版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
Projectone
DiscussiononthenatureofLegendrepolynomial
Abstract
LegendrepolynomialsarederivedbysolvingLegendre'sequations.Legendreequationisakindofdifferentialequationthatisoftenencounteredinphysicsandothertechnicalfields.Asearlyas1785,Legendrestudiedtheattractionbetweenspheresandthemotionofplanets.HeintroducedLegendre'sequationandobtaineditssolutionbymeansofseriessolution,whichwascalledLegendrepolynomial.Inthisproject,IwillexploreafewnicepropertiesofLegendrepolynomials,whicharethesimplestclassicalpolynomials.
Introduction
Legendrepolynomialsplayanimportantroleinpracticalmathematicalcalculation.Wecanuseittoprovemanyotherlawsandconclusionsmoreeasily.Andintheprocessofproving,wecanfindmoreperfectembodimentofmathematicalbeautyinmatrixtheory.Therefore,ourpaperonLegendrepolynomialsisveryimportantforustounderstandit.
MainResults
PART(a):Proofofthefollowingtheorem.
Theorem1 IfisasequenceofLegendrepolynomials,then
(i)formabasisfor.
(ii),i.e.,isorthogonaltoeverypolynomialofdegreelessthan.
Proof
(i)
SinceisasequenceofLegendrepolynomials,arelinearlyindependentlywitheachother.isapolynomialspaceofdimensionn,andtherearenlinearlyindependentpolynomials.Suchthateachpolynomialincanberepresentedby.
Henceformabasisfor.
(ii)
Letbeapolynomialin,sinceformabasisfor.Suchthatcanbewrittenintheformwhichis.Becauseisorthogonalto,isorthogonaltoeverypolynomialofdegreelessthan.
PART(b):Constructionfromdefinition.
Startingfromthepolynomial,useDefinition1toconstructthefirstfourLegendrepolynomials.
Weknowthatisasequenceoforthogonalpolynomials,sothatwhenever.Itcanbeobtainedfromtheabovethatforeachandforeach.
Wecanconstructanequationsetasfollows.
Suppose,and
Solvetheaboveequationset,.
Thensuppose,theequationsetis
Solvetheaboveequationset,.
Similartotheworkingabove,wecanobtainthat.
Hence,thefirstfourLegendrepolynomialswereconstructed.
PART(c):Constructionfromrecursionrelation.
Legendrepolynomialscanbegeneratedbythefollowingthreerecursiverelationships,
whereisdefinedtobezero.Checkthatthefirstfourpolynomialsdefinedbyabovearethepolynomialsinpartb.
Since,wecanobtain.Solvetheequation,then.
Thencalculatewithand
Solvetheequation,then.
Similartotheworkingabove,wecanobtainthat.
Hence,thefirstfourpolynomialsdefinedbyabovearethepolynomialsinpartb.
PART(d):Constructionfromthegeneratingfunction.
Let
ThefunctiondefinedaboveiscalledthegeneratingfunctionforLegendrepolynomials.Legendrepolynomialsarethecoefficientsintheexpansionofthisfunctioninpowersof.Expandasthepowerseriesinpowersof,andshowthatthefirstfourcoefficientsaregivenbypartb.
Fromthequestion,wecanobtainthat
ThecoefficientsofformLegendrepolynomials.Derivatewithonbothsidesoftheequation,weobtainthat
Organizetheaboveequation,weobtainthat
Comparativecoefficientoftheequation,weobtainthefollowingrecursiveformula
Itissamewiththerecursiveformulaweobtaininpartc.TakeTaylorexpansionof,weobtainthatand.
Withtherecursiveformulaand,weobtain,.
PART(e):Constructionfromcertaindifferentialequations.
ThegeneralformulaforLegendrepolynomialscanbewrittenas
Checkthatthefirstfourpolynomialsdefinedbyabovearethepolynomialinpartb.Verifythatthepolynomialgivenbyabovesatisfiesthefollowingdifferentialequationforeach:
or,equivalently,
whichariseswhenseparatingthevariablesinLaplace’sequationinsphericalcoordinates.
Withthefirstequation,weobtainthat
Hence,thefirstfourpolynomialsdefinedbyabovearethepolynomialinpartb.
Toverifythatthepolynomialgivenbyabovesatisfiesthefollowingdifferentialequationforeach.
PART(f):IntroductionofoneapplicationofLegendrePolynomials
WecanuseLegendrepolynomialstosolvethefixedsolutionofLaplaceEquation.
ThroughthestudyofLegendreequation,wegetthesolutionofLegendrepolynomialpowerseries.ItstudiessomenaturesofLegendrePolynominals.MakinguseofthenatureofLegendrePolynominals,itisveryeasytosolvethefixedsolutionofLaplaceEquation.ThismethodisobviouslybetterthanusinggreenfunctiontofindthefixedsolutionofLaplaceequation.
Laplace'sequation,alsoknownastheharmonicequationandthepotentialequation,isapartialdifferentialequation,soitisnamedafterLaplace,aFrenchmathematicianwhofirstproposedit.
ThroughthestudyofLegendrepolynomials,wefindmanypropertiesofLegendrepolynomials.InsolvingLaplace'sequation,thefollowingpropertiesareused.
Firstofall,property1:Legendrepolynomialshaveuniformexpressions.
Pnx=12nn!dn{(x2-1)n}dxn
Property2:Pnxisanevenfunctionwhenniseven;Whennisodd,Pnxistheoddfunction.
Property3:therecurrenceformulaforLegendrepolynomialsis
P'n+1x-xP'nx=(n+1)PnxxP'nx-P'n+1x=nPnx
Property4:Legendrepolynomialsareorthogonalontheinterval[-1,1].
Property5:thesquarerootof-11P2nxdxiscalledthemagnitudeoftheLegendrepolynomial.And
-11P2nxdx=22n+1
Byflexiblyapplyingtheabovefivecharacteristics,wecaneasilysolvethedefinitesolutionofLaplaceequation.
ConclusionandAckno
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度化妝品產(chǎn)品代言合同協(xié)議4篇
- 2025年度臨時餐飲場地租賃服務協(xié)議8篇
- 二零二五年度水電設施智能化改造合同3篇
- 二零二五版餐飲企業(yè)廚師招聘與人才輸送協(xié)議3篇
- 二零二四事業(yè)單位員工試用期人才引進與培養(yǎng)合作協(xié)議3篇
- 2024石材荒料購銷及石材產(chǎn)品安全檢測服務合同3篇
- 2024蔬菜種植與農(nóng)產(chǎn)品加工企業(yè)銷售合作協(xié)議范本3篇
- 2024進出口食品貿(mào)易合同
- 二零二五版合同法擔保條款設計-企業(yè)風險控制策略3篇
- 二零二五年度在線教育平臺股權(quán)收購合同3篇
- GB/T 37238-2018篡改(污損)文件鑒定技術規(guī)范
- 普通高中地理課程標準簡介(湘教版)
- 河道治理工程監(jiān)理通知單、回復單范本
- 超分子化學簡介課件
- 高二下學期英語閱讀提升練習(一)
- 易制爆化學品合法用途說明
- 【PPT】壓力性損傷預防敷料選擇和剪裁技巧
- 大氣喜慶迎新元旦晚會PPT背景
- DB13(J)∕T 242-2019 鋼絲網(wǎng)架復合保溫板應用技術規(guī)程
- 心電圖中的pan-tompkins算法介紹
- 羊絨性能對織物起球的影響
評論
0/150
提交評論