版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
基于SARIMA模型分析日本地震導(dǎo)致外匯儲備產(chǎn)生的機(jī)會成本南方醫(yī)科大學(xué)梁淇俊、于磊、趙志杰目錄摘要-------------------------------------------------------------------------------------------3問題分析--------------------------------------------------------------------------------------41.1.背景重述--------------------------------------------------------------------------------41.2.問題分析--------------------------------------------------------------------------------4數(shù)據(jù)來源及變量的選擇--------------------------------------------------------------------6模型假設(shè)--------------------------------------------------------------------------------------8符號說明--------------------------------------------------------------------------------------9模型建立與求解-----------------------------------------------------------------------------105.1.典型相關(guān)--------------------------------------------------------------------------------105.1.1.方法簡介------------------------------------------------------------------------105.1.2.模型建立------------------------------------------------------------------------125.1.3.模型求解------------------------------------------------------------------------135.1.4.模型檢驗(yàn)------------------------------------------------------------------------145.1.5.結(jié)果解釋------------------------------------------------------------------------155.2.SARIMA模型--------------------------------------------------------------------------165.2.1.方法簡介------------------------------------------------------------------------165.2.2.模型建立------------------------------------------------------------------------185.2.3.模型求解------------------------------------------------------------------------225.2.4.模型檢驗(yàn)------------------------------------------------------------------------235.2.5.結(jié)果解釋------------------------------------------------------------------------24結(jié)論--------------------------------------------------------------------------------------------27模型評價(jià)與改進(jìn)-----------------------------------------------------------------------------27參考文獻(xiàn)--------------------------------------------------------------------------------------30附錄--------------------------------------------------------------------------------------------319.1.詳細(xì)數(shù)據(jù)--------------------------------------------------------------------------------319.1.1.典型相關(guān)分析所需數(shù)據(jù)------------------------------------------------------319.1.2.SARIMA模型所需數(shù)據(jù)------------------------------------------------------339.2.程序--------------------------------------------------------------------------------------359.2.1.典型相關(guān)------------------------------------------------------------------------359.2.2.SARIMA模型------------------------------------------------------------------36摘要2011年3月11日,日本本州島附近發(fā)生強(qiáng)烈地震,對日本的經(jīng)濟(jì)帶來巨大的影響,關(guān)于此方面的報(bào)道屢見不鮮,然而大多都傾向于僅給出其直接損失的數(shù)額,而忽略了由于地震導(dǎo)致政策改變所帶來的間接損失,造成對經(jīng)濟(jì)損失的低估。本文在此背景下,力求尋找一種方法來揭示由于地震導(dǎo)致外匯儲備產(chǎn)生的間接損失,并進(jìn)行定量化分析,從而能更客觀地認(rèn)識到災(zāi)害給日本經(jīng)濟(jì)帶來的影響。本文首先運(yùn)用典型相關(guān)分析反應(yīng)日本經(jīng)濟(jì)水平——國內(nèi)生產(chǎn)總值(GDP)——的重要影響因子。通過對于背景的分析,本文將GDP劃分為第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè),作為三個(gè)反應(yīng)變量;篩選了勞動力人口數(shù)、發(fā)電電力量、原油供給量、進(jìn)口總額、出口總額、匯率、外匯儲備量這7個(gè)因素作為解釋變量,其分析結(jié)果——外匯儲備的載荷僅次于勞動力人口數(shù)與發(fā)電電力量,進(jìn)一步證明外匯儲備對解釋國內(nèi)成產(chǎn)總值具有重要作用。在典型相關(guān)結(jié)果的基礎(chǔ)之上,根據(jù)外匯儲備的數(shù)據(jù)特點(diǎn),本文選用時(shí)間序列SARIMA模型,根據(jù)外匯儲備在日本地震前的一個(gè)趨勢,預(yù)測若不發(fā)生地震的情況下外匯儲備的發(fā)展趨勢,與實(shí)際數(shù)據(jù)相對比,對這一事件導(dǎo)致日本在外匯儲備上決策的改變所產(chǎn)生的機(jī)會成本進(jìn)行了定量性的分析,得到的結(jié)論是在2011年3-5月間,由外匯儲備產(chǎn)生的機(jī)會成本使得日本經(jīng)濟(jì)發(fā)展速度平均每月減緩6.57%。本文數(shù)據(jù)來自日本統(tǒng)計(jì)年鑒以及日本財(cái)務(wù)省官方網(wǎng)站。模型建立中,應(yīng)用R語言進(jìn)行建模計(jì)算,并對SARIMA模型參數(shù)編寫程序進(jìn)行檢驗(yàn),模型擬合的總誤差為7.66%,表明模型擬合較好。本文的特點(diǎn)主要在于以下三點(diǎn):(1)以外匯儲備歷史數(shù)據(jù)規(guī)律擬合的時(shí)間序列模型與涉及多個(gè)影響因素的模型相比,可以避免因未能找齊所有影響因素而產(chǎn)生的較大誤差;(2)與其他對于日本地震造成的經(jīng)濟(jì)損失的方向不同,本文“矛頭”指向了間接損失,定量化分析日本地震造成的外匯儲備增長產(chǎn)生的機(jī)會成本;(3)本文提出引入機(jī)會成本的概念這一方法,估計(jì)地震所帶來的間接經(jīng)濟(jì)損失,從而能更全面地評價(jià)本次事件帶來的總體經(jīng)濟(jì)損失。關(guān)鍵字:SARIMA模型典型相關(guān)外匯儲備機(jī)會成本日本地震1.問題分析1.1.背景重述2011年3月11日的地震對日本產(chǎn)生了多方面的影響。除了地震帶來的直接人員傷亡以及核泄漏造成的自然影響之外,可以看到地震帶來的經(jīng)濟(jì)損失如同滾雪球一般逐漸增大。隨著災(zāi)區(qū)的慘狀漸漸水落石出,地震后外界分析的“不會對日本經(jīng)濟(jì)造成太大影響”正在逐漸失去說服力。對于災(zāi)難的報(bào)道,新聞公布了一些關(guān)于日本地震的直接經(jīng)濟(jì)損失*,如建筑物損失等,這些損失都可以通過統(tǒng)計(jì)一次性獲得,對日本經(jīng)濟(jì)的后續(xù)發(fā)展產(chǎn)生的影響較小。然而眾所周知,一次災(zāi)難所帶來的損失不僅局限于地震那一時(shí)刻帶來的一次性打擊,該地區(qū)的經(jīng)濟(jì)很難在震后仍保持原有的發(fā)展速度,國家會根據(jù)災(zāi)難程度制定相關(guān)的經(jīng)濟(jì)政策以及制定其他調(diào)節(jié)方案,來逐步恢復(fù)經(jīng)濟(jì)發(fā)展,因此這會持續(xù)影響震后相對長一段時(shí)間內(nèi)的經(jīng)濟(jì)發(fā)展。而目前的報(bào)道很少探討由于地震帶來的間接經(jīng)濟(jì)損失**(多數(shù)來自政府應(yīng)對災(zāi)難的政策所產(chǎn)生的長期影響,如外匯儲備的增加相當(dāng)于將本國用于經(jīng)濟(jì)發(fā)展的投資經(jīng)費(fèi)廉價(jià)的借給其他國家),這就使得分析不夠全面,容易低估地震所帶來的經(jīng)濟(jì)損失。因此,探究日本地震經(jīng)濟(jì)損失研究所忽略的間接經(jīng)濟(jì)損失十分重要。1.2.問題分析重大的歷史事件往往會改變經(jīng)濟(jì)的發(fā)展趨勢,因此有不少學(xué)者對其進(jìn)行了相關(guān)研究。我國地震局學(xué)者[1]在查閱前人研究的基礎(chǔ)之上,分析了地震造成社會災(zāi)害嚴(yán)重、影響地區(qū)經(jīng)濟(jì)發(fā)展的現(xiàn)象,得出地震災(zāi)害嚴(yán)重影響地區(qū)經(jīng)濟(jì)的結(jié)論,并強(qiáng)調(diào)在制定區(qū)域可持續(xù)發(fā)展戰(zhàn)略規(guī)劃時(shí)必須考慮自然災(zāi)害的影響作用[1]。但是目前,研究都停留在一個(gè)描述性研究的層次上,并且大都將重心放在災(zāi)害所帶來的直接經(jīng)濟(jì)損失上,而忽略了它帶來的間接經(jīng)濟(jì)損失,損失了很多有價(jià)值的信息。故此,本文致力于探究一種方法,使其可以在地震后的短期內(nèi)能定量化分析其間接經(jīng)濟(jì)損失的影響,對政府決策的最優(yōu)化提供一些依據(jù)。注:*直接經(jīng)濟(jì)損失:一般認(rèn)為,直接經(jīng)濟(jì)損失是指災(zāi)害直接造成的物質(zhì)形態(tài)的破壞,如糧食產(chǎn)量的下降,房屋建筑、公共設(shè)施及設(shè)備的破壞等**間接經(jīng)濟(jì)損失:徐嵩齡等人[15]認(rèn)為,災(zāi)害的間接經(jīng)濟(jì)損失廣義地包括3類,其中有一類為資源關(guān)聯(lián)型損失,即包括傳統(tǒng)意義上的人力資源和資本資源的損失對未來經(jīng)濟(jì)增長的影響,又包括災(zāi)害中的自然資源破壞在持續(xù)意義上對未來發(fā)展能力的影響。外匯儲備是指以外匯計(jì)價(jià)的資產(chǎn),包括現(xiàn)鈔、國外銀行存款、國外有價(jià)證券等,是一國用于平衡國際收支,穩(wěn)定匯率,償還對外債務(wù)的外匯積累。高豐、于永達(dá)[2]曾發(fā)表論文,闡述外匯儲備增長對經(jīng)濟(jì)的穩(wěn)定和安全發(fā)揮著巨大作用,同時(shí)也會加劇通貨膨脹的壓力,削弱本國的產(chǎn)品出口競爭力,并且造成機(jī)會成本增加甚至資金資源浪費(fèi)。文章說明了外匯儲備的多少對本國經(jīng)濟(jì)的影響十分巨大[2]。且值得關(guān)注的是,外匯儲備在日本經(jīng)濟(jì)發(fā)展中扮演的重要角色。從多年的實(shí)際情況來看,巨額外匯儲備給日本經(jīng)濟(jì)帶來了較好的投資回報(bào),保證了資金的增值[3]。但是外匯儲備并非越多越好,越來越多的人開始關(guān)注外匯儲備對于經(jīng)濟(jì)的重要性,比如說對于外匯儲備激增的負(fù)面影響[4]等研究,匯率也直接受外匯儲備的影響。觀察日本經(jīng)濟(jì)公布的網(wǎng)站,可以發(fā)現(xiàn)其外匯儲備在三月份發(fā)生了巨額提高,從中可以看出日本政府對于調(diào)整經(jīng)濟(jì)政策采取了干預(yù)措施,這必然增加了其帶來的機(jī)會成本。故地震所導(dǎo)致外匯儲備產(chǎn)生的機(jī)會成本作為間接經(jīng)濟(jì)損失的重要組成部分之一,是本文研究的重心。目前對于經(jīng)濟(jì)數(shù)據(jù)的研究中,計(jì)量經(jīng)濟(jì)學(xué)中主要推薦使用時(shí)間序列的方法。時(shí)間序列的特性主要有隨機(jī)性、平穩(wěn)性和季節(jié)性三個(gè)方面,其中以平穩(wěn)性和季節(jié)性更為重要[5]。時(shí)間序列早期的研究分為時(shí)域方法和頻域方法。其中時(shí)域方法是分析時(shí)間序列的樣本自相關(guān)函數(shù)毛病建立參數(shù)模型,如ARMA(Auto-RegressiveMovingAverageModel)模型,以此來描述序列的動態(tài)依賴關(guān)系。然而,ARMA模型的前提保證是序列是平穩(wěn)的,不符合經(jīng)濟(jì)數(shù)據(jù)一般都是非平穩(wěn)的特征。在此基礎(chǔ)上,\o"博克思"博克思(\o"Box"Box)和\o"詹金斯"詹金斯(\o"Jenkins"Jenkins)于70年代初提出的一著名時(shí)間序列預(yù)測方法,即ARIMA(Auto-RegressiveIntegratedMovingAverageModel)模型,它在經(jīng)濟(jì)預(yù)測過程中既考慮了經(jīng)濟(jì)現(xiàn)象在時(shí)間序列上的依存性,又考慮了隨機(jī)波動的干擾性,對于經(jīng)濟(jì)運(yùn)行短期趨勢的預(yù)測準(zhǔn)確率較高,是近年應(yīng)用比較廣泛的方法之一。然而,它忽略了時(shí)間序列中季節(jié)性的特點(diǎn)。在這個(gè)模型的基礎(chǔ)之上,為了在模型中描述季節(jié)性的特點(diǎn),有學(xué)者提出了改進(jìn)模型SARIMA(SeasonalAuto-RegressiveIntegratedMovingAverageModel)模型,即季節(jié)性自回歸滑動平均模型。它主要用于識別含有季節(jié)波動與外在事件波動對因變量所產(chǎn)生影響的預(yù)測。模型包含趨勢性和季節(jié)性,因其能很好地反映出經(jīng)濟(jì)指標(biāo)的周期性變化,體現(xiàn)經(jīng)濟(jì)周期的特點(diǎn),所以該模型常用于宏觀經(jīng)濟(jì)指標(biāo)的預(yù)測。由于現(xiàn)有研究大多偏向于描述性分析外匯儲備對于經(jīng)濟(jì)增長的重要性,本文基于數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,將外匯儲備與一些公認(rèn)的對國內(nèi)生產(chǎn)總值(GDP)有影響的因子(如能源、電力、進(jìn)出口總額等)做比較,從而揭示外匯儲備對GDP的重要性。另一方面,注意到國內(nèi)生產(chǎn)總值可以分為三大產(chǎn)業(yè),而且三大產(chǎn)業(yè)的國內(nèi)生產(chǎn)值對國內(nèi)生產(chǎn)力水平的依賴程度有所不同,被經(jīng)濟(jì)政策影響的程度也各異。這就涉及到一組變量對另一組變量的相關(guān)性研究,故此本文使用典型相關(guān)來解決此問題。在進(jìn)行典型相關(guān)分析的基礎(chǔ)上,對于外匯儲備進(jìn)行進(jìn)一步的時(shí)間序列的分析。本文以2011年6月日本財(cái)務(wù)省官方網(wǎng)站公布的數(shù)據(jù)為基礎(chǔ),根據(jù)外匯儲備在日本地震前的一個(gè)趨勢,預(yù)測如果不發(fā)生地震外匯儲備的發(fā)展趨勢,與實(shí)際數(shù)據(jù)相對比,做出定量化的分析。并且,用此種方法來舉例說明如何運(yùn)用時(shí)間序列的方法來估算間接經(jīng)濟(jì)損失。注:本文文中所提及的各種損失定義如圖1所示,整個(gè)方框代表由于地震造成的總體經(jīng)濟(jì)損失。為了方便敘述,文中所使用的機(jī)會成本是指由地震所導(dǎo)致外匯儲備產(chǎn)生的間接經(jīng)濟(jì)損失。由地震產(chǎn)生的直接由地震產(chǎn)生的直接經(jīng)濟(jì)損失(如建筑損失等)由地震產(chǎn)生的間接經(jīng)濟(jì)損失外匯儲備政策調(diào)整中產(chǎn)生的機(jī)會成本圖1損失定義圖2.數(shù)據(jù)來源及變量的選擇本文關(guān)于國內(nèi)生產(chǎn)總值、三產(chǎn)業(yè)在國內(nèi)生產(chǎn)總值的比例、勞動力人口數(shù)、發(fā)電電力量、原油供給量、進(jìn)出口總額、匯率、外匯儲備量的數(shù)據(jù)來自日本統(tǒng)計(jì)年鑒(年計(jì));而按月計(jì)算的外匯儲備量的數(shù)據(jù)來自于日本財(cái)務(wù)省官方網(wǎng)站。下面首先對各個(gè)變量的選擇進(jìn)行解釋說明:勞動力人口:考慮到日本GDP位于世界前列與日本國民勤奮努力、憂患意識強(qiáng),受過良好的教育,國內(nèi)有大批素質(zhì)良好的勞動力密不可分,且勞動力的水平對于一個(gè)國家的經(jīng)濟(jì)增長很重要,故此納入此指標(biāo);電力發(fā)電力量、原油供應(yīng)量:能源的消費(fèi)幾乎與經(jīng)濟(jì)增長呈同步增長的態(tài)勢[6],而電力與石油占日本能源比重很大,故此納入發(fā)電電力量以及原油供給量這兩個(gè)指標(biāo);進(jìn)出口總額:進(jìn)出口總額都左右著日本國內(nèi)的生產(chǎn)總值,故選擇進(jìn)口總額和出口總額這兩個(gè)指標(biāo);外匯儲備:外匯儲備在日本經(jīng)濟(jì)發(fā)展中扮演重要角色,從多年的實(shí)際情況來看,巨額外匯儲備給日本經(jīng)濟(jì)帶來了較好的投資回報(bào),保證了資金的增值[3]。但是外匯儲備并非越多越好,越來越多的人開始關(guān)注外匯儲備對于經(jīng)濟(jì)的重要性,比如說對于外匯儲備激增的負(fù)面影響[4],故此納入外匯儲備這個(gè)指標(biāo);匯率:首先匯率對國內(nèi)經(jīng)濟(jì)可以穩(wěn)定物價(jià);對國家外經(jīng)濟(jì)的影響表現(xiàn)在可調(diào)節(jié)進(jìn)出口貿(mào)易順逆差;對國際的影響則是匯率變動會使發(fā)達(dá)國家和發(fā)展中國家的矛盾加劇。且考慮到外匯儲備與匯率之間有著密切的關(guān)系,故此納入?yún)R率這個(gè)指標(biāo)。國內(nèi)生產(chǎn)總值主要分成第一、二、三產(chǎn)業(yè)三部分,且考慮到三大產(chǎn)業(yè)的國內(nèi)生產(chǎn)值對國內(nèi)生產(chǎn)水平的依賴程度有所不同,被經(jīng)濟(jì)政策的影響程度也各異,本文欲探究其影響因素通過何種方式來對上述三部分產(chǎn)生影響,進(jìn)而影響國內(nèi)生產(chǎn)總值,從而選擇了這三個(gè)指標(biāo)作為反應(yīng)變量;基于生產(chǎn)函數(shù)與生產(chǎn)要素的概念,因而考慮勞動力與能源是最基本的兩個(gè)生產(chǎn)要素,在勞動力方面,我們選取了勞動人口指標(biāo),而電力與石油占日本能源比重很大,故能源方面納入發(fā)電電力量以及原油供給量這兩個(gè)指標(biāo);產(chǎn)品還可通過貿(mào)易產(chǎn)生價(jià)值,故考慮國家貿(mào)易狀況,在本文選取進(jìn)口總額和出口總額這兩個(gè)指標(biāo);本文欲通過典型相關(guān)分析,分析外匯儲備相對于上述重要指標(biāo)對國家經(jīng)濟(jì)影響的重要程度,故考慮外匯儲備和匯率兩個(gè)因素。通過上述分析,上述選擇的變量都是評價(jià)國內(nèi)生產(chǎn)總值的重要指標(biāo)。3.模型假設(shè)生產(chǎn)要素,貿(mào)易情況,對外經(jīng)濟(jì)政策(本文中是指外匯儲備的調(diào)整政策)對國內(nèi)生產(chǎn)總值的整體影響是通過多個(gè)指標(biāo)綜合反映的,但由于跟蹤統(tǒng)計(jì)的指標(biāo)未必齊全,且變量過多會使得模型過于復(fù)雜從而不利于解釋,為合理簡化變量信息,本文只選取了上述7個(gè)指標(biāo)并做下述假設(shè):假設(shè)1:以上指標(biāo)所反映對國內(nèi)生產(chǎn)總值的影響與日本勞動力市場、能源市場、貿(mào)易情況、對外經(jīng)濟(jì)政策對國內(nèi)生產(chǎn)總值的影響相同。本文將地震產(chǎn)生的損失看作直接經(jīng)濟(jì)損失與間接經(jīng)濟(jì)損失之和,通過計(jì)算2011年3至5月外匯儲備的真實(shí)值與在無地震情況下的預(yù)測值之差所產(chǎn)生的機(jī)會成本,從而估算本次地震導(dǎo)致外匯儲備所產(chǎn)生的間接經(jīng)濟(jì)損失;由于外匯儲備受日本政府調(diào)控,故即使沒有發(fā)生該次地震,日本政府也可以對外匯儲備進(jìn)行大幅調(diào)整,但這屬于極端情況,本文為便于研究做如下假設(shè):假設(shè)2:由于地震導(dǎo)致外匯儲備產(chǎn)生的調(diào)整量(即實(shí)際值與按照原有經(jīng)濟(jì)發(fā)展水平的預(yù)測值之差)原本全部用于國內(nèi)經(jīng)濟(jì)建設(shè)。假設(shè)3:從2004年3月至2011年2月的外匯儲備的數(shù)據(jù)規(guī)律能充分反映日本政府的外匯調(diào)整政策。本文中SARIMA模型并沒有考慮實(shí)際意義上對外匯儲備變動的影響因素,而是通過運(yùn)用統(tǒng)計(jì)方法根據(jù)歷史數(shù)據(jù)的規(guī)律外推預(yù)測未來短中期的數(shù)據(jù)值;通過查閱文獻(xiàn),發(fā)現(xiàn)該模型也已得到廣大學(xué)者的認(rèn)可,在多篇論文中均使用該模型預(yù)測各種指標(biāo)的變化,例如我國商品進(jìn)出口的預(yù)測[7],腎綜合征出血熱發(fā)病率預(yù)測[8],城市道路短期交通流預(yù)測[9]等。據(jù)此,我們做如下假設(shè):假設(shè)4:其他經(jīng)濟(jì)、社會因子對外匯儲備的影響是可以全部籍由外匯儲備歷史數(shù)據(jù)的規(guī)律解釋的。4.符號說明主要變量X1勞動力人口(萬人)X2發(fā)電電力量(100萬kWh)X3原油供給量(1000kl)X4出口總額(10億円)X5進(jìn)口總額(10億円)X6匯率(1美元/円)X7外匯儲備(100萬美金)Y1第一產(chǎn)業(yè)(農(nóng)業(yè)、漁業(yè)等)國內(nèi)生產(chǎn)總值(10億円)Y2第二產(chǎn)業(yè)(制造、建筑、礦業(yè)等)國內(nèi)生產(chǎn)總值(10億円)Y3第三產(chǎn)業(yè)(服務(wù)、金融、不動產(chǎn)、信息等)國內(nèi)生產(chǎn)總值(10億円)R1第一典型相關(guān)系數(shù)R2第二典型相關(guān)系數(shù)R3第三典型相關(guān)系數(shù)U1第一典型相關(guān)變量中衡量生產(chǎn)力水平指標(biāo)與日本對外經(jīng)濟(jì)政策指標(biāo)的線性組合V1第一典型相關(guān)變量中三大產(chǎn)業(yè)國內(nèi)生產(chǎn)總值的線性組合U2第二典型相關(guān)變量中衡量生產(chǎn)力水平指標(biāo)與日本對外經(jīng)濟(jì)政策指標(biāo)的線性組合V2第二典型相關(guān)變量中三大產(chǎn)業(yè)國內(nèi)生產(chǎn)總值的線性組合用以建模的時(shí)間序列B滯后算子時(shí)間階向量,其第p行元素為1,其余都為0ADF檢驗(yàn)中的中間變量同上樣本量殘差殘差平方和SARIMA模型中的系數(shù)向量方差系數(shù)估計(jì)中的中間變量相關(guān)系數(shù)h滯后階數(shù)外匯儲備量的原始數(shù)據(jù)D季節(jié)差分的階數(shù)d逐期差分的階數(shù)P季節(jié)性自回歸階數(shù)p自回歸階數(shù)Q季節(jié)性移動平均階數(shù)q移動平均階數(shù)待檢驗(yàn)參數(shù)個(gè)數(shù)5.模型建立與求解5.1.典型相關(guān)5.1.1.方法簡介用于探討一組解釋變量(亦即預(yù)測變量)與一組反應(yīng)變量間的關(guān)系即是典型相關(guān)分析(CanonicalCorrelationAnalysis),它能夠有效地揭示兩組隨機(jī)變量之間的相互線性依賴關(guān)系。這一方法是由Hotelling首先提出來的。一般的,假設(shè)有兩組隨機(jī)變量和,研究它們的相關(guān)關(guān)系,當(dāng)p=q=1時(shí),就是通常兩個(gè)變量X與Y的相關(guān)關(guān)系;當(dāng)二者都大于1時(shí),采用類似主成分分析的方法,找出第1組變量的線性組合U和第二組變量的線性組合V,即,于是將研究兩組變量的相關(guān)性問題轉(zhuǎn)化成研究兩個(gè)變量的相關(guān)性問題,并且可以適當(dāng)?shù)卣{(diào)整相應(yīng)系數(shù),使得變量U和V的相關(guān)性達(dá)到最大,稱這種相關(guān)為典型相關(guān),基于這種原則的分析稱為典型相關(guān)分析。它的定義如下:設(shè),為隨機(jī)向量,用X與Y的線性組合和之間的相關(guān)來研究X與Y之間的相關(guān),并希望找到與b,使最大,由相關(guān)系數(shù)的定義,對任意的和,有上式說明使得相關(guān)關(guān)系最大的和并不唯一。因此,在綜合變量時(shí),可限定,設(shè),,維隨機(jī)向量的均值為0,協(xié)方差陣正定。若存在和使得是約束問題,,目標(biāo)函數(shù)的最大值,則稱,為X,Y的第一對典型變量,稱它們之間的相關(guān)系數(shù)為第1典型相關(guān)系數(shù)。模型建立后,應(yīng)對模型進(jìn)行部分總體典型相關(guān)系數(shù)均為零的假設(shè)檢驗(yàn),原理如下:假設(shè)前k個(gè)典型相關(guān)系數(shù)是顯著的,現(xiàn)要檢驗(yàn)第k+1個(gè)典型相關(guān)系數(shù)是否顯著,則做如下檢驗(yàn):。其檢驗(yàn)統(tǒng)計(jì)量為:對于充分大的n,當(dāng)為真時(shí),統(tǒng)計(jì)量近似服從自由度為(p-k)(q-k)的分布。在給定的顯著水平下,若,則拒絕原假設(shè),認(rèn)為第k+1個(gè)典型相關(guān)系數(shù)是顯著的;否則認(rèn)為典型相關(guān)系數(shù)不顯著,那么典型變量只取到k為止。5.1.2.模型建立根據(jù)問題分析,選用第一產(chǎn)業(yè)(農(nóng)業(yè)、漁業(yè)等)、第二產(chǎn)業(yè)(制造、建筑、礦業(yè)等)、第三產(chǎn)業(yè)(服務(wù)、金融、不動產(chǎn)、信息等)為反應(yīng)變量,勞動力人口、電力發(fā)電力量、原油供應(yīng)、出口總額、進(jìn)口總額、匯率以及外匯儲備為解釋變量。建立的模型為:5.1.3.模型求解首先計(jì)算3個(gè)反應(yīng)變量與所有7個(gè)解釋變量的相關(guān)矩陣,結(jié)果如表1:表1:三種產(chǎn)業(yè)與七個(gè)解釋變量的相關(guān)矩陣X1X2X3X4X5X6X7Y1Y2Y3X11.0000.9730.3100.8830.783-0.9540.621-0.8710.9440.976X20.9731.0000.3520.9340.867-0.9290.767-0.8860.8990.996X30.3100.3521.0000.2420.260-0.3670.086-0.1000.4010.284X40.8830.9340.2421.0000.973-0.8490.839-0.8690.8190.945X50.7830.8670.2600.9731.000-0.7470.877-0.8190.7110.876X6-0.954-0.929-0.367-0.849-0.7471.000-0.5750.799-0.946-0.931X70.6210.7670.0860.8390.877-0.5751.000-0.7420.4900.775Y1-0.871-0.886-0.100-0.869-0.8190.799-0.7421.000-0.742-0.903Y20.9440.8990.4010.8190.711-0.9460.490-0.7421.0000.900Y30.9760.9960.2840.9450.876-0.9310.775-0.9030.9001.000從相關(guān)矩陣中可以得到如下信息:除X3原油供給量這個(gè)指標(biāo)外,其余指標(biāo)兩兩之間的相關(guān)系數(shù)絕對值都較大,相關(guān)程度大X7外匯儲備與三大產(chǎn)業(yè)國內(nèi)生產(chǎn)值中的第三產(chǎn)業(yè)國內(nèi)生產(chǎn)總值相關(guān)程度最大,且呈正相關(guān),這表明外匯儲備適度增加,第三產(chǎn)業(yè)生產(chǎn)值的也隨之增加。X7外匯儲備與Y1第一產(chǎn)業(yè)國內(nèi)生產(chǎn)總值呈負(fù)相關(guān),相關(guān)性略次于與第一產(chǎn)業(yè)的相關(guān),且表明外匯儲備增加會使第一產(chǎn)業(yè)即農(nóng)牧業(yè)的生產(chǎn)值減少。X7外匯儲備與Y2第二產(chǎn)業(yè)生產(chǎn)值的相關(guān)系數(shù)相對較小。下面首先消除數(shù)量級影響,將數(shù)據(jù)標(biāo)準(zhǔn)化,隨后使用典型相關(guān)分析,從而更系統(tǒng)的分析7個(gè)解釋變量與3個(gè)反應(yīng)變量間的關(guān)系,得到的結(jié)果如下:三個(gè)典型相關(guān)系數(shù)分別為:R1=0.999,R2=0.841,R3=0.419。表2:典型相關(guān)X的載荷矩陣1234567X1-0.070-0.2450.9500.0550.3530.425-2.108X2-0.0580.435-0.946-0.509-0.068-0.0812.704X30.005-0.070-0.0670.0840.0190.103-0.297X40.002-0.256-0.3320.486-1.1520.506-0.124X5-0.0080.1330.380-0.0230.926-0.3620.337X60.0070.1200.0840.011-0.0250.546-0.007X7-0.0250.0800.120-0.001-0.035-0.021-0.950表3:典型相關(guān)Y的載荷矩陣123Y1-0.0010.038-0.390Y20.005-0.3710.110Y3-0.1610.366-0.4525.1.4.模型檢驗(yàn)根據(jù)上述部分總體典型相關(guān)系數(shù)均為零的檢驗(yàn),得到的結(jié)果k為2,即典型變量只取到第2個(gè)為止。得到的最終模型如下:計(jì)算樣本數(shù)據(jù)在典型變量下的得分,畫出典型變量間的散點(diǎn)圖:圖2第1典型變量為坐標(biāo)的散點(diǎn)圖(左)第2典型變量為坐標(biāo)的散點(diǎn)圖(右)從圖中也可以看出,第一典型變量和第二典型變量的圖趨向于一條直線,相關(guān)性較強(qiáng)。5.1.5.結(jié)果解釋從上面的結(jié)果可以得到關(guān)于日本經(jīng)濟(jì)發(fā)展與各個(gè)變量之間的大量信息,然而由于篇幅限制,本文僅對有關(guān)外匯儲備的結(jié)果進(jìn)行詳細(xì)闡述:首先從第一典型相關(guān)中可以看到,其結(jié)果R1=0.9995534,說明U1,V1之間具有高度的相關(guān)。V1中第三產(chǎn)業(yè)Y3的載荷最大,而U1中勞動力人口X1以及電力發(fā)電力量X2的載荷最大,這從數(shù)值上說明了發(fā)電電力量、勞動力人口是衡量生產(chǎn)力水平的主要指標(biāo),符合公認(rèn)的經(jīng)濟(jì)規(guī)律;緊隨其后的即為外匯儲備X7,表明外匯儲備對于第三產(chǎn)業(yè)的發(fā)展十分重要;其次可以觀察到,無論是第一典型相關(guān)還是第二典型相關(guān),外匯儲備X7的符號均與第三產(chǎn)業(yè)Y3相同,這表明二者在一定程度上呈正相關(guān)關(guān)系;觀察第二典型相關(guān),可以發(fā)現(xiàn)V2中第二產(chǎn)業(yè)Y2與第三產(chǎn)業(yè)Y3的載荷都比較大,也就是這一相關(guān)中是結(jié)合第二產(chǎn)業(yè)以及第三產(chǎn)業(yè)的影響;U2中勞動力人口和電力發(fā)電力量仍然占有較大比重,而外匯儲備的載荷卻顯著降低,這說明外匯儲備對于第二產(chǎn)業(yè)的影響很小,僅對第三產(chǎn)業(yè)有較大影響。觀察日本經(jīng)濟(jì)數(shù)據(jù),發(fā)現(xiàn)日本第三產(chǎn)業(yè)的比重很大(從80年代初期到現(xiàn)在從50%增長到80%),故此日本的經(jīng)濟(jì)主要受第三產(chǎn)業(yè)的影響。綜合上面的分析可以得出以下結(jié)論,外匯儲備對于匯率的調(diào)控與對經(jīng)濟(jì)發(fā)展影響也不能輕視,合理的調(diào)整外匯儲備是一個(gè)國家應(yīng)完成的至關(guān)重要的經(jīng)濟(jì)決策任務(wù),不然就會成為制約國內(nèi)生產(chǎn)總值增長的瓶頸。5.2.SARIMA模型5.2.1.方法簡介通常,歷史數(shù)據(jù)會與一定潛在周期的倍數(shù)時(shí)間點(diǎn)上存在強(qiáng)烈的關(guān)系,經(jīng)濟(jì)學(xué)的數(shù)據(jù)尤為如此。SARIMA模型,即季節(jié)性自回歸滑動平均模型,和ARIMA模型均由ARMA模型擴(kuò)展而來,主要用于識別含有季節(jié)波動與外在事件波動對因變量所產(chǎn)生影響的預(yù)測。而SARIMA模型包含趨勢性和季節(jié)性,從而可以更好的擬合經(jīng)濟(jì)類的數(shù)據(jù),根據(jù)定義,需要將數(shù)據(jù)轉(zhuǎn)化為均值為零的數(shù)列后再進(jìn)行分析。它具體可表示為模型,式中:d和D分別為逐期差分和季節(jié)差分的階數(shù);p,q分別為自回歸和移動平均的階數(shù);P,Q分別為季節(jié)自回歸和季節(jié)移動平均的階數(shù);s為季節(jié)周期。模型可表示如下[10]:其中,,,,,,,為殘差,是一個(gè)高斯白噪聲的隨機(jī)過程。在模型建立之初,首先應(yīng)對模型進(jìn)行平穩(wěn)性檢驗(yàn)。本文使用傳統(tǒng)的ADF檢驗(yàn)法[11],其原理如下:情形1:情形2:情形3:分別對以上3個(gè)情形進(jìn)行檢驗(yàn),零假設(shè)和備擇假設(shè)均分別是:,。統(tǒng)計(jì)量,其中為階向量,其第p行元素為1,其余都為0;為階向量,();;T為樣本量。SARIMA模型中最重要的一步就在于階數(shù)的選擇,主要使用的方法有ACF和PACF法,AIC準(zhǔn)則法等。本文結(jié)合應(yīng)用這兩種方法進(jìn)行定階,即首先用ACF和PACF法來初選幾種可能的階數(shù),組合后建立模型,再運(yùn)用AIC準(zhǔn)則進(jìn)行篩選,選AIC值最小的為最佳階數(shù)模型。選好階數(shù)之后,應(yīng)對模型中的系數(shù)進(jìn)行估計(jì),估計(jì)方法如下:,其中如果q=0則直接對用條件最小二乘法求得即可,如果q>0則用條件最小二乘法求得作為初值然后再用最大似然估計(jì)進(jìn)行迭代出最后收斂的結(jié)果:,其中,模型建立完成后,需對模型進(jìn)行檢驗(yàn),本文使用的方法有殘差A(yù)CF檢驗(yàn)、Ljung-Box檢驗(yàn)、殘差正態(tài)性檢驗(yàn)。其中Ljung-Box檢驗(yàn)方法原理如下::數(shù)據(jù)是隨機(jī)的,:數(shù)據(jù)是非隨機(jī)的檢驗(yàn)統(tǒng)計(jì)量:~其中,T是樣本量,是j階滯后自相關(guān)系數(shù),h是被檢驗(yàn)的滯后階數(shù)。5.2.2.模型建立由于在2004年3月前,日本政府對外匯儲備的決策進(jìn)行了大力度的干預(yù)(來自泰晤士報(bào)報(bào)道[12]),故此在數(shù)據(jù)選擇上使用04年3月之后的數(shù)據(jù),對其數(shù)值做對數(shù)處理,并減去其均值的對數(shù)值,即:作圖觀察其走勢,即:圖3xt走勢圖可以看到日本的外匯儲備大體上是呈上升趨勢的。為了建立時(shí)間序列模型,從而預(yù)測外匯儲備的變化趨勢,首先對該數(shù)據(jù)資料進(jìn)行平穩(wěn)性檢驗(yàn)。本文使用的方法為單位根檢驗(yàn),并結(jié)合ACF圖以及PACF圖更直觀的說明問題。依據(jù)上述提到的單位根檢驗(yàn)的原理,進(jìn)行檢驗(yàn),得到的圖形和結(jié)果如下:圖4原序列ACF及PACF圖從ACF圖以及PACF圖中看出,自相關(guān)函數(shù)具有拖尾性,偏自相關(guān)系數(shù)在滯后一階處逼近于1,對上述方法簡介中闡述三種情形作ADF檢驗(yàn)結(jié)果分別為,情形1:p=0.4881,情形2:p=0.8950,情形3:p=0.3412,均不能拒絕原假設(shè),即存在單位根,即原時(shí)間序列應(yīng)為為I(1)序列。因此需要對數(shù)據(jù)做差分處理,即:差分之后再次進(jìn)行ADF檢驗(yàn),得到如下結(jié)果:圖5差分序列ACF及PACF圖ADF檢驗(yàn)結(jié)果分別為:情形1:p=3.511e-8,情形2:p=2.343e-7,情形3:p=1.082e-6,均拒絕原假設(shè),即不存在單位根,可以認(rèn)為序列是平穩(wěn)的。從ACF以及PACF圖中可以觀察出,該數(shù)據(jù)具有以7個(gè)月為周期的季節(jié)特征,基于上述理論,初步推測應(yīng)當(dāng)使用模型,且其周期定為7。另外出于解釋上的考慮,以6個(gè)月為周期可能更易讓人理解,因此我們分別做了如下處理,即:周期為6:周期為7:對差分后的數(shù)據(jù)做ACF圖以及PACF圖,結(jié)合ACF、PACF法以及AIC準(zhǔn)則定階方法對模型進(jìn)行定階:圖6季節(jié)性差分序列ACF及PACF圖由于以周期為6和7的模型的逐期差分d和季節(jié)差分D均為1,觀察ACF圖以及PACF圖,可以看到,周期為6的模型自回歸階數(shù)p為0,移動平均階數(shù)q也為0,季節(jié)自回歸階數(shù)P為2,季節(jié)移動平均階數(shù)Q為1;周期為7的模型自回歸階數(shù)p為0或者4,相應(yīng)的移動平均階數(shù)q為0或者4,季節(jié)自回歸階數(shù)P為2,季節(jié)移動平均階數(shù)Q為1。即產(chǎn)生如下三個(gè)模型:SARIMA(0,1,0)X(2,1,1)6AIC=-467.39SARIMA(0,1,0)X(2,1,1)7AIC=-470.50SARIMA(4,1,4)X(2,1,1)7AIC=-461.51經(jīng)過檢驗(yàn),3個(gè)模型的每個(gè)值的Ljung-Box的統(tǒng)計(jì)量的p值都大于0.05,具有統(tǒng)計(jì)學(xué)意義,說明模型均合理,通過比較AIC值的大小,發(fā)現(xiàn)第三個(gè)模型即SARIMA(0,1,0)X(2,1,1)7的效果相對來說更為理想,因此選用此模型。5.2.3.模型求解對上述模型進(jìn)行擬合,得到的模型參數(shù):=-0.58,=-0.21,=-0.68,(均保留兩位小數(shù))。即得到模型如下:將上述模型展開,即可以看作一個(gè)三個(gè)自變量對一個(gè)因變量的多元回歸模型,根據(jù)如下原理[13]編寫系數(shù)的t檢驗(yàn)程序(見附錄9.2.2部分中#對最好的模型進(jìn)行參數(shù)檢驗(yàn)部分):~其中,計(jì)算得到模型系數(shù)的檢驗(yàn)結(jié)果,具體如下:表4:參數(shù)檢驗(yàn)結(jié)果系數(shù)標(biāo)準(zhǔn)誤t統(tǒng)計(jì)量P值-0.58490.1821-3.2119710.003-0.21290.1663-1.2799520.175-0.67670.1970-3.4347810.002可以看出無統(tǒng)計(jì)學(xué)意義,因此考慮將其去掉并重新擬合。得到=-0.42,=-0.83,(結(jié)果保留兩位小數(shù)),即得到模型如下:再次運(yùn)用t檢驗(yàn)檢驗(yàn)參數(shù),得到結(jié)果如下:表5:改進(jìn)模型的檢驗(yàn)結(jié)果系數(shù)標(biāo)準(zhǔn)誤t統(tǒng)計(jì)量P值-0.41610.1172-3.5502420.001-0.82680.1468-5.6321240.000表明兩個(gè)系數(shù)均有意義,將上式展開,得到最終模型:5.2.4.模型檢驗(yàn)進(jìn)行模型檢驗(yàn),得到結(jié)果如下:從ACF證明該模型已經(jīng)很好地消除了該序列中的自相關(guān)特性,能較好地?cái)M合該時(shí)間序列。從最下方的圖可看出Ljung-Box統(tǒng)計(jì)量的p值都大于0.05(所有觀測點(diǎn)都位于檢驗(yàn)水準(zhǔn)0.05的水平線之上),證明該模型合理。圖7SARIMA模型檢驗(yàn)結(jié)果圖對其殘差做Shapiro正態(tài)性檢驗(yàn),p值為0.3717,顯示不拒絕其服從正態(tài)分布的原假設(shè),即殘差呈正態(tài)分布,進(jìn)一步說明模型效果良好。以下是通過回代得出外匯儲備量的真實(shí)值和擬合值的走勢圖:圖8外匯儲備走勢擬合圖從圖中可以看到作為虛線的擬合曲線與實(shí)線的真實(shí)值十分接近,且經(jīng)過計(jì)算得到其總誤差占真實(shí)值的比例為7.66%,表明擬合效果良好。5.2.5.結(jié)果解釋上述過程證實(shí)外匯儲備存在7個(gè)月(可近似看作半年)的周期,考慮到日本經(jīng)濟(jì)周期為一年(通過查閱日本季度GDP數(shù)據(jù)得到,具體見圖9)以及經(jīng)濟(jì)數(shù)據(jù)的滯后效應(yīng),據(jù)此可發(fā)現(xiàn)一個(gè)讓人比較容易接受的結(jié)論:這個(gè)月的外匯儲備受到半年前,一年前,甚至一年半以前的數(shù)據(jù)的影響,或者說,日本政府在對外匯儲備做決策時(shí),有意或無意地會考慮到半年前或者一年前的外匯儲備量。圖9經(jīng)濟(jì)周期態(tài)勢圖注:0處為2008年1月,實(shí)線為季度GDP的走勢,虛線為周期為12個(gè)月的余弦函數(shù),由于同季度的3個(gè)月內(nèi)的季度GDP值相同,故線條會出現(xiàn)局部平緩的現(xiàn)象。通過以上模型分別預(yù)測假設(shè)沒有發(fā)生地震時(shí)2011年3月、4月、5月的外匯儲備并與真實(shí)值對比,結(jié)果如下:表6:外匯儲備預(yù)測值(未發(fā)生地震情形下)與真實(shí)值對比時(shí)間外匯儲備(單位:百萬美元)2011.32011.42011.5真實(shí)值111602511355491139524預(yù)測值109706910939081094197差額189564164145327假設(shè)以上差額即全部外匯儲備調(diào)整,以及同一季度每個(gè)月的GDP相等,然后求得其調(diào)整量在每個(gè)月GDP里所占的比重。根據(jù)GDP的支出法核算方式,即GDP=消費(fèi)+投資+政府支出+凈出口,在此做保守估計(jì),即不考慮投資收益率與外匯儲備收益率之差(有研究表明外匯儲備的增加在某種程度上等同于以廉價(jià)的收益把資金借予其他國家,故上述差值一般為正數(shù)),所以如果外匯儲備的調(diào)整量全部用于國內(nèi)投資,至少會讓GDP上升其調(diào)整量的100%。據(jù)此,本文將地震所導(dǎo)致外匯儲備變動而產(chǎn)生的經(jīng)濟(jì)發(fā)展延緩程度定義為外匯儲備3月至5月的差額與當(dāng)月GDP的比例的均值,即,具體計(jì)算結(jié)果見表7,圖10更為形象的展現(xiàn)了二者之間的差額。表7:外匯儲備比重時(shí)間項(xiàng)目2011.32011.42011.5外匯儲備調(diào)整量(百萬美元)18,95641,64145,327匯率(美元兌日元)81.719883.2581.14362011年第一季度GDP(十億日元)132,314132,314132,314所占月GDP比例3.51%7.86%8.34%圖10可直觀地觀察到上述數(shù)據(jù)的差距,虛線為3-5月的真實(shí)值,實(shí)線為預(yù)測值:圖10真實(shí)值與預(yù)測值對比圖注:紅圈所示實(shí)虛線之差即為表7中的外匯儲備調(diào)整額(百萬美元)結(jié)論由于外匯儲備的變動會影響到各個(gè)方面,且本文并沒有對各個(gè)方面的效益作出定量化的預(yù)測,故在此并不對日本政府調(diào)整如此之多的外匯儲備做出任何評價(jià),僅針對本次地震事件使得日本的外匯儲備大幅調(diào)整所帶來的機(jī)會成本,旨在說明該事件對日本的影響不單單是財(cái)務(wù)報(bào)表上的所提及的會計(jì)利潤的虧損,還會在各個(gè)領(lǐng)域存在為此而不得不產(chǎn)生改變而導(dǎo)致的間接經(jīng)濟(jì)損失。本文結(jié)果表明,地震導(dǎo)致外匯儲備在3,4,5月的上漲分別延緩了日本經(jīng)濟(jì)的3.51%,7.86%,8.34%的增長速度,取其平均數(shù),即由外匯儲備產(chǎn)生的機(jī)會成本使得日本經(jīng)濟(jì)發(fā)展速度減緩6.57%。模型評價(jià)與改進(jìn)7.1.優(yōu)點(diǎn):1)以外匯儲備歷史數(shù)據(jù)規(guī)律擬合的時(shí)間序列模型與涉及多個(gè)影響因素的模型相比,可以避免因未能找齊所有影響因素而產(chǎn)生的較大誤差。2)與其他對于日本地震造成的經(jīng)濟(jì)損失的方向不同,本文“矛頭”指向了間接損失,定量化分析日本地震造成的外匯儲備增長產(chǎn)生的機(jī)會成本。3)本文提出引入機(jī)會成本的概念這一方法,估計(jì)地震所帶來的間接經(jīng)濟(jì)損失,從而能更全面地評價(jià)本次事件帶來的總體經(jīng)濟(jì)損失。7.2.缺點(diǎn):1)只探討了外匯儲備的增加所產(chǎn)生的機(jī)會成本,未討論外匯儲備增加所帶來的收益,未能全面評價(jià)其增加所帶來的總效益。2)在計(jì)算日本外匯儲備因地震增加的部分造成的機(jī)會成本略顯粗糙,應(yīng)該引入收益率等概念,使模型結(jié)果更加精確。7.3.模型改進(jìn):1)引入?yún)?shù)收益率分析外匯儲備增加造成的機(jī)會成本:假如日本不是將其所獲得的外匯用作國際儲備,而是投資于國際金融市場的高收益資產(chǎn)本來可以獲得的較高收益率i,與以外國政府債券等形式持有國際儲備實(shí)際所能獲得的較低收益率if之間的利差(i—if)??梢?,對發(fā)達(dá)國家來說,政府事先持有的R元國際儲備遭受的以外幣計(jì)值的機(jī)會成本將是C3=R(i—it)[14]。2)在計(jì)算經(jīng)濟(jì)發(fā)展延緩程度時(shí),可考慮通過預(yù)測或者某種關(guān)系式得到未發(fā)生地震時(shí)的匯率,以求更精確的機(jī)會成本。使用發(fā)生地震且進(jìn)行大幅調(diào)整后的匯率將假設(shè)未發(fā)生地震時(shí)的外匯儲備顯然是粗糙的,在建模過程中也驗(yàn)證了年計(jì)的數(shù)據(jù)顯示它跟外匯儲備有較明顯的線性關(guān)系,而月計(jì)的數(shù)據(jù)中則顯示線性擬合的R2值較小,但各個(gè)參數(shù)均有統(tǒng)計(jì)學(xué)意義,這提示匯率與其影響因素間應(yīng)為一種多元關(guān)系。由于這不屬于本文的主要研究方向,故將此作為模型改進(jìn)的一部分。3)可以類似的考慮除了外匯儲備以外更多的誘因在本次地震中所造成的間接經(jīng)濟(jì)損失。由于可以引發(fā)間接經(jīng)濟(jì)損失的原因還有很多,為了分析方便以及考慮數(shù)據(jù)收集的難度,本文只介紹了外匯儲備這一種。接下來還可以進(jìn)行的工作就是找到其他可以引發(fā)間接經(jīng)濟(jì)損失的變量,收集相應(yīng)數(shù)據(jù),按照本文相似的方法進(jìn)行逐個(gè)分析,最終選擇合適的統(tǒng)計(jì)學(xué)方法將所有因素綜合進(jìn)行分析。參考文獻(xiàn)[1]了梁芳,聶高眾,高建國(2006)地震的社會經(jīng)濟(jì)影響.災(zāi)害學(xué)2006,21(2):110-113.[2]高豐,于永達(dá)(2003)中國外匯儲備對經(jīng)濟(jì)的影響及適度規(guī)模分析.金融與經(jīng)濟(jì)2003,(6):11-15.[3]新華網(wǎng)(2006)日本如何管理巨額外匯儲,/fortune//2006-04/08/content_4397756.htm(2006年04月08日07:00:00)[4]上海證券報(bào)(2006)外匯儲備激增五大負(fù)面影響/fortune/2006-05/29/content_4613515.htm(2006年05月29日08:07:35).[5]徐國祥(2008)統(tǒng)計(jì)預(yù)測和決策.上海:上海財(cái)經(jīng)大學(xué)出版社.[6]馮春萍(2004)日本石油儲備模式研究,現(xiàn)代日本經(jīng)濟(jì)2004,
(1).[7]段鵬(2009)我國商品進(jìn)出口:基于SARIMA模型的預(yù)測.華中師范大學(xué)學(xué)報(bào)(人文社會科學(xué)版)2009,48(1):60-66.[8]黃德生,郭海強(qiáng),沈鐵峰等(2009).SARIMA模型在腎綜合征出血熱發(fā)病率預(yù)測中的應(yīng)用.數(shù)學(xué)的實(shí)踐與認(rèn)識2009,
39(23):100-106.[9]孫湘海,劉潭秋(2008)基于SARIMA模型的城市道路短期交通流預(yù)測研究.公路交通科技2008,
25(1):129-133.[10]RobertH.Shumway,DavidS.Stoffer(2005).TimeSeriesAnalysisandItsApplications(WithRExamples).Springer,NewYork.[11]朱平芳(2004)現(xiàn)代計(jì)量經(jīng)濟(jì)學(xué).上海:上海財(cái)經(jīng)大學(xué)出版社.[12]《泰晤士報(bào)》報(bào)道日政府已正式停止干預(yù)匯市/info/darticle.aspx?id=ZH,20040329,01091856(2004-3-298:34:42).[13]薛毅,陳立萍(2007)R統(tǒng)計(jì)建模與R語言.北京,清華大學(xué)出版社.[14]蘇平貴(2009)國際儲備最優(yōu)規(guī)模問題研究——基于成本角度的分析與考察,《東北財(cái)經(jīng)大學(xué)學(xué)報(bào)》2009年06期:10-15.[15]徐嵩齡.災(zāi)害經(jīng)濟(jì)損失概念及產(chǎn)業(yè)關(guān)聯(lián)型間接經(jīng)濟(jì)損失計(jì)量[J].自然災(zāi)害學(xué)報(bào),1998.7(4):7-15附錄9.1.詳細(xì)數(shù)據(jù)9.1.1.典型相關(guān)分析所需數(shù)據(jù)時(shí)間Y國內(nèi)生產(chǎn)總值(支出法)國內(nèi)生產(chǎn)總值(名目)的產(chǎn)業(yè)比率第一產(chǎn)業(yè)第二產(chǎn)業(yè)第三產(chǎn)業(yè)10億円%%%1967136,300.009.0040.1050.901968152,532.007.9040.9051.201969170,765.007.0041.9051.201970188,323.005.9043.1050.901971196,589.005.1042.7052.201972213,129.005.3042.0052.801973230,249.005.7042.5051.801974227,428.005.4041.3053.401975234,459.005.3038.8055.901976243,779.005.1038.7056.201977254,481.004.9037.7057.501978267,898.004.5037.9057.601979282,589.004.2037.8058.001980284,375.003.5036.2060.301981296,253.003.3036.3060.401982306,256.003.2035.6061.101983315,630.003.2034.5062.201984329,719.003.2034.9061.901985350,602.003.0034.9062.001986360,527.002.9034.3062.801987375,336.002.7034.1063.201988402,160.002.5034.6062.901989423,757.002.5035.0062.601990447,370.002.4035.4062.201991462,242.002.2035.0062.701992466,028.002.1033.9064.001993466,825.001.9032.5065.601994470,857.002.0031.1066.901995479,716.001.8030.4067.801996492,368.001.8030.4067.801997500,066.001.7030.1068.201998489,821.001.8029.3068.901999489,130.001.8028.7069.602000503,120.001.7028.5069.802001504,048.001.6027.1071.202002505,369.001.6026.5071.902003512,513.001.6026.5071.902004526,578.001.6026.9071.602005536,762.001.5026.8071.702006547,709.001.4026.7071.902007560,651.001.4026.6072.102008554,098.001.4025.5073.10時(shí)間X國內(nèi)情況對外情況勞動力人口發(fā)電電力量原油供給量通關(guān)實(shí)際功績額匯率外匯儲備量輸出進(jìn)口萬100萬kWh1,000kl10億円10億円1美元/円100萬美金19674983244,994.00131,024.003,759.004,199.00361.912,005.0019685061273,337.00152,225.004,670.004,675.00357.702,891.0019695098316,261.00182,799.005,756.005,408.00357.803,496.0019705153359,538.00215,617.006,954.006,797.00357.654,399.0019715186385,664.00236,634.008,393.006,910.00314.7515,235.0019725199428,477.00260,325.008,806.007,229.00301.1018,365.0019735326470,287.00306,032.0010,031.0010,404.00280.0012,246.0019745310459,042.00296,372.0016,208.0018,076.00300.9513,518.0019755323475,794.00288,930.0016,545.0017,170.00305.1512,815.0019765378511,793.00303,444.0019,935.0019,229.00293.0016,604.0019775452532,608.00310,179.0021,648.0019,132.00240.0022,848.0019785532563,988.00304,922.0020,556.0016,728.00195.1033,019.0019795596589,644.00307,300.0022,532.0024,245.00239.9020,327.0019805650577,521.00283,011.0029,382.0031,995.00203.6025,232.0019815707583,245.00264,327.0033,469.0031,464.00220.2528,403.0019825774581,384.00244,950.0034,433.0032,656.00235.3023,262.0019835889618,100.00243,671.0034,909.0030,015.00232.0024,496.0019845927648,572.00239,322.0040,325.0032,321.00251.5826,313.0019855963671,952.00226,894.0041,956.0031,085.00200.6026,510.0019866020676,352.00215,590.0035,290.0021,551.00160.1042,239.0019876084719,068.00214,890.0033,315.0021,737.00122.0081,479.0019886166753,728.00226,190.0033,939.0024,006.00125.9097,662.0019896270798,756.00236,858.0037,823.0028,979.00143.4084,895.0019906384857,272.00263,362.0041,457.0033,855.00135.4077,053.0019916505888,089.00268,784.0042,360.0031,900.00125.2568,980.0019926578895,266.00278,821.0043,012.0029,527.00124.6568,685.0019936615906,705.00276,883.0040,202.0026,826.00111.8995,589.0019946645964,330.00294,375.0040,498.0028,104.0099.83122,845.0019956666989,880.00286,242.0041,531.0031,549.00102.91182,820.00199667111,009,349.00285,270.0044,731.0037,993.00115.98217,867.00199767871,037,892.00288,558.0050,938.0040,956.00129.92220,792.00199867931,046,288.00276,125.0050,645.0036,654.00115.20215,949.00199967791,066,130.00268,768.0047,548.0035,268.00102.08288,080.00200067661,091,500.00271,220.0051,654.0040,938.00114.90361,638.00200167521,075,890.00259,429.0048,979.0042,416.00131.47401,959.00200266891,101,260.00259,705.0052,109.0042,228.00119.37469,728.00200366661,093,956.00262,472.0054,548.0044,362.00106.97673,529.00200466421,137,341.00259,908.0061,170.0049,217.00103.78844,543.00200566501,157,926.00267,911.0065,657.0056,949.00117.48846,897.00200666571,161,110.00256,912.0075,246.0067,344.00118.92895,320.00200766691,192,771.00260,804.0083,931.0073,136.00113.12973,365.00200866501,146,269.00249,740.0081,018.0078,955.0090.281,030,647.009.1.2.SARIMA模型所需數(shù)據(jù)時(shí)間外匯儲備(百萬美元)2004年3月8265772004年4月8149692004年5月8168482004年6月8179512004年7月8192032004年8月8279542004年9月8309922004年10月8378782004年11月8400872004年12月8445432005年1月8409662005年2月8405642005年3月8377182005年4月8436012005年5月8424682005年6月8435372005年7月8393782005年8月8477662005年9月8435632005年10月8417922005年11月8432682005年12月8468972006年1月8516662006年2月8500582006年3月8520302006年4月8602422006年5月8641122006年6月8648782006年7月8719382006年8月8787482006年9月8812732006年10月8855542006年11月8969492006年12月8953202007年1月8953832007年2月9050482007年3月9089582007年4月9156232007年5月9111372007年6月9135722007年7月9237182007年8月9321572007年9月9456012007年10月9544842007年11月9701852007年12月9733652008年1月9960442008年2月10079812008年3月10155872008年4月10038362008年5月9969752008年6月10015492008年7月10046582008年8月9967412008年9月9958902008年10月9777232008年11月10028612008年12月10306472009年1月10109582009年2月10093542009年3月10185492009年4月10114732009年5月10240122009年6月10191752009年7月10226572009年8月10423402009年9月10525982009年10月10567692009年11月10737122009年12月10493972010年1月10530702010年2月10510792010年3月10427152010年4月10468732010年5月10413182010年6月10502352010年7月10635132010年8月10701452010年9月11095912010年10月11181212010年11月11010312010年12月10961852011年1月10929802011年2月10914852011年3月11160252011年4月11355492011年5月11395249.2.程序9.2.1.典型相關(guān)######典型相關(guān)部分的相應(yīng)程序###########REA<-read.table("aaa1.txt",header=TRUE)#讀取數(shù)據(jù)rea<-data.frame(REA)#將數(shù)據(jù)轉(zhuǎn)成數(shù)據(jù)框attach(rea)y1<-y11*GDPy2<-y12*GDPy3<-y13*GDP#將三大產(chǎn)業(yè)占國內(nèi)生產(chǎn)總值比例轉(zhuǎn)化為具體的數(shù)值rea<-data.frame(rea,y1,y2,y3)#整理數(shù)據(jù),將第一二三產(chǎn)業(yè)GDP百分比化為實(shí)際值reacor(rea[,6:15])#3個(gè)反應(yīng)變量與7個(gè)解釋變量的相關(guān)矩陣rea<-scale(rea)#標(biāo)準(zhǔn)化#三種產(chǎn)業(yè)以及全部變量的典型相關(guān)分析ca1<-cancor(rea[,6:12],rea[,13:15])ca1#典型相關(guān)檢驗(yàn)函數(shù)corcoef.test<-function(r,n,p,q,alpha=0.1){m<-length(r);Q<-rep(0,m);lambda<-1for(kinm:1){lambda<-lambda*(1-r[k]^2);Q[k]<--log(lambda)}s<-0i<-mfor(kin1:m){Q[k]<-(n-k+1-1/2*(p+q+3)+s)*Q[k]chi<-1-pchisq(Q[k],(p-k+1)*(q-k+1))if(chi>alpha){i<-k-1;break}s<-s+1/r[k]^2}i}#進(jìn)行典型相關(guān)檢驗(yàn)corcoef.test(r=ca1$cor,n=42,p=7,q=3,alpha=0.01)#計(jì)算樣本數(shù)據(jù)在典型變量下的得分U1<-as.matrix(rea[,6:12]%*%ca1$xcoef)U1V1<-as.matrix(rea[,13:15]%*%ca1$ycoef)V1#畫出相關(guān)變量u1,v1u2,v2u3,v3為數(shù)據(jù)的坐標(biāo)散點(diǎn)圖plot(U1[,1],V1[,1],xlab="u1",ylab="v1")plot(U1[,2],V1[,2],xlab="u2",ylab="v2")plot(U1[,3],V1[,3],xlab="u3",ylab="v3")9.2.2.SARIMA模型###############SARIMA#######################library(foreign)library(urca)library(timeDate)library(timeSeries)library(MASS)library(fBasics)library(fUnitRoots)#加載該模型所需的程序包d=as.data.frame(read.spss("data2.sav"))f_ts0=ts(d$f_exchange[48:131],start=c(2004,3),frequency=12)f_ts=log(f_ts0)-mean(log(f_ts0))plot.ts(f_ts)#對外匯儲備的原數(shù)列進(jìn)行數(shù)理變換使其成為一個(gè)均值為0的時(shí)間序列xtpar(mfrow=c(2,1))acf(f_ts,36)pacf(f_ts,36)unitrootTest(f_ts,lags=0)unitrootTest(f_ts,lags=0,type=c("nc"))unitrootTest(f_ts,lags=0,type=c("ct"))#通過ACF圖和PACF圖,還有3種情形的ADF檢驗(yàn)對xt進(jìn)行平穩(wěn)性檢驗(yàn)par(mfrow=c(2,1))acf(diff(f_ts),36)pacf(diff(f_ts),36)unitrootTest(diff(f_ts),lags=0)unitrootTest(diff(f_ts),lags=0,type=c("nc"))unitrootTest(diff(f_ts),lags=0,type=c("ct"))#通過ACF圖和PACF圖,還有3種情形的ADF檢驗(yàn)對xt的差分序列xt1進(jìn)行平穩(wěn)性檢驗(yàn)par(mfrow=c(2,2))acf(diff(diff(f_ts),7),36)pacf(diff(diff(f_ts),7),36)acf(diff(diff(f_ts),6),36)pacf(diff(diff(f_ts),6),36)#xt1周期分別為6、7的季節(jié)性差分序列的ACF圖和PACF圖f.fit1=arima(f_ts,order=c(0,1,0),seasonal=list(order=c(2,1,1),period=6))f.fit2=arima(f_ts,order=c(0,1,0),seasonal=list(order=c(2,1,1),period=7))f.fit3=arima(f_ts,order=c(4,1,4),seasonal=list(order=c(2,1,1),period=7))f.fit1f.fit2f.fit3#分別選擇了3種模型進(jìn)行擬合a=as.vector(f.fit2$coef)t<-a/c(0.1821,0.1663,0.1970)p<-dt(t,62-3-1)data.frame(estimate=a,t=t,p=p)#對最好的模型進(jìn)行參數(shù)檢驗(yàn)tsdiag(f.fit1,gof.lag=36)hist(f.fit1$resid,br=12)qqnorm(f.fit1$resid)shapiro.test(f.fit1$resid)tsdiag(f.fit2,gof.lag=36)hist(f.fit2$resid,br=12)qqnorm(f.fit2$resid)shapiro.test(f.fit2$resid)tsdiag(f.fit3,gof.lag=36)hist(f.fit3$resid,br=12)qqnorm(f.fit3$resid)shapiro.test(f.fit3$resid)#分別對三個(gè)模型進(jìn)行總體檢驗(yàn)f.fit2=arima(f_ts,order=c(0,1,0),seasonal=list(order=c(1,1,1),period=7))f.fit2#對上述最佳模型優(yōu)化后的新模型擬合a=as.vector(f.fit2$coef)t<-a/c(0.1172,0.1468)p<-dt(t,69-2-1)data.frame(estimate=a,t=t,p=p)#對新模型的參數(shù)檢驗(yàn)tsdiag(f.fit2,gof.lag=36)hist(f.fit2$resid,br=12)qqnorm(f.fit2$resid)shapiro.test(f.fit2$resid)#新模型的整體檢驗(yàn)sum(abs(f.fit2$resid))/sum(abs(f_ts))er=abs(f.fit2$resid)/abs(f_ts)#計(jì)算最終模型的整體誤差率plot(exp(f_ts+mean(log(f_ts0))),ylab="foreignexchange")lines(exp(f_ts-f.fit2$resid+mean(log(f_ts0))),lty=2)title(main="Theforeignexchange'strend")#最終模型的擬合效果圖pre=as.vector(predict(f.fit2,n.ahead=3)$pred)pre=exp(pre+mean(log(f_ts0)))#預(yù)測假設(shè)在沒有發(fā)生地震情況下的3-5月外匯儲備f_ts1=c(f_ts0,0,0,0)for(iin1:3){f_ts1[84+i]=pre[i]}plot(ts(d$f_exchange[48:134],start=c(2004,3),frequency=12),ylab="foreignexchange",lty=2)lines(ts(f_ts1,start=c(2004,3),frequency=12))#作圖對比預(yù)測值與真實(shí)值的差距
《會計(jì)基礎(chǔ)》光盤模擬試題一、單項(xiàng)選擇題:1、會計(jì)是以()為主要計(jì)量單位,反映和監(jiān)督一個(gè)單位經(jīng)濟(jì)活動的一種經(jīng)濟(jì)管理工作。(本題分?jǐn)?shù):1分)A.實(shí)物B.商品C.貨幣D.勞動2、下列各項(xiàng)中,屬于會計(jì)基本職能的是()。(本題分?jǐn)?shù):1分)A.會計(jì)核算與會計(jì)預(yù)測B.會計(jì)預(yù)算和會計(jì)決算C.會計(jì)核算與會計(jì)監(jiān)督D.會計(jì)分析和會計(jì)決策3、會計(jì)對象是企業(yè)事業(yè)單位的()。(本題分?jǐn)?shù):1分)A.經(jīng)濟(jì)活動B.經(jīng)濟(jì)資源C.資金運(yùn)動D.勞動耗費(fèi)4、()界定了會計(jì)信息的時(shí)間段落,為分期結(jié)算賬目和編制賬務(wù)會計(jì)報(bào)告等奠定了理論與實(shí)務(wù)基礎(chǔ)。(本題分?jǐn)?shù):1分)A.會計(jì)主體B.會計(jì)分期C.會計(jì)核算D.持續(xù)經(jīng)營5、某企業(yè)接受追加投資180萬元,款已到并存入銀行,該項(xiàng)業(yè)務(wù)使得企業(yè)()(本題分?jǐn)?shù):1分)A.資產(chǎn)增加180萬元,同時(shí)負(fù)債增加180萬元B.資產(chǎn)增加180萬元,同時(shí)所有者權(quán)益增加180萬元C.所有者權(quán)益增加180萬元,同時(shí)負(fù)債增加180萬元D.所有者權(quán)益增加180萬元,同時(shí)負(fù)債減少180萬元6、考慮貨幣時(shí)間價(jià)值因素的計(jì)量屬性是()。(本題分?jǐn)?shù):1分)A.歷史成本B.可變現(xiàn)凈值C.重置成本D.現(xiàn)值7、以下(),不屬于財(cái)務(wù)成果的計(jì)算與處理。(本題分?jǐn)?shù):1分)A.計(jì)算分配利潤B.提取盈余公積C.向國家計(jì)算繳納所得稅D.向國家繳納增值稅8、我國的法定記賬方法是()(本題分?jǐn)?shù):1分)A.增減記賬法B.收付記賬法C.借貸記賬法D.單式記賬法9、()是根據(jù)明細(xì)分類科目設(shè)置的用來對會計(jì)要素的具體內(nèi)容進(jìn)行明細(xì)分類核算的賬戶。(本題分?jǐn)?shù):1分)A.總分類賬戶B.明細(xì)分類賬戶C.總賬D.二級賬10、借貸記賬法記賬符號“借”表示()(本題分?jǐn)?shù):1分)A.資產(chǎn)增加,權(quán)益減少B.資產(chǎn)減少,權(quán)益增加C.資產(chǎn)增加,權(quán)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《家裝知識講座》課件
- 《癲癇本科》課件
- 《家族式增員》課件
- 單位管理制度合并選集【人員管理篇】
- 單位管理制度范例選集人事管理篇十篇
- 《投資經(jīng)濟(jì)學(xué)》課程教學(xué)大綱
- 《現(xiàn)代經(jīng)濟(jì)學(xué)》課程教學(xué)大綱1
- 《小學(xué)分?jǐn)?shù)教學(xué)》課件
- 《電子元件基礎(chǔ)知識》課件
- 《企業(yè)環(huán)保管理》課件
- ISO 56001-2024《創(chuàng)新管理體系-要求》專業(yè)解讀與應(yīng)用實(shí)踐指導(dǎo)材料之15:“6策劃-6.4創(chuàng)新組合”(雷澤佳編制-2025B0)
- 廣東省廣州市天河區(qū)2022-2023學(xué)年七年級上學(xué)期期末語文試題(含答案)
- 標(biāo)準(zhǔn)廠房施工方案
- DBJT45T 037-2022 高速公路出行信息服務(wù)管理指南
- 港口碼頭租賃協(xié)議三篇
- 浙江省紹興市柯橋區(qū)2023-2024學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量調(diào)測數(shù)學(xué)試題(解析版)
- 項(xiàng)目部實(shí)名制管理實(shí)施措施
- 顳下頜關(guān)節(jié)疾病試題
- 福建省廈門市2023-2024學(xué)年高二上學(xué)期期末考試質(zhì)量檢測化學(xué)試題 附答案
- 非甾體抗炎藥圍術(shù)期鎮(zhèn)痛專家共識(2024 版)解讀
- 安全使用文具班會課
評論
0/150
提交評論