![江西省贛州市信豐縣信豐中學(xué)2024屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第1頁(yè)](http://file4.renrendoc.com/view11/M00/28/2B/wKhkGWXw2iaADLHWAAIQ0HnQmi4405.jpg)
![江西省贛州市信豐縣信豐中學(xué)2024屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第2頁(yè)](http://file4.renrendoc.com/view11/M00/28/2B/wKhkGWXw2iaADLHWAAIQ0HnQmi44052.jpg)
![江西省贛州市信豐縣信豐中學(xué)2024屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第3頁(yè)](http://file4.renrendoc.com/view11/M00/28/2B/wKhkGWXw2iaADLHWAAIQ0HnQmi44053.jpg)
![江西省贛州市信豐縣信豐中學(xué)2024屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第4頁(yè)](http://file4.renrendoc.com/view11/M00/28/2B/wKhkGWXw2iaADLHWAAIQ0HnQmi44054.jpg)
![江西省贛州市信豐縣信豐中學(xué)2024屆高考?jí)狠S卷數(shù)學(xué)試卷含解析_第5頁(yè)](http://file4.renrendoc.com/view11/M00/28/2B/wKhkGWXw2iaADLHWAAIQ0HnQmi44055.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
江西省贛州市信豐縣信豐中學(xué)2024屆高考?jí)狠S卷數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫(xiě)在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫(xiě)姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.雙曲線的左右焦點(diǎn)為,一條漸近線方程為,過(guò)點(diǎn)且與垂直的直線分別交雙曲線的左支及右支于,滿足,則該雙曲線的離心率為()A. B.3 C. D.22.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實(shí)數(shù)a=()A. B. C.2 D.﹣23.已知正項(xiàng)數(shù)列滿足:,設(shè),當(dāng)最小時(shí),的值為()A. B. C. D.4.已知當(dāng),,時(shí),,則以下判斷正確的是A. B.C. D.與的大小關(guān)系不確定5.一個(gè)正三角形的三個(gè)頂點(diǎn)都在雙曲線的右支上,且其中一個(gè)頂點(diǎn)在雙曲線的右頂點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.6.已知數(shù)列的通項(xiàng)公式是,則()A.0 B.55 C.66 D.787.已知為虛數(shù)單位,實(shí)數(shù)滿足,則()A.1 B. C. D.8.在空間直角坐標(biāo)系中,四面體各頂點(diǎn)坐標(biāo)分別為:.假設(shè)螞蟻窩在點(diǎn),一只螞蟻從點(diǎn)出發(fā),需要在,上分別任意選擇一點(diǎn)留下信息,然后再返回點(diǎn).那么完成這個(gè)工作所需要走的最短路徑長(zhǎng)度是()A. B. C. D.9.某歌手大賽進(jìn)行電視直播,比賽現(xiàn)場(chǎng)有名特約嘉賓給每位參賽選手評(píng)分,場(chǎng)內(nèi)外的觀眾可以通過(guò)網(wǎng)絡(luò)平臺(tái)給每位參賽選手評(píng)分.某選手參加比賽后,現(xiàn)場(chǎng)嘉賓的評(píng)分情況如下表,場(chǎng)內(nèi)外共有數(shù)萬(wàn)名觀眾參與了評(píng)分,組織方將觀眾評(píng)分按照,,分組,繪成頻率分布直方圖如下:嘉賓評(píng)分嘉賓評(píng)分的平均數(shù)為,場(chǎng)內(nèi)外的觀眾評(píng)分的平均數(shù)為,所有嘉賓與場(chǎng)內(nèi)外的觀眾評(píng)分的平均數(shù)為,則下列選項(xiàng)正確的是()A. B. C. D.10.已知隨機(jī)變量服從正態(tài)分布,且,則()A. B. C. D.11.設(shè)函數(shù),若在上有且僅有5個(gè)零點(diǎn),則的取值范圍為()A. B. C. D.12.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,D是AB的中點(diǎn),若,且,則面積的最大值是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.雙曲線的焦點(diǎn)坐標(biāo)是_______________,漸近線方程是_______________.14.已知向量,,且,則________.15.在矩形ABCD中,,,點(diǎn)E,F(xiàn)分別為BC,CD邊上動(dòng)點(diǎn),且滿足,則的最大值為_(kāi)_______.16.已知多項(xiàng)式的各項(xiàng)系數(shù)之和為32,則展開(kāi)式中含項(xiàng)的系數(shù)為_(kāi)_____.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),.(1)若曲線在點(diǎn)處的切線方程為,求,;(2)當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.18.(12分)在中,角A,B,C的對(duì)邊分別是a,b,c,且向量與向量共線.(1)求B;(2)若,,且,求BD的長(zhǎng)度.19.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為以為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,設(shè)點(diǎn)在曲線上,點(diǎn)在曲線上,且為正三角形.(1)求點(diǎn),的極坐標(biāo);(2)若點(diǎn)為曲線上的動(dòng)點(diǎn),為線段的中點(diǎn),求的最大值.20.(12分)在四棱錐中,是等邊三角形,點(diǎn)在棱上,平面平面.(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設(shè)直線與平面相交于點(diǎn),若,求的值.21.(12分)在直角坐標(biāo)系中,已知點(diǎn),的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)設(shè)曲線與曲線相交于,兩點(diǎn),求的值.22.(10分)如圖,底面ABCD是邊長(zhǎng)為2的菱形,,平面ABCD,,,BE與平面ABCD所成的角為.(1)求證:平面平面BDE;(2)求二面角B-EF-D的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
設(shè),直線的方程為,聯(lián)立方程得到,,根據(jù)向量關(guān)系化簡(jiǎn)到,得到離心率.【詳解】設(shè),直線的方程為.聯(lián)立整理得,則.因?yàn)?,所以為線段的中點(diǎn),所以,,整理得,故該雙曲線的離心率.故選:.【點(diǎn)睛】本題考查了雙曲線的離心率,意在考查學(xué)生的計(jì)算能力和轉(zhuǎn)化能力.2、D【解析】
化簡(jiǎn)z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因?yàn)閦=(1+2i)(1+ai)=,又因?yàn)閦∈R,所以,解得a=-2.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算及概念,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.3、B【解析】
由得,即,所以得,利用基本不等式求出最小值,得到,再由遞推公式求出.【詳解】由得,即,,當(dāng)且僅當(dāng)時(shí)取得最小值,此時(shí).故選:B【點(diǎn)睛】本題主要考查了數(shù)列中的最值問(wèn)題,遞推公式的應(yīng)用,基本不等式求最值,考查了學(xué)生的運(yùn)算求解能力.4、C【解析】
由函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用得:設(shè),求得可得為增函數(shù),又,,時(shí),根據(jù)條件得,即可得結(jié)果.【詳解】解:設(shè),則,即為增函數(shù),又,,,,即,所以,所以.故選:C.【點(diǎn)睛】本題考查了函數(shù)的增減性及導(dǎo)數(shù)的應(yīng)用,屬中檔題.5、D【解析】
因?yàn)殡p曲線分左右支,所以,根據(jù)雙曲線和正三角形的對(duì)稱性可知:第一象限的頂點(diǎn)坐標(biāo)為,,將其代入雙曲線可解得.【詳解】因?yàn)殡p曲線分左右支,所以,根據(jù)雙曲線和正三角形的對(duì)稱性可知:第一象限的頂點(diǎn)坐標(biāo)為,,將其代入雙曲線方程得:,即,由得.故選:.【點(diǎn)睛】本題考查了雙曲線的性質(zhì),意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平.6、D【解析】
先分為奇數(shù)和偶數(shù)兩種情況計(jì)算出的值,可進(jìn)一步得到數(shù)列的通項(xiàng)公式,然后代入轉(zhuǎn)化計(jì)算,再根據(jù)等差數(shù)列求和公式計(jì)算出結(jié)果.【詳解】解:由題意得,當(dāng)為奇數(shù)時(shí),,當(dāng)為偶數(shù)時(shí),所以當(dāng)為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),,所以故選:D【點(diǎn)睛】此題考查數(shù)列與三角函數(shù)的綜合問(wèn)題,以及數(shù)列求和,考查了正弦函數(shù)的性質(zhì)應(yīng)用,等差數(shù)列的求和公式,屬于中檔題.7、D【解析】,則故選D.8、C【解析】
將四面體沿著劈開(kāi),展開(kāi)后最短路徑就是的邊,在中,利用余弦定理即可求解.【詳解】將四面體沿著劈開(kāi),展開(kāi)后如下圖所示:最短路徑就是的邊.易求得,由,知,由余弦定理知其中,∴故選:C【點(diǎn)睛】本題考查了余弦定理解三角形,需熟記定理的內(nèi)容,考查了學(xué)生的空間想象能力,屬于中檔題.9、C【解析】
計(jì)算出、,進(jìn)而可得出結(jié)論.【詳解】由表格中的數(shù)據(jù)可知,,由頻率分布直方圖可知,,則,由于場(chǎng)外有數(shù)萬(wàn)名觀眾,所以,.故選:B.【點(diǎn)睛】本題考查平均數(shù)的大小比較,涉及平均數(shù)公式以及頻率分布直方圖中平均數(shù)的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.10、C【解析】
根據(jù)在關(guān)于對(duì)稱的區(qū)間上概率相等的性質(zhì)求解.【詳解】,,,.故選:C.【點(diǎn)睛】本題考查正態(tài)分布的應(yīng)用.掌握正態(tài)曲線的性質(zhì)是解題基礎(chǔ).隨機(jī)變量服從正態(tài)分布,則.11、A【解析】
由求出范圍,結(jié)合正弦函數(shù)的圖象零點(diǎn)特征,建立不等量關(guān)系,即可求解.【詳解】當(dāng)時(shí),,∵在上有且僅有5個(gè)零點(diǎn),∴,∴.故選:A.【點(diǎn)睛】本題考查正弦型函數(shù)的性質(zhì),整體代換是解題的關(guān)鍵,屬于基礎(chǔ)題.12、A【解析】
根據(jù)正弦定理可得,求出,根據(jù)平方關(guān)系求出.由兩端平方,求的最大值,根據(jù)三角形面積公式,求出面積的最大值.【詳解】中,,由正弦定理可得,整理得,由余弦定理,得.D是AB的中點(diǎn),且,,即,即,,當(dāng)且僅當(dāng)時(shí),等號(hào)成立.的面積,所以面積的最大值為.故選:.【點(diǎn)睛】本題考查正、余弦定理、不等式、三角形面積公式和向量的數(shù)量積運(yùn)算,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
通過(guò)雙曲線的標(biāo)準(zhǔn)方程,求解,,即可得到所求的結(jié)果.【詳解】由雙曲線,可得,,則,所以雙曲線的焦點(diǎn)坐標(biāo)是,漸近線方程為:.故答案為:;.【點(diǎn)睛】本題主要考查了雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查了運(yùn)算能力,屬于容易題.14、【解析】
根據(jù)垂直向量的坐標(biāo)表示可得出關(guān)于實(shí)數(shù)的等式,即可求得實(shí)數(shù)的值.【詳解】,且,則,解得.故答案為:.【點(diǎn)睛】本題考查利用向量垂直求參數(shù),涉及垂直向量的坐標(biāo)表示,考查計(jì)算能力,屬于基礎(chǔ)題.15、【解析】
利用平面直角坐標(biāo)系,設(shè)出點(diǎn)E,F(xiàn)的坐標(biāo),由可得,利用數(shù)量積運(yùn)算求得,再利用線性規(guī)劃的知識(shí)求出的最大值.【詳解】建立平面直角坐標(biāo)系,如圖(1)所示:設(shè),,,即,又,令,其中,畫(huà)出圖形,如圖(2)所示:當(dāng)直線經(jīng)過(guò)點(diǎn)時(shí),取得最大值.故答案為:【點(diǎn)睛】本題考查了向量數(shù)量積的坐標(biāo)運(yùn)算、簡(jiǎn)單的線性規(guī)劃問(wèn)題,解題的關(guān)鍵是建立恰當(dāng)?shù)淖鴺?biāo)系,屬于基礎(chǔ)題.16、【解析】
令可得各項(xiàng)系數(shù)和為,得出,根據(jù)第一個(gè)因式展開(kāi)式的常數(shù)項(xiàng)與第二個(gè)因式的展開(kāi)式含一次項(xiàng)的積與第一個(gè)因式展開(kāi)式含x的一次項(xiàng)與第二個(gè)因式常數(shù)項(xiàng)的積的和即為展開(kāi)式中含項(xiàng),可得解.【詳解】令,則得,解得,所以展開(kāi)式中含項(xiàng)為:,故答案為:【點(diǎn)睛】本題主要考查了二項(xiàng)展開(kāi)式的系數(shù)和,二項(xiàng)展開(kāi)式特定項(xiàng),賦值法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)【解析】
(1)對(duì)函數(shù)求導(dǎo),運(yùn)用可求得的值,再由在直線上,可求得的值;(2)由已知可得恒成立,構(gòu)造函數(shù),對(duì)函數(shù)求導(dǎo),討論和0的大小關(guān)系,結(jié)合單調(diào)性求出最大值即可求得的范圍.【詳解】(1)由題得,因?yàn)樵邳c(diǎn)與相切所以,∴(2)由得,令,只需,設(shè)(),當(dāng)時(shí),,在時(shí)為增函數(shù),所以,舍;當(dāng)時(shí),開(kāi)口向上,對(duì)稱軸為,,所以在時(shí)為增函數(shù),所以,舍;當(dāng)時(shí),二次函數(shù)開(kāi)口向下,且,所以在時(shí)有一個(gè)零點(diǎn),在時(shí),在時(shí),①當(dāng)即時(shí),在小于零,所以在時(shí)為減函數(shù),所以,符合題意;②當(dāng)即時(shí),在大于零,所以在時(shí)為增函數(shù),所以,舍.綜上所述:實(shí)數(shù)的取值范圍為【點(diǎn)睛】本題考查函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間及函數(shù)的最小值,屬于中檔題.處理函數(shù)單調(diào)性問(wèn)題時(shí),注意利用導(dǎo)函數(shù)的正負(fù),特別是已知單調(diào)性問(wèn)題,轉(zhuǎn)化為函數(shù)導(dǎo)數(shù)恒不小于零,或恒小于零,再分離參數(shù)求解,求函數(shù)最值時(shí)分析好單調(diào)性再求極值,從而求出函數(shù)最值.18、(1)(2)【解析】
(1)根據(jù)共線得到,利用正弦定理化簡(jiǎn)得到答案.(2)根據(jù)余弦定理得到,,再利用余弦定理計(jì)算得到答案.【詳解】(1)∵與共線,∴.即,∴即,∵,∴,∵,∴.(2),,,在中,由余弦定理得:,∴.則或(舍去).∴,∵∴.在中,由余弦定理得:,∴.【點(diǎn)睛】本題考查了向量共線,正弦定理,余弦定理,意在考查學(xué)生的綜合應(yīng)用能力.19、(1),;(2).【解析】
(1)利用極坐標(biāo)和直角坐標(biāo)的互化公式,即得解;(2)設(shè)點(diǎn)的直角坐標(biāo)為,則點(diǎn)的直角坐標(biāo)為.將此代入曲線的方程,可得點(diǎn)在以為圓心,為半徑的圓上,所以的最大值為,即得解.【詳解】(1)因?yàn)辄c(diǎn)在曲線上,為正三角形,所以點(diǎn)在曲線上.又因?yàn)辄c(diǎn)在曲線上,所以點(diǎn)的極坐標(biāo)是,從而,點(diǎn)的極坐標(biāo)是.(2)由(1)可知,點(diǎn)的直角坐標(biāo)為,B的直角坐標(biāo)為設(shè)點(diǎn)的直角坐標(biāo)為,則點(diǎn)的直角坐標(biāo)為.將此代入曲線的方程,有即點(diǎn)在以為圓心,為半徑的圓上.,所以的最大值為.【點(diǎn)睛】本題考查了極坐標(biāo)和參數(shù)方程綜合,考查了極坐標(biāo)和直角坐標(biāo)互化,參數(shù)方程的應(yīng)用,考查了學(xué)生綜合分析,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.20、(1)證明見(jiàn)解析(2)(3)【解析】
(1)取中點(diǎn)為,連接,由等邊三角形性質(zhì)可得,再由面面垂直的性質(zhì)可得,根據(jù)平行直線的性質(zhì)可得,進(jìn)而求證;(2)以為原點(diǎn),過(guò)作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標(biāo)系,設(shè),由點(diǎn)在棱上,可設(shè),即可得到,再求得平面的法向量,進(jìn)而利用數(shù)量積求解;(3)設(shè),,則,求得,,即可求得點(diǎn)的坐標(biāo),再由與平面的法向量垂直,進(jìn)而求解.【詳解】(1)證明:取中點(diǎn)為,連接,因?yàn)槭堑冗吶切?所以,因?yàn)榍蚁嘟挥?所以平面,所以,因?yàn)?所以,因?yàn)?在平面內(nèi),所以,所以.(2)以為原點(diǎn),過(guò)作的平行線,分別以,,分別為軸,軸,軸建立空間直角坐標(biāo)系,設(shè),則,,,,因?yàn)樵诶馍?可設(shè),所以,設(shè)平面的法向量為,因?yàn)?所以,即,令,可得,即,設(shè)直線與平面所成角為,所以,可知當(dāng)時(shí),取最大值.(3)設(shè),則有,得,設(shè),那么,所以,所以.因?yàn)?,所以.又因?yàn)?所以,,設(shè)平面的法向量為,則,即,,可得,即因?yàn)樵谄矫鎯?nèi),所以,所以,所以,即,所以或者(舍),即.【點(diǎn)睛】本題考查面面垂直的證明,考查空間向量法求線面成角,考查運(yùn)算能力與空間想象能力.21、(1);(2)【解析】
(1)消去參數(shù)方程中的參數(shù),求得的普通方程,利用極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化公式,求得的直角坐標(biāo)方程.(2)求得曲線的標(biāo)準(zhǔn)參數(shù)方程,代入的直角坐標(biāo)方程,寫(xiě)出韋達(dá)定理,根據(jù)直線參數(shù)中參數(shù)的幾何意義,求得的值.【詳解】(1)由的參數(shù)方程(為參數(shù)),消去參數(shù)可得,由曲線的極坐標(biāo)方程為,得,所以的直角坐方程為,即.(2)因?yàn)樵谇€上,故可設(shè)曲線的參數(shù)方程為(為參數(shù)),代入化簡(jiǎn)可得.設(shè),對(duì)應(yīng)的參數(shù)分別為,,則,,所以.【點(diǎn)睛】本小題主要考查參數(shù)方程化為普通方程,考查極坐標(biāo)方程化為直角坐標(biāo)方程,考查利用利用和直線參數(shù)方程中參數(shù)的幾何意義進(jìn)行計(jì)算,屬于中檔題.22、(1)證明見(jiàn)解析;(2)【解析】
(1)要證明平面平面BDE,只需在平面內(nèi)找一條直線垂直平面BDE即可;(2)以O(shè)為坐標(biāo)原點(diǎn),OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標(biāo)系,分別求出平面BE
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年企業(yè)合伙合同(五篇)
- 2025年個(gè)人果園承包合同(三篇)
- 2025年二年級(jí)德育工作總結(jié)例文(2篇)
- 2025年二手車汽車買(mǎi)賣(mài)合同(五篇)
- 2025年代理證券賬戶業(yè)務(wù)協(xié)議范文(2篇)
- 2025年企業(yè)與個(gè)人合作經(jīng)營(yíng)協(xié)議(三篇)
- 快遞行業(yè)節(jié)假日運(yùn)輸協(xié)議
- 2025年度全國(guó)性安全產(chǎn)品銷售代表合作協(xié)議
- 賓館大堂鋼結(jié)構(gòu)改造合同
- 冰場(chǎng)全包裝修合同樣本
- 贏在團(tuán)隊(duì)執(zhí)行力課件
- 北京理工大學(xué)應(yīng)用光學(xué)課件第四章
- 陰道鏡幻燈課件
- 現(xiàn)代漢語(yǔ)詞匯學(xué)精選課件
- PCB行業(yè)安全生產(chǎn)常見(jiàn)隱患及防范措施課件
- 上海音樂(lè)學(xué)院 樂(lè)理試題
- SAP中國(guó)客戶名單
- DB32∕T 186-2015 建筑消防設(shè)施檢測(cè)技術(shù)規(guī)程
- 2022年福建泉州中考英語(yǔ)真題【含答案】
- 淺談固定資產(chǎn)的審計(jì)
- WZCK-20系列微機(jī)直流監(jiān)控裝置使用說(shuō)明書(shū)(v1.02)
評(píng)論
0/150
提交評(píng)論