m的熱流沿x方向穿過厚為20mm的平板(見附圖)。已知x=0mm,10mm,20mm處的溫度分離為100℃,60℃及40℃。試據(jù)此決定材料導(dǎo)熱系數(shù)表達(dá)式(為平均溫度)中的及b。解:x=0mm,x=10mm處的平均溫度℃又所以熱量即(1)同理x=10mm,x=20mm處得(2)聯(lián)立得b=-0.0092-37設(shè)某種材料的局部導(dǎo)熱系數(shù)按的關(guān)系式來變化,對于由該材料做成的一塊厚為的無內(nèi)熱源的平板,試:導(dǎo)出利用兩側(cè)面溫度計(jì)算導(dǎo)熱量的公式;證實(shí)下列關(guān)系式成立:其中為相應(yīng)于的導(dǎo)熱系數(shù),為x處的導(dǎo)熱系數(shù)。導(dǎo)出平板中溫度沿x方向變化的下列兩個(gè)公式:2-38一厚δ的平壁,兩側(cè)面分離維持在恒定的溫度t1、t2。平壁的導(dǎo)熱系數(shù)是溫度的函數(shù):λ(t)=λ0(1+βt2)。試對穩(wěn)態(tài)導(dǎo)熱給出熱流密度的計(jì)算式。解:一維有內(nèi)熱源的導(dǎo)熱2-39試建立具有內(nèi)熱源,變截面,變導(dǎo)熱系數(shù)的一維穩(wěn)態(tài)導(dǎo)熱問題的溫度場微分方程式(參考附圖)。解:一維代入微分方程式為2-40試由導(dǎo)熱微分方程出發(fā),導(dǎo)出通過有內(nèi)熱源的空心柱體的穩(wěn)態(tài)導(dǎo)熱熱量計(jì)算式及壁中的溫度分布。為常數(shù)。解:有內(nèi)熱源空心圓柱體導(dǎo)熱系數(shù)為常數(shù)的導(dǎo)熱微分方程式為經(jīng)過積分得因?yàn)樗缘脤ζ淝髮?dǎo)得2-41決定附圖所示氧化鈾燃燃料棒的最大熱功率。已知:氧化鈾燃料棒的最高溫度不能高于1600℃,冷卻水平均溫度為110℃,表面?zhèn)鳠嵯禂?shù)為12000W/(㎡·K),氧化鈾燃料棒與包覆它的鋯錫合金層間的接觸熱阻為2.22×10-4㎡·K/W。包覆層的內(nèi)外半徑為6.1㎜及6.5㎜,氧化鈾燃料棒和鋯錫合金的導(dǎo)熱系數(shù)分離為7.9W/(m·K)、14.2W/(m·解:2-42一具有內(nèi)熱源外徑為的實(shí)心圓柱,向四面溫度為的環(huán)境散熱,表面?zhèn)鳠嵯禂?shù)為h。試列出圓柱體中穩(wěn)態(tài)溫度場的微分方程式及邊界條件,并對為常數(shù)的情形舉行求解。解:利用2-33題的結(jié)果趕緊可得溫度場應(yīng)滿意的微分方程為:(設(shè)為常數(shù)),其邊界條件為:對于為常數(shù)的情形,積分一次得:再積分一次得:由r=0,,得;由,,由此得:。2-43在一厚為2b,截面積為的金屬薄條中有電流通過。金屬條置于不導(dǎo)電的沸騰液體中。設(shè)沸騰換熱表面?zhèn)鳠嵯禂?shù)是勻稱的,金屬條的電阻率為(單位為),導(dǎo)熱系數(shù)為〔單位為〕,物性為常數(shù)。試證實(shí)該金屬條的截面平均溫度要比表面溫度高。金屬條的端部散熱不予考慮。2-44一半徑為的實(shí)心圓柱,內(nèi)熱源為,,A為常數(shù)。在處。試導(dǎo)出圓柱體中的溫度分布。解:(1)r=0,(2)(3)三式聯(lián)立總算可解得2-45一厚為的大平板具有勻稱內(nèi)熱源,X=0及X=處的表面分離與溫度為的流體舉行對流換熱,表面?zhèn)鳠嵯禂?shù)分離為h1及h2。試導(dǎo)出平板中溫度分布的解析表達(dá)式,并據(jù)此導(dǎo)出溫度最高點(diǎn)的位置。對于h1=h2,tf1=及的情形定性地畫出平板中的溫度分布曲線。2-46一厚為7cm的平壁,一側(cè)絕熱,另一側(cè)裸露于溫度為30℃的流體中,內(nèi)熱源=0.3。對流換熱表面?zhèn)鳠嵯禂?shù)為450,平壁的導(dǎo)熱系數(shù)為18。試決定平壁中的最高溫度及其位置。2-47核反應(yīng)堆的輻射防護(hù)壁因受射線的照耀而發(fā)熱,這相當(dāng)于防護(hù)壁內(nèi)有的內(nèi)熱源,其中是X=0的表面上的發(fā)熱率,a為已知常數(shù)。已知x=0處t=t1,x=處t=,試導(dǎo)出該防護(hù)壁中溫度分布的表達(dá)式及最高溫度的所在位置。導(dǎo)熱系數(shù)為常數(shù)。解:由題意導(dǎo)熱微分方程又x=0處t=t1,x=處t=積分并結(jié)合邊界條件可得令可得:當(dāng)時(shí),t最大。2-48核反應(yīng)堆中一個(gè)壓力容器的器壁可以按厚為的大平壁處理。內(nèi)表面(x=0處)絕熱,外表面維持在恒定溫度。射線對該容器的加熱條件作用可以用一個(gè)當(dāng)量熱源來表示,且,a為常數(shù),x是從加熱表面起算的距離。在穩(wěn)態(tài)條件下,試:導(dǎo)出器壁中溫度分布的表達(dá)式。決定x=0處的溫度。決定x=處的熱流密度。解:(1)邊界條件r=0,(2)(3)三式聯(lián)立得x=0時(shí);當(dāng)x=時(shí),所以2-49一半徑為的長導(dǎo)線具有勻稱內(nèi)熱源,導(dǎo)熱系數(shù)為。導(dǎo)線外包有一層絕緣材料,其外半徑為,導(dǎo)熱系數(shù)為。絕緣材料與周圍環(huán)境間的表面?zhèn)鳠嵯禂?shù)為h,環(huán)境溫度為。過程是穩(wěn)態(tài)的,試:列出導(dǎo)線與絕緣層中溫度分布的微分方程及邊界條件。求解導(dǎo)線與絕緣材料中溫度分布。提醒:在導(dǎo)線與絕緣材料的界面上,熱流密度及溫度都是延續(xù)的。解:導(dǎo)線中溫度場的控制方程為:;環(huán)形絕緣層中溫度場的控制方程為:。邊界條件:對。對;。第一式的通解為:第二式的通解為:。常數(shù)由邊界條件決定。據(jù)r=0時(shí),。其余三個(gè)條件得表達(dá)式為:;,由此三式解得:,。所以;。肋片及擴(kuò)展面2-50試計(jì)算下列兩種情形下等厚度直肋的效率:鋁肋,,h=284,H=15.24mm,=2.54mm;鋼肋,,h=511,H=15.24mm,=2.54mm;解:(1)因?yàn)樗砸驗(yàn)樗?-51在溫度為260℃的壁面上伸出一根純鋁的圓柱形肋片,直徑d=25mm,高H=150mm。該柱體表面受溫度16℃的氣流冷卻,表面?zhèn)鳠嵯禂?shù)h=15。肋端絕熱。試計(jì)算該柱體的對流散熱量。倘若把柱體的長度增強(qiáng)一倍,其他條件不變,柱體的對流散熱量是否也增強(qiáng)了一倍?從充足利用金屬的觀點(diǎn)來看,是采用一個(gè)長的肋好還是采用兩個(gè)長度為其一半的較短的肋好?解:又所以得代入數(shù)據(jù)查表得,當(dāng)其他條件不變時(shí)由上述結(jié)果可知長度增強(qiáng)一倍而散熱量沒有增強(qiáng)一倍,因此從充足利用金屬的觀點(diǎn),采用長度為其一半的較短的肋較好。2-52在外徑為25mm的管壁上裝有鋁制的等厚度環(huán)肋,相鄰肋片中央線之間的距離s=9.5mm,環(huán)肋高H=12.5mm,厚=0.8mm。管壁溫度℃,流體溫度℃,管壁及肋片與流體之間的表面?zhèn)鳠嵯禂?shù)為110。試決定每米長肋片管(包括肋片及基管部分)的散熱量。解:查表得W/(m.K)從圖查得,肋片兩面散熱量為:肋片的實(shí)際散熱量為:兩肋片間基管散熱量:總散熱量為2-53過熱蒸氣在外徑為127mm的鋼管內(nèi)流過,測蒸氣溫度套管的布置如附圖所示。已知套管外徑d=15mm,壁厚=0.9mm,導(dǎo)熱系數(shù)49.1。蒸氣與套管間的表面?zhèn)鳠嵯禂?shù)h=105。為使測溫誤差小于蒸氣與鋼管壁溫度差的0.6%,試決定套管應(yīng)有的長度。解:按題意應(yīng)使,查附錄得:,。2-54為了顯示套管材料對測溫誤差的影響,在熱力管道的同一地點(diǎn)上安裝了分離用鋼及銅做成的尺寸相同的兩個(gè)套管。套管外徑d=10mm,厚=1.0mm,高H=120mm。氣流流經(jīng)兩套管時(shí)表面?zhèn)鳠嵯禂?shù)均為h=25。管道壁溫=25℃。設(shè)蒸氣流的真切溫度為70℃,問置于兩套管中的溫度計(jì)讀數(shù)相差多少?溫度計(jì)本身的誤差可以不計(jì)。取銅的390,鋼的50。2-55用一柱體模擬汽輪機(jī)葉片的散熱過程。柱長9cm,周界為7.6cm,截面積為1.95cm,柱體的一端被冷卻到350℃(見附圖)。815℃的高溫燃?xì)獯颠^該柱體,假設(shè)表面上各處的對流換熱的表面?zhèn)鳠嵯禂?shù)是勻稱的,并為28。柱體導(dǎo)熱系數(shù)55,肋端絕熱。試:計(jì)算該柱體中間截面上的平均溫度及柱體中的最高溫度;冷卻介質(zhì)所帶走的熱量。解:(1)又肋片中的溫度分布℃所以中間溫度x=H時(shí)℃因肋片截面溫度沿高度方向逐步降低所以當(dāng)x=H時(shí)最大=265.6℃(2)熱量由冷卻介質(zhì)帶走2-56一容器的手柄為半圓形的圓柱如附圖所示,圓柱直徑25㎜,半圓的直徑為75毫米。設(shè)容器壁面溫度為80℃,空氣溫度為20℃,考慮輻射影響在內(nèi)的表面?zhèn)鳠嵯禂?shù)為10W/(㎡·K),試計(jì)算手柄的散熱量以及手柄中的最低溫度。手柄材料的導(dǎo)熱系數(shù)為1.5W/(m·解:2-57一摩托車汽缸用鋁合金制成,外徑為60㎜,高170㎜,導(dǎo)熱系數(shù)λ=180W/(m·K)。為增強(qiáng)散熱,汽缸外壁上敷設(shè)了等厚度的鋁合金環(huán)肋10片,肋厚3㎜,肋高25㎜。設(shè)摩托車在飛馳過程中表面?zhèn)鳠嵯禂?shù)為50W/(㎡·K),空氣溫度為28℃,汽缸外壁溫度保持為220解:2-58一太陽能集熱器的截面如附圖所示。用鋁合金(λ=177W/(m·K))做成的吸熱板的厚度δ=6㎜,背面除了與加熱水管接觸之處外,絕熱良好,管子之間的距離L=200㎜。吸熱板正面與蓋板之間為真空。在設(shè)計(jì)工況下吸熱板凈吸收太陽的輻射能為800W/㎡,管內(nèi)被加熱水的平均唯獨(dú)為60℃解:2-59一輸送高壓水的管道用法蘭銜接如附圖所示,法蘭厚δ=15㎜,管道的內(nèi)外半徑分離為di=120㎜,do=140㎜,法蘭外徑df=250㎜。管道與法蘭的導(dǎo)熱系數(shù)為λ=45W/(m·K)。在正常工況下,管道內(nèi)壁溫度為300℃,周圍空氣溫度為20℃,法蘭的表面?zhèn)鳠嵯禂?shù)h=10W/(㎡·2-60肋片在換熱器中得到廣泛采用,緊湊式換熱器就是由基本表面與大量的肋片表面所組成,如附圖a所示。附圖b是將其中一種流體的管道放大的暗示圖。已知肋片的高度H=8㎜,它分離與兩塊基本表面銜接,兩基本表面的溫度相等,t0=tH。肋片與流體間的表面?zhèn)鳠嵯禂?shù)h=W/(㎡·K),肋片的導(dǎo)熱系數(shù)λ=200W/(m·K),肋片厚δ=1㎜。試決定肋片的面積熱阻。2-61一等截面直肋的肋端為第三邊界條件,表面?zhèn)鳠嵯禂?shù)為,其側(cè)面的表面?zhèn)鳠嵯禂?shù)為,其余條件與第2-4節(jié)中的相同。試證實(shí)此時(shí)肋片中溫度分布為并據(jù)此導(dǎo)出肋片散熱量的計(jì)算式。解:此問題得通解為:,由此得:,,散熱量:多維導(dǎo)熱2-62設(shè)有如附圖所示的一偏心環(huán)形空間,其中彌漫了某中儲熱介質(zhì)(如石蠟類物質(zhì))。白天,從太陽能集熱器中來的熱水使石蠟熔化,夜里冷卻水流過該芯管吸收石蠟的熔解熱而使石蠟?zāi)Y(jié)。假設(shè)在熔解過程的開始階段,環(huán)形空間中石蠟的天然對流可以忽略不計(jì),內(nèi)外管壁分離維持在勻稱溫度及。試定性畫出偏心圓環(huán)中等溫線的分布。解:2-63有一用磚砌成的煙氣通道,其截面形狀如附圖所示。已知內(nèi)外壁溫分離為80℃,25℃,磚的導(dǎo)熱系數(shù)為1.5,試決定每米長煙道上的散熱量。解:采用形狀因子法計(jì)算,據(jù)已知條件所以2-64設(shè)有如附圖所示的一個(gè)無內(nèi)熱源的二維穩(wěn)態(tài)導(dǎo)熱物體,其上凹面,下表面分離維持在勻稱溫度及,其余表面絕熱。試:(1)畫出等溫線分布的暗示圖;(2)說明材料的導(dǎo)熱系數(shù)是否對溫度分布有影響。2-65試計(jì)算通過一立方體墻角(見附圖)的熱損失,已知每面墻厚300mm,導(dǎo)熱系數(shù)為0.8,內(nèi)外壁溫分離為400℃及50℃。倘若三面墻的內(nèi)壁溫度各不相等,但均高于外壁溫度,試提出一個(gè)估算熱損失范圍的主意。解:。作為一種估算可以取作為內(nèi)側(cè)有效溫度計(jì)算。2-66一根輸送城市生活用水得管道埋于地下3m深處,如附圖所示,其外徑d=500mm。土壤的導(dǎo)熱系數(shù)為1W/(mK),計(jì)算在附圖所示條件下每米管道的散熱量;在一個(gè)嚴(yán)寒的冬天,地面結(jié)冰層厚達(dá)1m深,其它條件不變,計(jì)算此時(shí)的散熱量。解:2-67對于矩形區(qū)域內(nèi)的常物性,無內(nèi)熱源的導(dǎo)熱問題,試分析在下列四種邊界條件的組合下,導(dǎo)熱物體為銅或鋼時(shí),物體中的溫度分布是否一樣:四邊均為給定溫度;四邊中有一個(gè)邊絕熱,其余三個(gè)邊均為給定溫度;四邊中有一個(gè)邊為給定熱流(不等于零),其余三個(gè)邊中至少有一個(gè)邊為給定溫度;四邊中有一個(gè)邊為第三類邊界條件。解:(1一樣,因?yàn)閮煞N情況下的數(shù)學(xué)描寫中不浮上材料物性值;(2)一樣,理由同上;(3)不一樣,在給定熱流的邊上,邊界條件中浮上固體導(dǎo)熱系數(shù);(4)不一樣,在第三類邊界條件的表達(dá)式中浮上固體導(dǎo)熱系數(shù)。2-68一冰箱的冷凍室可看成是形狀尺寸為0.5的立方體,其中頂面尺寸為。冷凍室頂面及四個(gè)側(cè)面用同樣厚度的發(fā)泡塑料保溫,其導(dǎo)熱系數(shù)為0.02;冷凍室的底面可近似認(rèn)為是絕熱的。冷凍室內(nèi)壁溫度為-10℃,外壁護(hù)板溫度為30℃。設(shè)護(hù)板很薄且與發(fā)泡塑料接觸良好。試估算發(fā)泡塑料要多厚才可限制冷量損失在45W以下。解:設(shè)發(fā)泡塑料的厚度為采用形狀因子法計(jì)算其中S又代入數(shù)據(jù)解得熱阻分析2-69試寫出通過半徑為的球壁的導(dǎo)熱熱阻的表達(dá)式。解:球殼導(dǎo)熱熱流流量為:,。2-70試據(jù)定義導(dǎo)出具有兩個(gè)等溫面的固體導(dǎo)熱熱阻與其形狀因子之間的關(guān)系,并據(jù)此寫出表2-2中第5,6欄所示固體的導(dǎo)熱熱阻。解:又所以第五欄:第六欄:2-71兩塊不同材料的平板組成如附圖所示的大平板。兩板的面積分離為,導(dǎo)熱系數(shù)分離為。倘若該大平板的兩個(gè)表面分離維持在勻稱的溫度,試導(dǎo)出通過該大平板的導(dǎo)熱熱量計(jì)算式。解:熱阻是并聯(lián)的,因此總熱阻為導(dǎo)熱總熱量:2-72在如附圖所示的換熱設(shè)備中,內(nèi)外管之間有一夾層,其間置有電阻加熱器,產(chǎn)生熱流密度q,該加熱層溫度為。內(nèi)管內(nèi)部被溫度為的流體冷卻,表面?zhèn)鳠嵯禂?shù)為。外管的外壁面被溫度為的流體冷卻,表面?zhèn)鳠嵯禂?shù)為。內(nèi)外管壁的導(dǎo)熱系數(shù)分離為。試畫出這一熱量傳遞過程的熱阻分析圖,并寫出每一項(xiàng)熱阻的表達(dá)式。解:2-73一塊尺寸為的芯片(附圖中的1)通過厚0.02mm的環(huán)氧樹脂層(附圖中2)與厚為10mm的鋁基板(附圖中的3)相聯(lián)接。芯片與鋁基板間的環(huán)氧樹脂熱阻可取為0.9。芯片與基板的四面絕熱,上下表面與=25℃的環(huán)境換熱,表面?zhèn)鳠嵯禂?shù)均為h=150。芯片本身可視為一等溫物體,其發(fā)熱率為1.5。鋁基板的導(dǎo)熱系數(shù)為2600。過程是穩(wěn)態(tài)的。試畫出這一熱傳遞過程的熱阻分析圖,并決定芯片的工作溫度。提醒:芯片的熱阻為零,其內(nèi)熱源的生成熱可以看成是由外界加到該節(jié)點(diǎn)上的。解:設(shè)芯片的工作溫度為t℃芯片上側(cè)面?zhèn)鳠崃啃酒聜?cè)面?zhèn)鳠崃科渲写霐?shù)據(jù)可得℃。2-74人類居住的房屋本來只是用于防雨雪及盜賊,很少考慮節(jié)能與傳熱特性。隨著世界范圍內(nèi)能源危機(jī)的發(fā)生以及人們生活水平的提高,節(jié)能與愉快已經(jīng)成為建造業(yè)的一個(gè)重要考慮原則。采用空心墻使考慮節(jié)能的一種有效手段。以居民的傳墻結(jié)構(gòu)如附圖所示。已知室內(nèi)溫度為20℃,室外溫度為5℃;室內(nèi)墻面的表面?zhèn)鳠嵯禂?shù)為7W/(m2K),室外為28W/(m2K);第一層塑料板厚12mm,導(dǎo)熱系數(shù)為0.16W/(mK),第二層厚mm,其中上部楊木層的導(dǎo)熱系數(shù)為0.141W/(mK),下部為空氣;第三層為磚,厚200mm,導(dǎo)熱系數(shù)為解:2-75有一管內(nèi)涂層的操作過程如附圖所示。在管子中央有一輻射棒,直徑為,其外表面發(fā)出的每米長度上的輻射熱流密度為,管內(nèi)抽成真空;涂層表面的吸收比很高,可近似地看成為黑體。管子外表面溫度恒定為,涂層很薄,工藝要求涂層表面溫度維持在。試:(1)導(dǎo)出穩(wěn)態(tài)條件下用及管壁導(dǎo)熱系數(shù)表示的管壁中的溫度分布表達(dá)式。(2)設(shè)=25℃,=15,,并要求應(yīng)達(dá)到150℃,求之值。解:(1)管子內(nèi)壁面的熱流量為:,穩(wěn)態(tài)條件下有:,在任向來徑r處溫度為t,則有:,即,或:,。(2),每米長度上熱負(fù)荷。2-76剛采摘下來的水果,因?yàn)槠潴w內(nèi)葡萄糖的分解而具有“呼吸”作用,結(jié)果會在其表面析出C,水蒸氣,并在體內(nèi)產(chǎn)生熱量。設(shè)在通風(fēng)的倉庫中蘋果以如附圖所示的方式堆放,并有5℃的空氣以0.6m/s的流速吹過。蘋果天天的發(fā)熱量為4000J/kg。蘋果的密度,導(dǎo)熱系數(shù)=0.5;空氣與蘋果間的表面?zhèn)鳠嵯禂?shù)h=6。試計(jì)算穩(wěn)態(tài)下蘋果表面及中央的溫度。每個(gè)蘋果可按直徑為80mm的圓球處理。解:利用有內(nèi)熱源的一維球坐標(biāo)方程:,,,邊界條件為:。為滿意第一邊界條件,必須為0。代入第二條件:,即:,由此得:,溫度分布為:,由此得:當(dāng)時(shí),;當(dāng)r=0時(shí),。也可由穩(wěn)態(tài)熱平衡得出:,由此得:,,,。2-77在一有內(nèi)熱源的無限大平板的導(dǎo)熱問題中,平板兩側(cè)面溫度分離為(x=0處)及(x=處)。平板內(nèi)溫度分布為。其中為待定常數(shù),x=0處的內(nèi)熱源強(qiáng)度為。試決定該平板中內(nèi)熱源的表達(dá)式。解:導(dǎo)熱系數(shù)為常數(shù)有內(nèi)熱源的導(dǎo)熱微分方程為平板內(nèi)溫度分布為又;x=0處的內(nèi)熱源強(qiáng)度為兩次積分及邊界條件可得即內(nèi)熱源的表達(dá)式。2-78為了估算人體的肌肉因?yàn)檫\(yùn)動而引起的溫升,可把肌肉看成是半徑為2cm的長圓柱體。肌肉運(yùn)動產(chǎn)生的熱量相當(dāng)于內(nèi)熱源,設(shè)。肌肉表面維持在37℃。過程處于穩(wěn)態(tài),試估算因?yàn)榧∪膺\(yùn)動所造成的最大溫升。肌肉的導(dǎo)熱系數(shù)為0.42。解:如右圖所示,一維穩(wěn)態(tài)導(dǎo)熱方程,。,,最大溫度發(fā)生在r=0處,。2-79一日式火鍋的手柄為圓錐形空心圓柱,如附圖所示。今將其簡化成為等直徑圓柱體。設(shè):圓筒內(nèi)、外表面各為2W/(m2K)及10W/(m2K),直徑分離為25mm與30mm,柄長90mm,筒體內(nèi)、外流體溫度為15℃,手柄與鍋體相接部分的溫度為70℃。試計(jì)算:(1)手柄局部溫度為35℃解:2-80北極愛斯基摩人的住屋用壓緊的雪做成,長呈半球形,如附圖所示。假設(shè)球的內(nèi)徑為1.8m,球壁厚0.5m,壓緊的雪與冰的導(dǎo)熱系數(shù)均為0.15W(mK)。普通情況下室外溫度t∞=-40℃,表面?zhèn)鳠嵯禂?shù)為15W/(m2K)。室內(nèi)表面(包括冰地面)的表面?zhèn)鳠嵯禂?shù)為6W/(m2K),冰地面的溫度為-20解:2-81一種救火員穿戴的現(xiàn)代化的衣料如圖所示。其中面罩料、濕面料以及熱面料的厚度及其導(dǎo)熱系數(shù)見附表。熱量通過兩層空氣隙傳遞時(shí),既有導(dǎo)熱又有輻射,輻射熱流量可以按對流的方式計(jì)算:,其中為空氣隙兩表面的溫度,。假定每層空氣隙都可以按來計(jì)算輻射熱流密度,試假定每層導(dǎo)熱的面積熱阻。在一次演習(xí)中,救火員一副表面接到2500的輻射熱流,試計(jì)算當(dāng)該衣服內(nèi)表面溫度達(dá)到65℃(皮膚不受損傷的最高溫度)時(shí)的外邊面溫度。導(dǎo)熱層名稱面罩料濕面料熱面料0.0470.0120.0380.80.553.52-82有一空氣冷卻器采用如附圖所示的結(jié)構(gòu),冷卻水在管外流動,溫度為,表面?zhèn)鳠嵯禂?shù)2000~3000。管內(nèi)中央安置了8個(gè)徑向肋片,空氣在所形成的8個(gè)扇形空腔中流動,溫度為,表面?zhèn)鳠嵯禂?shù)為。運(yùn)行中芯管的中間不通過空氣(兩頭進(jìn)出口處堵死)。試針對下列條件計(jì)算每米長管子上空氣的散熱量:,℃,=100℃,50,1mm,管材及肋片為銅,其=390,管子壁厚為2mm。解:肋片高度,肋效率按等截面直肋預(yù)計(jì),內(nèi)管管壁附近的看成為垂直延伸部分,故實(shí)際肋長為:,但肋端真正絕熱,,,,,,,,,,代入得:。2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 麗水市教育局直屬學(xué)校選聘筆試真題2024
- 2025年中國蘆筍切筍機(jī)行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年中國胎黃梨行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年中國電動篩粉機(jī)行業(yè)市場調(diào)查、投資前景及策略咨詢報(bào)告
- 2025年中國煤焦油分散劑行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年中國潤滑劑行業(yè)市場調(diào)查、投資前景及策略咨詢報(bào)告
- 2025年中國污熱水聚積槽行業(yè)投資前景及策略咨詢研究報(bào)告
- 2025年中國智能定時(shí)控制器行業(yè)市場調(diào)查、投資前景及策略咨詢報(bào)告
- 2025年中國教育機(jī)構(gòu)標(biāo)識行業(yè)市場調(diào)查、投資前景及策略咨詢報(bào)告
- 新華社與上海合作協(xié)議
- 2024年全國初中數(shù)學(xué)聯(lián)合競賽試題參考答案及評分標(biāo)準(zhǔn)
- 海洋波浪發(fā)電課件
- 八年級數(shù)學(xué)下冊 期末考試卷(湘教版)
- 2024年甘肅金川集團(tuán)股份有限公司招聘筆試參考題庫含答案解析
- 注冊安全工程師繼續(xù)教育題庫
- 工程項(xiàng)目監(jiān)理人工智能與機(jī)器人技術(shù)應(yīng)用
- 邊防派出所知識講座
- 基于GIS的四川省旅游資源調(diào)查、分類與評價(jià)
- 刑事案件模擬法庭劇本完整版五篇
- 錄播教室設(shè)備投標(biāo)方案(技術(shù)標(biāo))
- 人行道欄桿計(jì)算
評論
0/150
提交評論