版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣西壯族自治區(qū)百色市足榮中學(xué)高二數(shù)學(xué)理模擬試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.某幾何體的三視圖如下圖所示,它的體積為(
)A.
B.
C.
D.參考答案:C2.三次函數(shù)的圖象在點(diǎn)(1,f(1))處的切線與x軸平行,則f(x)在區(qū)間(1,3)上的最小值是()A. B. C. D.參考答案:D【考點(diǎn)】6H:利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程.【分析】求出函數(shù)的導(dǎo)數(shù),求得切線的斜率,由兩直線平行的條件:斜率相等,解方程可得a,再求f(x)在區(qū)間(1,3)上的最小值.【解答】解:f′(x)=3ax2﹣3x+2,由圖象在(1,f(1))處的切線平行于x軸,可得f′(1)=3a﹣3+2=0,解得a=,∴f′(x)=(x﹣1)(x﹣2),函數(shù)在(1,2)上單調(diào)遞減,(2,3)上單調(diào)遞增,∴x=2時(shí),f(x)在區(qū)間(1,3)上的最小值是.故選D.【點(diǎn)評(píng)】本題考查導(dǎo)數(shù)的運(yùn)用:求切線的斜率,函數(shù)的單調(diào)性與最值,考查導(dǎo)數(shù)的幾何意義:函數(shù)在某點(diǎn)處的導(dǎo)數(shù)即為曲線在該點(diǎn)處的切線的斜率,考查運(yùn)算能力,屬于中檔題.3.直線l:x+y﹣4=0與圓C:x2+y2=4的位置關(guān)系是()A.相離 B.相切 C.相交不過(guò)圓心 D.相交且過(guò)圓心參考答案:B【考點(diǎn)】直線與圓的位置關(guān)系.【分析】由圓C的方程求出圓心坐標(biāo)和半徑,由條件和點(diǎn)到直線的距離公式,求出圓C到直線l的距離,可得到答案.【解答】解:由題意得,圓C:x2+y2=4的圓心C(0,0),半徑r=2,則圓心C到直線l:x+y﹣4=0的距離:d==2=r,所以直線l與圓C相切,故選:B.4.以下說(shuō)法,正確的個(gè)數(shù)為
(
)①公安人員由罪犯的腳印的尺寸估計(jì)罪犯的身高情況,所運(yùn)用的是類比推理.②農(nóng)諺“瑞雪兆豐年”是通過(guò)歸納推理得到的.③由平面幾何中圓的一些性質(zhì),推測(cè)出球的某些性質(zhì)這是運(yùn)用的類比推理.④個(gè)位是5的整數(shù)是5的倍數(shù),2375的個(gè)位是5,因此2375是5的倍數(shù),這是運(yùn)用的演繹推理.A.0
B.2
C.3
D.4參考答案:C5.為調(diào)查甲乙兩個(gè)網(wǎng)絡(luò)節(jié)目的受歡迎程度,隨機(jī)選取了8天,統(tǒng)計(jì)上午8:00-10:00的點(diǎn)擊量。莖葉圖如圖,設(shè)甲、乙的中位數(shù)分別為,方差分別為,則(
)A.
B.C.
D.參考答案:D略6.設(shè)平面向量=(1,2),=(-2,y),若
//,則|3十|等于(
)
A.
B.
C.
D.參考答案:A7.已知雙曲線()的右焦點(diǎn)與拋物線的焦點(diǎn)相同,則此雙曲線的離心率為(
)A.
B.
C.
D.參考答案:C8.下圖給出的是計(jì)算的值的一個(gè)程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是(
)A.
B.
D.參考答案:A9.下面的程序框圖能判斷任意輸入的整數(shù)x的奇偶性,其中判斷框內(nèi)的條件是(
)A.m=0
B.x=0
C.x=1
D.m=1參考答案:A10.若橢圓的對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和為,焦距為,則橢圓的方程為(
)A.
B.
C.或
D.以上都不對(duì)參考答案:C略二、填空題:本大題共7小題,每小題4分,共28分11.如圖,點(diǎn)為正方體的中心,點(diǎn)為面的中心,點(diǎn)為的中點(diǎn),則空間四邊形是正方體放入各個(gè)面上的正投影可能是__________(填出所有可能的序號(hào)).參考答案:①②③如圖所示,①是在面上的投影;②是在面上的投影;③是在面上的投影;④無(wú)法得到.故本題答案為①②③.12.抽樣統(tǒng)計(jì)甲、乙兩位射擊運(yùn)動(dòng)員的5次訓(xùn)練成績(jī)(單位:環(huán)),結(jié)果如下圖:則成績(jī)較為穩(wěn)定(方差較小)的那位運(yùn)動(dòng)員成績(jī)的方差為_(kāi)____________.運(yùn)動(dòng)員第1次第2次第3次第4次第5次甲8791908993乙8990918892參考答案:213.函數(shù)的值域是_______________.參考答案:14.如圖是2013年元旦歌詠比賽,七位評(píng)委為某班打出的分?jǐn)?shù)的莖葉統(tǒng)計(jì)圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的方差為_(kāi)
_.參考答案:3.215.設(shè)a>0,b>0,若是3a與3b的等比中項(xiàng),則+的最小值是
.參考答案:4【考點(diǎn)】基本不等式在最值問(wèn)題中的應(yīng)用.【專題】計(jì)算題;壓軸題.【分析】先根據(jù)等比中項(xiàng)的性質(zhì)求得a+b的值,進(jìn)而利用基本不等式取得ab的最大值,把+化簡(jiǎn)整理,根據(jù)ab的范圍,求得答案.【解答】解:∵是3a與3b的等比中項(xiàng)∴3a?3b=3a+b=3∴a+b=1∴ab≤=(當(dāng)a=b時(shí)等號(hào)成立)∴+==≥4.故答案為:4【點(diǎn)評(píng)】本題主要考查了基本不等式在最值問(wèn)題中的應(yīng)用.使用基本不等式時(shí)要注意等號(hào)成立的條件.16.已知某幾何體的三視圖如圖所示,其中俯視圖是邊長(zhǎng)為2的正三角形,側(cè)視圖是直角三角形,則此幾何體的體積為_(kāi)_______。參考答案:17.已知數(shù)列中,,則數(shù)列通項(xiàng)公式=___________參考答案:三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟18.(本小題滿分12分)已知函數(shù)在處的切線與x軸平行.(Ⅰ)求的值和函數(shù)的單調(diào)區(qū)間.(Ⅱ)若方程恰有三個(gè)不同的解,求的取值范圍參考答案:(1)
…………2分,
…………6分(2)則原題意等價(jià)于g(x)圖像與x軸有三個(gè)交點(diǎn)
…………12分19.已知函數(shù)u(x)=xlnx,v(x)x﹣1,m∈R.(1)令m=2,求函數(shù)h(x)的單調(diào)區(qū)間;(2)令f(x)=u(x)﹣v(x),若函數(shù)f(x)恰有兩個(gè)極值點(diǎn)x1,x2,且滿足1e(e為自然對(duì)數(shù)的底數(shù))求x1?x2的最大值.參考答案:(1)單調(diào)遞增區(qū)間是(0,e),單調(diào)遞減區(qū)間是(e,+∞)(2)【分析】(1)化簡(jiǎn)函數(shù)h(x),求導(dǎo),根據(jù)導(dǎo)數(shù)和函數(shù)的單調(diào)性的關(guān)系即可求出(2)函數(shù)f(x)恰有兩個(gè)極值點(diǎn)x1,x2,則f′(x)=lnx﹣mx=0有兩個(gè)正根,由此得到m(x2﹣x1)=lnx2﹣lnx1,m(x2+x1)=lnx2+lnx1,消參數(shù)m化簡(jiǎn)整理可得ln(x1x2)=ln?,設(shè)t,構(gòu)造函數(shù)g(t)=()lnt,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,求出函數(shù)的最大值即可求出x1?x2的最大值.【詳解】(1)令m=2,函數(shù)h(x),∴h′(x),令h′(x)=0,解得x=e,∴當(dāng)x∈(0,e)時(shí),h′(x)>0,當(dāng)x∈(e,+∞)時(shí),h′(x)<0,∴函數(shù)h(x)單調(diào)遞增區(qū)間是(0,e),單調(diào)遞減區(qū)間是(e,+∞)(2)f(x)=u(x)﹣v(x)=xlnxx+1,∴f′(x)=1+lnx﹣mx﹣1=lnx﹣mx,∵函數(shù)f(x)恰有兩個(gè)極值點(diǎn)x1,x2,∴f′(x)=lnx﹣mx=0有兩個(gè)不等正根,∴l(xiāng)nx1﹣mx1=0,lnx2﹣mx2=0,兩式相減可得lnx2﹣lnx1=m(x2﹣x1),兩式相加可得m(x2+x1)=lnx2+lnx1,∴∴l(xiāng)n(x1x2)=ln?,設(shè)t,∵1e,∴1<t≤e,設(shè)g(t)=()lnt,∴g′(t),令φ(t)=t2﹣1﹣2tlnt,∴φ′(t)=2t﹣2(1+lnt)=2(t﹣1﹣lnt),再令p(t)=t﹣1﹣lnt,∴p′(t)=10恒成立,∴p(t)在(1,e]單調(diào)遞增,∴φ′(t)=p(t)>p(1)=1﹣1﹣ln1=0,∴φ(t)在(1,e]單調(diào)遞增,∴g′(t)=φ(t)>φ(1)=1﹣1﹣2ln1=0,∴g(t)在(1,e]單調(diào)遞增,∴g(t)max=g(e),∴l(xiāng)n(x1x2),∴x1x2故x1?x2的最大值為.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)求函數(shù)的最值和最值,考查了函數(shù)與方程的思想,轉(zhuǎn)化與化歸思想,屬于難題20.(本題滿分14分)設(shè)a為實(shí)數(shù),函數(shù)f(x)=ex-2x+2a,x∈R.(1)求f(x)的單調(diào)區(qū)間與極值;(2)求證:當(dāng)a>ln2-1且x>0時(shí),ex>x2-2ax+1.參考答案:、(1)解由f(x)=ex-2x+2a,x∈R知f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln2.于是當(dāng)x變化時(shí),f′(x),f(x)的變化情況如下表:x(-∞,ln2)ln2(ln2,+∞) f′(x)-0+f(x)2(1-ln2+a)故f(x)的單調(diào)遞減區(qū)間是(-∞,ln2),單調(diào)遞增區(qū)間是(ln2,+∞),f(x)在x=ln2處取得極小值,極小值為f(ln2)=eln2-2ln2+2a=2(1-ln2+a).(2)證明設(shè)g(x)=ex-x2+2ax-1,x∈R,于是g′(x)=ex-2x+2a,x∈R.由(1)知當(dāng)a>ln2-1時(shí),g′(x)取最小值為g′(ln2)=2(1-ln2+a)>0.于是對(duì)任意x∈R,都有g(shù)′(x)>0,所以g(x)在R內(nèi)單調(diào)遞增.于是當(dāng)a>ln2-1時(shí),對(duì)任意x∈(0,+∞),都有g(shù)(x)>g(0).而g(0)=0,從而對(duì)任意x∈(0,+∞),都有g(shù)(x)>0,即ex-x2+2ax-1>0,故ex>x2-2ax+1.21.(本小題滿分12分)已知均為實(shí)數(shù),且,求證:中至少有一個(gè)大于
參考答案:22.已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且a2,a5,a14成等比數(shù)列.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)令,求數(shù)列{bn}的前n項(xiàng)和Sn.參考答案:【考點(diǎn)】數(shù)列的求和.【專題】計(jì)算題;規(guī)律型;轉(zhuǎn)化思想;等差數(shù)列與等比數(shù)列.【分析】(Ⅰ)利用已知條件求出數(shù)列的公差,然后求數(shù)列
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 浙江師范大學(xué)《規(guī)范字與書(shū)法》2023-2024學(xué)年第一學(xué)期期末試卷
- 鄭州體育職業(yè)學(xué)院《視頻傳播實(shí)務(wù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 長(zhǎng)春師范大學(xué)《社會(huì)治理》2023-2024學(xué)年第一學(xué)期期末試卷
- 榆林職業(yè)技術(shù)學(xué)院《戶外拓展與定向運(yùn)動(dòng)》2023-2024學(xué)年第一學(xué)期期末試卷
- 食用菌栽培基質(zhì)廢棄物降解
- 碩士職場(chǎng)競(jìng)爭(zhēng)力
- 秋分節(jié)氣與糧食安全
- 農(nóng)業(yè)創(chuàng)新路演
- 學(xué)校文化建設(shè)上墻標(biāo)語(yǔ)
- 會(huì)計(jì)辭職報(bào)告范文
- 華為經(jīng)營(yíng)管理-華為市場(chǎng)營(yíng)銷體系(6版)
- 2023年中國(guó)育齡女性生殖健康研究報(bào)告
- 鋼結(jié)構(gòu)加工廠考察報(bào)告
- 發(fā)電機(jī)檢修作業(yè)指導(dǎo)書(shū)
- 薪酬與福利管理實(shí)務(wù)-習(xí)題答案 第五版
- 廢舊物資處置申請(qǐng)表
- GB/T 37234-2018文件鑒定通用規(guī)范
- GB/T 31888-2015中小學(xué)生校服
- 質(zhì)量檢查考核辦法
- 云南省普通初中學(xué)生成長(zhǎng)記錄-基本素質(zhì)發(fā)展初一-初三
- 外科醫(yī)師手術(shù)技能評(píng)分標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論