平面直角坐標(biāo)系公開(kāi)課教案4篇_第1頁(yè)
平面直角坐標(biāo)系公開(kāi)課教案4篇_第2頁(yè)
平面直角坐標(biāo)系公開(kāi)課教案4篇_第3頁(yè)
平面直角坐標(biāo)系公開(kāi)課教案4篇_第4頁(yè)
平面直角坐標(biāo)系公開(kāi)課教案4篇_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

平面直角坐標(biāo)系公開(kāi)課教案4篇平面直角坐標(biāo)系公開(kāi)課教案1

通過(guò)觀察可以總結(jié)出:平行于x軸的直線上的點(diǎn),其縱坐標(biāo)相同,橫坐標(biāo)為任意實(shí)數(shù);平行于y軸的直線上的點(diǎn),其橫坐標(biāo)相同,縱坐標(biāo)為任意實(shí)數(shù)。

另外一、三象限內(nèi),兩坐標(biāo)軸夾角平分線上的點(diǎn),其橫坐標(biāo)與縱坐標(biāo)相同;二、四象限內(nèi),兩坐標(biāo)軸夾角平分線上的點(diǎn),其橫坐標(biāo)與縱坐標(biāo)互為相反數(shù)。

建議:如果學(xué)生在觀察時(shí)有困難,可以適當(dāng)增加題量,豐富觀察的對(duì)象,逐步得出最后的結(jié)論。

這些規(guī)律也是有其必然的,如兩點(diǎn)的縱坐標(biāo)相同,則這兩點(diǎn)在x軸的同側(cè),且到x軸的距離相等,由平面幾何的知識(shí),可推出這兩點(diǎn)的連線平行于x軸。其它的性質(zhì)也有其存在的道理。通過(guò)對(duì)規(guī)律的`總結(jié),滲透數(shù)形結(jié)合思想,并讓學(xué)生體會(huì)數(shù)學(xué)知識(shí)的形成過(guò)程。而點(diǎn)的坐標(biāo)不同,它在平面上的位置也不相同。即平面上的點(diǎn)與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的從圖中可以看出。

例3、在直角坐標(biāo)系中,描出下列各點(diǎn)

⑴(2,1),(-2,1)

⑵(—3,4),(—3,—4)

⑶(5,-4),(—5,-4)

你能發(fā)現(xiàn)上述各對(duì)點(diǎn)的位置有何特點(diǎn)嗎?它們的坐標(biāo)有何異同?你能總結(jié)出一般的規(guī)律嗎?并說(shuō)明其中的道理嗎?

解:(從圖中觀察出的點(diǎn)的位置)特點(diǎn)兩點(diǎn)坐標(biāo)間關(guān)系

(1)兩點(diǎn)關(guān)于y軸對(duì)稱橫坐標(biāo)為相反數(shù),縱坐標(biāo)相同

(2)兩點(diǎn)關(guān)于x軸對(duì)稱橫坐標(biāo)相同,縱坐標(biāo)為相反數(shù)

(3)兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱橫坐標(biāo)互為相反數(shù),縱坐標(biāo)互為相反數(shù)

這道題能引發(fā)我們得出什么樣的結(jié)論呢?(答案不固定,本教案只給出參考答案)。我們可以這樣說(shuō):對(duì)于直角坐標(biāo)平面上的任意兩點(diǎn),如果它們的橫坐標(biāo)相反,縱坐標(biāo)相同,則它們關(guān)于y軸對(duì)稱;如果它們橫坐標(biāo)相同,縱坐標(biāo)相反,則它們關(guān)于x軸對(duì)稱;如果題目的橫、縱坐標(biāo)都相反,則它們關(guān)于原點(diǎn)對(duì)稱,反之亦然。

以上的規(guī)律可以解決很多問(wèn)題,比如,已知點(diǎn)(—10,3)。求這個(gè)點(diǎn)關(guān)于x軸、y軸,及原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)。

答:(—10,—3);(10,3);(10,—3)。

你想過(guò)這其中的道理嗎?

如兩點(diǎn)關(guān)于y軸對(duì)稱。根據(jù)軸對(duì)稱的定義,這兩點(diǎn)的連線垂直于y軸,且到y(tǒng)軸的距離相等。所以這兩點(diǎn)的連線就平行于x軸,它們的縱坐標(biāo)相同,對(duì)稱點(diǎn)在y軸的兩點(diǎn)。到y(tǒng)軸的距離相等。即這兩點(diǎn)的橫坐標(biāo)相反。

類似地,可以組織學(xué)生進(jìn)行其它兩種情況的討論。這個(gè)規(guī)律只要求學(xué)生能理解,并不要求嚴(yán)格地證明。通過(guò)學(xué)生的主動(dòng)探索,復(fù)習(xí)了對(duì)稱的概念,體驗(yàn)了數(shù)形的結(jié)合。親身經(jīng)歷了數(shù)學(xué)知識(shí)的形成過(guò)程。也增強(qiáng)了學(xué)生的自信心,激發(fā)了他們互動(dòng)探索的精神。

小結(jié):本節(jié)我們討論了三道例題,這三道題都是大家共同討論,通過(guò)觀察歸納總結(jié)探索出的規(guī)律,這也是數(shù)學(xué)知識(shí)產(chǎn)生的一種過(guò)程。而且每道題的解決都離不開(kāi)數(shù)形結(jié)合的思想。而且也能逐步體會(huì)出平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)之間的一一對(duì)應(yīng)關(guān)系。這一部分知識(shí)為今后的學(xué)習(xí)打下了基礎(chǔ),希望大家能真正地理解并能熟練應(yīng)用。

作業(yè):習(xí)題13.1B組的1—3。

平面直角坐標(biāo)系公開(kāi)課教案2

教學(xué)目標(biāo):

1.理解平面直角坐標(biāo)系中的伸縮變換;

2.了解在平面直角坐標(biāo)系伸縮變換作用下平面圖形的變化情況;

3.會(huì)用坐標(biāo)變換、伸縮變換解決實(shí)際問(wèn)題,體驗(yàn)用數(shù)學(xué)知識(shí)解釋生活問(wèn)題的樂(lè)趣。

教學(xué)重點(diǎn):理解平面直角坐標(biāo)系中的伸縮變換。

教學(xué)難點(diǎn):會(huì)用坐標(biāo)變換、伸縮變換解決實(shí)際問(wèn)題。

授課類型:新授課

教學(xué)過(guò)程:

一.復(fù)習(xí)引入

在三角函數(shù)圖象的學(xué)習(xí)中,我們研究過(guò)下面一些問(wèn)題:

(1)怎樣由正弦曲線y=sinx得到曲線y=sin2x和y=sin?

(2)怎樣由正弦曲線y=sinx得到曲線y=2sinx和y=sinx?

作圖:

二.新課講解

引導(dǎo),觀察啟發(fā)與y=sinx的圖象作比較,結(jié)論:

1.函數(shù)y=sinωx,x?R(ω>0且ω11)的圖象,可看作把正弦曲線上所有點(diǎn)的橫坐標(biāo)縮短(ω>1)或伸長(zhǎng)(0<ω<1)到原來(lái)的倍(縱坐標(biāo)不變)。

2.y=Asinx,x?R(A>0且A11)的'圖象可以看作把正數(shù)曲線上的所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(A>1)或縮短(0設(shè)P(x,y)是平面直角坐標(biāo)系中的任意一點(diǎn),保持縱坐標(biāo)y不變,將橫坐標(biāo)x縮為原來(lái)的倍,得到P’(x’,y’),那么①

我們把①式叫做平面直角坐標(biāo)系中的一個(gè)坐標(biāo)壓縮變換。

設(shè)P(x,y)是平面直角坐標(biāo)系中的任意一點(diǎn),保持橫坐標(biāo)x不變,將縱坐標(biāo)y伸長(zhǎng)為原來(lái)的2倍,得到P’(x’,y’),那么②

我們把②式叫做平面直角坐標(biāo)系中的一個(gè)坐標(biāo)伸長(zhǎng)變換。

提出問(wèn)題:怎樣由正弦曲線得到曲線y=2sin2x?(它是由①②兩種變換合成的)

平面直角坐標(biāo)系中的任意一點(diǎn)P(x,y),經(jīng)過(guò)上述變換后變?yōu)辄c(diǎn)P’(x’,y’),那么③

我們把③式叫做平面直角坐標(biāo)系中的坐標(biāo)伸縮變換。

定義:設(shè)P(x,y)是平面直角坐標(biāo)系中的任意一點(diǎn),在變換④的作用下,點(diǎn)P(x,y)對(duì)應(yīng)到點(diǎn)P’(x’,y’),稱為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡(jiǎn)稱伸縮變換。

三.例題講解

例1在平面直角坐標(biāo)系中,求下列方程所對(duì)應(yīng)的圖形經(jīng)過(guò)伸縮變換后的圖形。

(1)2x+3y=0

(2)x2+y2=1

四.課堂練習(xí)

課本P8第4題

五.課堂小結(jié)

設(shè)P(x,y)是平面直角坐標(biāo)系中的任意一點(diǎn),在變換④的作用下,點(diǎn)P(x,y)對(duì)應(yīng)到點(diǎn)P’(x’,y’),稱為平面直角坐標(biāo)系中的坐標(biāo)伸縮變換,簡(jiǎn)稱伸縮變換。

六.作業(yè)布置

平面直角坐標(biāo)系公開(kāi)課教案3

一、教學(xué)目標(biāo)

1、知識(shí)與技能目標(biāo):認(rèn)識(shí)平面直角坐標(biāo)系,了解點(diǎn)與坐標(biāo)的對(duì)應(yīng)關(guān)系;

2、過(guò)程與方法目標(biāo):通過(guò)研究平面直角坐標(biāo)中數(shù)與點(diǎn)的對(duì)應(yīng)關(guān)系,能根據(jù)坐標(biāo)描出點(diǎn)的位置;

3、情感態(tài)度與價(jià)值觀目標(biāo):感受代數(shù)與幾何問(wèn)題的相互轉(zhuǎn)換。體會(huì)品面直角坐標(biāo)系在解決實(shí)際問(wèn)題的作用,培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣。

二、教學(xué)重難點(diǎn)

重點(diǎn):理解平面直角坐標(biāo)中點(diǎn)與數(shù)的一一對(duì)應(yīng)關(guān)系;

難點(diǎn):根據(jù)坐標(biāo)描出點(diǎn)的位置,以及坐標(biāo)軸上的點(diǎn)的坐標(biāo)特點(diǎn)。

三、教學(xué)用具

教師準(zhǔn)備四張大的紙質(zhì)坐標(biāo)格子。

四、教學(xué)過(guò)程

(一)溫故知新,導(dǎo)入新課

游戲?qū)耄荷弦还?jié)課我們學(xué)習(xí)了有序數(shù)對(duì),大家學(xué)習(xí)積極性很高,今天老師先考考你們,看你們掌握了多少。

我們將教室里的座位分為八列七排。a排b號(hào)記做有序數(shù)對(duì)(a,b),同學(xué)們先找準(zhǔn)自己的數(shù)對(duì)號(hào)。聽(tīng)老師報(bào)數(shù)對(duì),若是你自己的數(shù)對(duì)號(hào),就快速站起來(lái)。反應(yīng)太慢和站錯(cuò)了都算失敗,扣一分;反之加一分。最后以組為單位,比比哪組得分最高。

我們可以發(fā)現(xiàn),通過(guò)教室平面內(nèi)的有序數(shù)對(duì),可以唯一的確定與之對(duì)應(yīng)的同學(xué)。

(二)新課教學(xué)

課本例子:我們知道數(shù)軸上的點(diǎn)可以用一個(gè)數(shù)來(lái)表示,這個(gè)數(shù)叫做這個(gè)點(diǎn)的坐標(biāo)。例如點(diǎn)A數(shù)軸上的坐標(biāo)是-4,點(diǎn)B數(shù)軸上的坐標(biāo)是2;我們說(shuō)坐標(biāo)是3.5的點(diǎn),也可以在數(shù)軸上唯一確定。

教師提問(wèn)1:類似于數(shù)軸確定直線上點(diǎn)的位置,能不能找到一種方法來(lái)確定平面內(nèi)點(diǎn)的位置呢?平面內(nèi)給出任意點(diǎn)A、B、C、D,我們?cè)趺创_定這些點(diǎn)的位置

學(xué)生活動(dòng):小a說(shuō)可以像教室座位一樣給任意點(diǎn)編一個(gè)橫排縱排的號(hào),小B說(shuō)我們可以每個(gè)點(diǎn)列一個(gè)數(shù)軸···

教師活動(dòng):引導(dǎo)學(xué)生思考,怎么才能用同一標(biāo)準(zhǔn),方便的確定每一點(diǎn)的位置?

結(jié)合橫縱排編號(hào)以及數(shù)軸,我們可以綜合考慮,引出一個(gè)橫縱的數(shù)軸?

得出結(jié)論:我們可以在平面內(nèi)畫兩條相互垂直、原點(diǎn)重合的數(shù)軸,組成平面直角坐標(biāo)系,水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的.數(shù)軸稱為y軸或縱軸,取向上為正方向;兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

那有了這樣的平面直角坐標(biāo)系,平面內(nèi)的點(diǎn)就可以用之前學(xué)的有序數(shù)對(duì)來(lái)表示了。例如:由A分別向x軸和y軸作垂線。垂足M在x軸上的坐標(biāo)是3,垂足N在y軸上的坐標(biāo)是4,我們說(shuō)A的坐標(biāo)是3,縱坐標(biāo)是4,有序數(shù)對(duì)(3,4)就叫做A的坐標(biāo),記作A(3,4)

教師提問(wèn)2:同學(xué)們按照這種做法,在坐標(biāo)紙上標(biāo)出B、C、D的坐標(biāo)。

教師活動(dòng):走下講臺(tái),關(guān)注學(xué)生的匯坐標(biāo)過(guò)程方法,指出學(xué)生出現(xiàn)問(wèn)題的地方,并予以改正。

教師提問(wèn)3:在橫縱坐標(biāo)軸上各標(biāo)一點(diǎn)E、F,問(wèn):坐標(biāo)原點(diǎn)以及這兩點(diǎn)的坐標(biāo)是什么?

教師活動(dòng):引導(dǎo)學(xué)生思考?xì)w納坐標(biāo)軸上的點(diǎn)的坐標(biāo)的特點(diǎn)。

得出結(jié)論:原點(diǎn)的坐標(biāo)是(0,0),x軸上的點(diǎn)的坐標(biāo)的縱坐標(biāo)為0;y軸上的點(diǎn)的坐標(biāo)的橫坐標(biāo)為0。

(三)課程鞏固

師生互動(dòng):與學(xué)生一起回憶平面直角坐標(biāo)系的各部分的意義,平面內(nèi)的點(diǎn)怎么對(duì)應(yīng)坐標(biāo),以及坐標(biāo)軸上的點(diǎn)的坐標(biāo)特點(diǎn)。

“練一練”:

在黑板上貼出四張事先準(zhǔn)備好的紙質(zhì)坐標(biāo)格子,在上面標(biāo)出任意的ABCDEFG等點(diǎn),每組我點(diǎn)一個(gè)按坐標(biāo)序列對(duì),對(duì)應(yīng)的同學(xué)上黑板,來(lái)描出各點(diǎn)的坐標(biāo)。對(duì)一個(gè)加一分,錯(cuò)一個(gè)扣一分,得分相同的看用時(shí),時(shí)間短者勝,過(guò)程中下面的學(xué)生不能提示,提示一次扣2分。比賽看哪組學(xué)生代表得分最多。

(1,2)、(3,4)、(5,6)、(7,8)四位同學(xué)上黑板來(lái)描點(diǎn)。

教師活動(dòng):規(guī)范課堂氣氛,公平的評(píng)判,對(duì)于表現(xiàn)好的小組代表予以表?yè)P(yáng),表現(xiàn)稍遜的學(xué)生不要?dú)怵H,給予鼓勵(lì),爭(zhēng)取下一次可以獲勝。

(四)小結(jié)作業(yè)

思考平面直角坐標(biāo)系中坐標(biāo)與點(diǎn)的對(duì)應(yīng)關(guān)系,如何由坐標(biāo)值確定點(diǎn)的位置。下節(jié)課我們會(huì)探討這個(gè)問(wèn)題。

五、板書設(shè)計(jì)

平面直角坐標(biāo)系:平面內(nèi)畫兩條相互垂直、原點(diǎn)重合的數(shù)軸組成

水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;

豎直的數(shù)軸稱為y軸或縱軸,取向上為正方向;

兩坐標(biāo)軸的交點(diǎn)為平面直角坐標(biāo)系的原點(diǎn)。

平面直角坐標(biāo)系公開(kāi)課教案4

1、教材分析:

⑴知識(shí)結(jié)構(gòu):

日常生活及其它學(xué)科需要一種確定平面內(nèi)點(diǎn)的位置的方法。在數(shù)學(xué)上,可以類比數(shù)軸,引出平面直角坐標(biāo)系的概念。完成了坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)的一一對(duì)應(yīng),也把數(shù)與形統(tǒng)一了起來(lái)。

⑵重點(diǎn)、難點(diǎn)分析:

本節(jié)的重點(diǎn)是能正確畫出直角坐標(biāo)系,并能在直角坐標(biāo)系中,根據(jù)坐標(biāo)找出點(diǎn),由點(diǎn)求出坐標(biāo)。直角坐標(biāo)系的基本知識(shí)是學(xué)習(xí)全章的基礎(chǔ),在后面學(xué)習(xí)函數(shù)的圖象以及一些具體函數(shù)的圖象時(shí)都要應(yīng)用這些知識(shí)。通過(guò)對(duì)這部分知識(shí)的反復(fù)而深入的練習(xí)、應(yīng)用,滲透坐標(biāo)的思想,進(jìn)而形成數(shù)形結(jié)合的的數(shù)學(xué)思想。

本節(jié)的難點(diǎn)是平面直角坐標(biāo)系中的點(diǎn)與有序?qū)崝?shù)對(duì)間的一一對(duì)應(yīng)。限于初中的學(xué)習(xí)范圍與學(xué)生的接受能力,學(xué)生理解起來(lái)有一定的困難,如:不理解有序?qū)崝?shù)對(duì),或不能很好地理解一一對(duì)應(yīng),有的只限于機(jī)械地記憶,這樣會(huì)影響對(duì)數(shù)形結(jié)合思想的形成。教材上只給出了比較簡(jiǎn)單的描述。教師可以通過(guò)課堂練習(xí),讓學(xué)生從一點(diǎn)一滴處理解橫、縱坐標(biāo)的值不同,即實(shí)數(shù)對(duì)不同,則在直角平面上的點(diǎn)的位置也不同,反之,亦然。

2、教學(xué)建議:

數(shù)學(xué)是世界的一部分,同時(shí)又隱藏在世界中。這樣,數(shù)學(xué)教學(xué)的目的之一就是使學(xué)生通過(guò)數(shù)學(xué)的學(xué)習(xí),認(rèn)識(shí)數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系,數(shù)學(xué)與人類生活的密切聯(lián)系,以及數(shù)學(xué)對(duì)人類歷史發(fā)展的影響與作用。因此,數(shù)學(xué)概念的產(chǎn)生有其必然性與合理性。

(1)概念的引入

組織學(xué)生看本章引言中的氣溫圖,說(shuō)明確定平面內(nèi)點(diǎn)的位置是實(shí)際需要的??梢宰寣W(xué)生進(jìn)行討論,他們的生活中還有什么類似的例子。如電影院中的座位,到圖書館找書,學(xué)生的課程表等。從豐富的背景材料中,體會(huì)數(shù)學(xué)的廣泛應(yīng)用性。

(2)講授概念:

現(xiàn)實(shí)生活和其它學(xué)科向數(shù)學(xué)提出了問(wèn)題,如何建立數(shù)學(xué)模型以解決這個(gè)問(wèn)題呢?以前,我們學(xué)習(xí)過(guò)數(shù)軸。數(shù)軸上每一個(gè)點(diǎn)都對(duì)應(yīng)一個(gè)實(shí)數(shù),這個(gè)實(shí)數(shù)叫做這個(gè)點(diǎn)在數(shù)軸上的坐標(biāo),數(shù)軸上的點(diǎn)與實(shí)數(shù)是一一對(duì)應(yīng)的。這樣利用數(shù)軸可以研究一些數(shù)量關(guān)系的問(wèn)題。確定平面內(nèi)點(diǎn)的位置的方法也可以與此類似,類比出平面直角坐標(biāo)系的概念,并結(jié)合圖形講述平面直角坐標(biāo)系的有關(guān)概念。

(3)練習(xí),深入地理解概念:

平面直角這節(jié)課的概念較多,又都是新的,開(kāi)始的時(shí)候不適合太快,給學(xué)生一個(gè)適應(yīng)的過(guò)程,一個(gè)思維的空間。如:x軸、y軸不在任何象限內(nèi),原點(diǎn)是x軸、y軸的交點(diǎn)等。然后,就可以多練習(xí)一些簡(jiǎn)單題,如給出坐標(biāo),在平面直角坐標(biāo)系中標(biāo)點(diǎn),或反之,給出平面直角坐標(biāo)系中點(diǎn)的位置,找出其坐標(biāo)。通過(guò)小題的`練習(xí),使學(xué)生能逐步理解坐標(biāo)平面內(nèi)的點(diǎn)和有序?qū)崝?shù)對(duì)之間的一一對(duì)應(yīng)關(guān)系。

總之,形成初步的數(shù)學(xué)概念后,學(xué)生可以通過(guò)變式,逐步加深對(duì)概念的理解。在解

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論