版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省長沙市雨花區(qū)廣益實驗中學(xué)2023-2024學(xué)年數(shù)學(xué)九上期末質(zhì)量跟蹤監(jiān)視模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題3分,共30分)1.下列交通標(biāo)志中,是中心對稱圖形的是()A. B. C. D.2.已知坐標(biāo)平面上有一直線L,其方程式為y+2=0,且L與二次函數(shù)y=3x2+a的圖形相交于A,B兩點:與二次函數(shù)y=﹣2x2+b的圖形相交于C,D兩點,其中a、b為整數(shù).若AB=2,CD=1.則a+b之值為何?()A.1 B.9 C.16 D.213.已知二次函數(shù)y=﹣x2﹣bx+1(﹣5<b<2),則函數(shù)圖象隨著b的逐漸增大而()A.先往右上方移動,再往右平移B.先往左下方移動,再往左平移C.先往右上方移動,再往右下方移動D.先往左下方移動,再往左上方移動4.如圖,一個正六邊形轉(zhuǎn)盤被分成6個全等三角形,任意轉(zhuǎn)動這個轉(zhuǎn)盤1次,當(dāng)轉(zhuǎn)盤停止時,指針指向陰影區(qū)域的概率是()A. B. C. D.5.如圖,在中,弦AB=12,半徑與點P,且P為的OC中點,則AC的長是()A. B.6 C.8 D.6.一個正五邊形和一個正六邊形按如圖方式擺放,它們都有一邊在直線l上,且有一個公共頂點,則的度數(shù)是A. B. C. D.7.如圖,菱形ABCD中,EF⊥AC,垂足為點H,分別交AD、AB及CB的延長線交于點E、M、F,且AE:FB=1:2,則AH:AC的值為()A. B. C. D.8.將拋物線y=-2x2向左平移3個單位,再向下平移4個單位,所得拋物線為()A. B.C. D.9.如圖,在正方形ABCD中,點E,F(xiàn)分別在BC,CD上,AE=AF,AC與EF相交于點G,下列結(jié)論:①AC垂直平分EF;②BE+DF=EF;③當(dāng)∠DAF=15°時,△AEF為等邊三角形;④當(dāng)∠EAF=60°時,S△ABE=S△CEF,其中正確的是()A.①③ B.②④ C.①③④ D.②③④10.一個盒子中裝有2個藍球,3個紅球和若干個黃球,小明通過多次摸球試驗后發(fā)現(xiàn),摸取到黃球的頻率穩(wěn)定在0.5左右,則黃球有()個.A.4 B.5 C.6 D.10二、填空題(每小題3分,共24分)11.將一元二次方程變形為的形式為__________.12.如圖,將邊長為4的正方形沿其對角線剪開,再把沿著方向平移,得到,當(dāng)兩個三角形重疊部分的面積為3時,則的長為_________.13.設(shè)m、n是一元二次方程x2+3x-7=0的兩個根,則m2+4m+n=_____.14.從長度分別是,,,的四根木條中,抽出其中三根能組成三角形的概率是______.15.若點P(2a+3b,﹣2)關(guān)于原點的對稱點為Q(3,a﹣2b),則(3a+b)2020=______.16.在直角坐標(biāo)平面內(nèi)有一點A(3,4),點A與原點O的連線與x軸的正半軸夾角為α,那么角α的余弦值是_____.17.步步高超市某種商品為了去庫存,經(jīng)過兩次降價,零售價由100元降為64元.則平均每次降價的百分率是____________.18.一個布袋里裝有10個只有顏色不同的球,這10個球中有m個紅球,從布袋中摸出一個球,記下顏色后放回,攪勻,再摸出一個球,通過大量重復(fù)試驗后發(fā)現(xiàn),摸到紅球的頻率穩(wěn)定在0.3左右,則m的值約為__________.三、解答題(共66分)19.(10分)甲、乙兩名隊員參加射擊訓(xùn)練,每人射擊10次,成績分別如下:根據(jù)以上信息,整理分析數(shù)據(jù)如下:平均成績/環(huán)中位數(shù)/環(huán)眾數(shù)/環(huán)方差甲a771.2乙7b8c(1)a=_____;b=_____;c=_____;(2)填空:(填“甲”或“乙”).①從平均數(shù)和中位數(shù)的角度來比較,成績較好的是_____;②從平均數(shù)和眾數(shù)的角度來比較,成績較好的是_____;?③成績相對較穩(wěn)定的是_____.20.(6分)如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,O為AB上一點,經(jīng)過點A、D的⊙O分別交AB、AC于點E、F,(1)求證:BC是⊙O切線;(2)設(shè)AB=m,AF=n,試用含m、n的代數(shù)式表示線段AD的長.21.(6分)一個不透明的口袋中裝有個分別標(biāo)有數(shù)字,,,的小球,它們的形狀、大小完全相同.先從口袋中隨機摸出一個小球,記下數(shù)字為;再在剩下的個小球中隨機摸出一個小球,記下數(shù)字為,得到點的坐標(biāo).請用“列表”或“畫樹狀圖”等方法表示出點所有可能的結(jié)果;求出點在第一象限或第三象限的概率.22.(8分)如圖1,在矩形ABCD中,AB=6cm,BC=8cm,如果點E由點B出發(fā)沿BC方向向點C勻速運動,同時點F由點D出發(fā)沿DA方向向點A勻速運動,它們的速度分別為每秒2cm和1cm,F(xiàn)Q⊥BC,分別交AC、BC于點P和Q,設(shè)運動時間為t秒(0<t<4).(1)連接EF,若運動時間t=秒時,求證:△EQF是等腰直角三角形;(2)連接EP,當(dāng)△EPC的面積為3cm2時,求t的值;(3)在運動過程中,當(dāng)t取何值時,△EPQ與△ADC相似.23.(8分)綜合與探究如圖,拋物線經(jīng)過點A(-2,0),B(4,0)兩點,與軸交于點C,點D是拋物線上一個動點,設(shè)點D的橫坐標(biāo)為.連接AC,BC,DB,DC,(1)求拋物線的函數(shù)表達式;(2)△BCD的面積等于△AOC的面積的時,求的值;(3)在(2)的條件下,若點M是軸上的一個動點,點N是拋物線上一動點,試判斷是否存在這樣的點M,使得以點B,D,M,N為頂點的四邊形是平行四邊形,若存在,請直接寫出點M的坐標(biāo);若不存在,請說明理由.24.(8分)如圖,在平面直角坐標(biāo)系中,過點M(0,2)的直線l與x軸平行,且直線l分別與反比例函數(shù)y=(x>0)和y=(x<0)的圖象分別交于點P,Q.(1)求P點的坐標(biāo);(2)若△POQ的面積為9,求k的值.25.(10分)已知,如圖,拋物線的頂點為,經(jīng)過拋物線上的兩點和的直線交拋物線的對稱軸于點.(1)求拋物線的解析式和直線的解析式.(2)在拋物線上兩點之間的部分(不包含兩點),是否存在點,使得?若存在,求出點的坐標(biāo);若不存在,請說明理由.(3)若點在拋物線上,點在軸上,當(dāng)以點為頂點的四邊形是平行四邊形時,直接寫出滿足條件的點的坐標(biāo).26.(10分)已知關(guān)于x的方程x2+ax+16=0,(1)若這個方程有兩個相等的實數(shù)根,求a的值(2)若這個方程有一個根是2,求a的值及另外一個根
參考答案一、選擇題(每小題3分,共30分)1、D【解析】根據(jù)中心對稱圖形的概念判斷即可.【詳解】A、不是中心對稱圖形;B、不是中心對稱圖形;C、不是中心對稱圖形;D、是中心對稱圖形.故選D.【點睛】本題考查的是中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.2、A【解析】分析:判斷出A、C兩點坐標(biāo),利用待定系數(shù)法求出a、b即可;詳解:如圖,由題意知:A(1,﹣2),C(2,﹣2),分別代入y=3x2+a,y=﹣2x2+b可得a=﹣5,b=6,∴a+b=1,故選A.點睛:本題考查二次函數(shù)圖形上點的坐標(biāo)特征,待定系數(shù)法等知識,解題的關(guān)鍵是理解題意,判斷出A、C兩點坐標(biāo)是解決問題的關(guān)鍵.3、D【分析】先分別求出當(dāng)b=﹣5、0、2時函數(shù)圖象的頂點坐標(biāo)即可得結(jié)論.【詳解】解:二次函數(shù)y=﹣x2﹣bx+1(﹣5<b<2),當(dāng)b=﹣5時,y=﹣x2+5x+1=﹣(x﹣)2+,頂點坐標(biāo)為(,);當(dāng)b=0時,y=﹣x2+1,頂點坐標(biāo)為(0,1);當(dāng)b=2時,y=﹣x2﹣2x+1=﹣(x+1)2+2,頂點坐標(biāo)為(﹣1,2).故函數(shù)圖象隨著b的逐漸增大而先往左下方移動,再往左上方移動.故選:D.【點睛】本題主要考查了二次函數(shù)圖象,掌握二次函數(shù)的性質(zhì)是解決本題的關(guān)鍵.4、C【解析】試題分析:轉(zhuǎn)動轉(zhuǎn)盤被均勻分成6部分,陰影部分占2份,轉(zhuǎn)盤停止轉(zhuǎn)動時指針指向陰影部分的概率是=;故選C.考點:幾何概率.5、D【分析】根據(jù)垂徑定理求出AP,連結(jié)OA根據(jù)勾股定理構(gòu)造方程可求出OA、OP,再求出PC,最后根據(jù)勾股定理即可求出AC.【詳解】解:如圖,連接OA,∵AB=12,OC⊥AB,OC過圓心O,∴AP=BP=AB=6,∵P為的OC中點,設(shè)⊙O的半徑為2R,即OA=OC=2R,則PO=PC=R,在Rt△OPA中,由勾股定理得:AO2=OP2+AP2,即:(2R)2=R2+62,解得:R=,即OP=PC=,在Rt△CPA中,由勾股定理得:AC2=AP2+PC2,即AC2=62+解得:AC=故選:D.【點睛】本題考查了垂徑定理和勾股定理,能根據(jù)垂徑定理求出AP的長是解此題的關(guān)鍵.6、B【分析】利用正多邊形的性質(zhì)求出∠AOE,∠BOF,∠EOF即可解決問題;【詳解】由題意:∠AOE=108°,∠BOF=120°,∠OEF=72°,∠OFE=60°,∴∠EOF=180°?72°?60°=48°,∴∠AOB=360°?108°?48°?120°=84°,故選:B.【點睛】本題考查正多邊形的性質(zhì)、三角形內(nèi)角和定理,解題關(guān)鍵在于掌握各性質(zhì)定義.7、B【分析】連接BD,如圖,利用菱形的性質(zhì)得AC⊥BD,AD=BC,AD∥BC,再證明EF∥BD,接著判斷四邊形BDEF為平行四邊形得到DE=BF,設(shè)AE=x,F(xiàn)B=DE=2x,BC=3x,所以AE:CF=1:5,然后證明△AEH∽△CFH得到AH:HC=AE:CF=1:5,最后利用比例的性質(zhì)得到AH:AC的值.【詳解】解:連接BD,如圖,∵四邊形ABCD為菱形,∴AC⊥BD,AD=BC,AD∥BC,∵EF⊥AC,∴EF∥BD,而DE∥BF,∴四邊形BDEF為平行四邊形,∴DE=BF,由AE:FB=1:2,設(shè)AE=x,F(xiàn)B=DE=2x,BC=3x,∴AE:CF=x:5x=1:5,∵AE∥CF,∴△AEH∽△CFH,∴AH:HC=AE:CF=1:5,∴AH:AC=1:1.故選:B.【點睛】此題主要考查相似三角形的判定與性質(zhì),解題的關(guān)鍵是熟知菱形的性質(zhì)及相似三角形的性質(zhì).8、B【解析】根據(jù)“左加右減、上加下減”的原則進行解答即可.【詳解】解:把拋物線y=-2x2先向左平移3個單位,再向下平移4個單位,所得的拋物線的解析式是y=-2(x+3)2-4,故選:B.【點睛】本題主要考查了二次函數(shù)的圖象與幾何變換,熟知函數(shù)圖象平移的法則是解答此題的關(guān)鍵.9、C【解析】①通過條件可以得出△ABE≌△ADF,從而得出∠BAE=∠DAF,BE=DF,由正方形的性質(zhì)就可以得出EC=FC,就可以得出AC垂直平分EF,②設(shè)BC=a,CE=y,由勾股定理就可以得出EF與x、y的關(guān)系,表示出BE與EF,即可判斷BE+DF與EF關(guān)系不確定;③當(dāng)∠DAF=15°時,可計算出∠EAF=60°,即可判斷△EAF為等邊三角形,④當(dāng)∠EAF=60°時,設(shè)EC=x,BE=y,由勾股定理就可以得出x與y的關(guān)系,表示出BE與EF,利用三角形的面積公式分別表示出S△CEF和S△ABE,再通過比較大小就可以得出結(jié)論.【詳解】①四邊形ABCD是正方形,∴AB═AD,∠B=∠D=90°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF∵BC=CD,∴BC-BE=CD-DF,即CE=CF,∵AE=AF,∴AC垂直平分EF.(故①正確).②設(shè)BC=a,CE=y,∴BE+DF=2(a-y)EF=y,∴BE+DF與EF關(guān)系不確定,只有當(dāng)y=(2?)a時成立,(故②錯誤).③當(dāng)∠DAF=15°時,∵Rt△ABE≌Rt△ADF,∴∠DAF=∠BAE=15°,∴∠EAF=90°-2×15°=60°,又∵AE=AF∴△AEF為等邊三角形.(故③正確).④當(dāng)∠EAF=60°時,設(shè)EC=x,BE=y,由勾股定理就可以得出:(x+y)2+y2=(x)2∴x2=2y(x+y)∵S△CEF=x2,S△ABE=y(x+y),∴S△ABE=S△CEF.(故④正確).綜上所述,正確的有①③④,故選C.【點睛】本題考查了正方形的性質(zhì)的運用,全等三角形的判定及性質(zhì)的運用,勾股定理的運用,等邊三角形的性質(zhì)的運用,三角形的面積公式的運用,解答本題時運用勾股定理的性質(zhì)解題時關(guān)鍵.10、B【分析】設(shè)黃球有x個,根據(jù)用頻率估計概率和概率公式列方程即可.【詳解】設(shè)黃球有x個,根據(jù)題意得:=0.5,解得:x=5,答:黃球有5個;故選:B.【點睛】此題考查的是用頻率估計概率和根據(jù)概率求球的數(shù)量問題,掌握用頻率估計概率和概率公式是解決此題的關(guān)鍵.二、填空題(每小題3分,共24分)11、【分析】根據(jù)完全平方公式配方即可.【詳解】解:故答案為:.【點睛】此題考查的是配方法,掌握完全平方公式是解決此題的關(guān)鍵.12、1或1【分析】設(shè)AC、交于點E,DC、交于點F,且設(shè),則,,列出方程即可解決問題.【詳解】設(shè)AC、交于點E,DC、交于點F,且設(shè),則,,重疊部分的面積為,由,解得或1.即或1.故答案是1或1.【點睛】本題考查了平移的性質(zhì)、菱形的判定和正方形的性質(zhì)綜合,準確分析題意是解題的關(guān)鍵.13、1.【分析】求代數(shù)式的值,一元二次方程的解,一元二次方程根與系數(shù)的關(guān)系.【詳解】解:∵m、n是一元二次方程x2+2x-7=0的兩個根,∴m2+2m-7=0,即m2+2m=7;m+n=-2.∴m2+1m+n=(m2+2m)+(m+n)=7-2=1.故答案為:114、【分析】四根木條中,抽出其中三根的組合有4種,計算出能組成三角形的組合,利用概率公式進行求解即可.【詳解】解:能組成三角形的組合有:4,8,10;4,10,12;8,10,12三種情況,故抽出其中三根能組成三角形的概率是.【點睛】本題考查了列舉法求概率,如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=,構(gòu)成三角形的基本要求為兩小邊之和大于最大邊.15、1【分析】直接利用關(guān)于原點對稱點的性質(zhì)得出3a+b=﹣1,進而得出答案.【詳解】解:∵點P(2a+3b,﹣2)關(guān)于原點的對稱點為Q(3,a﹣2b),∴,故3a+b=﹣1,則(3a+b)2020=1.故答案為:1.【點睛】此題主要考查了關(guān)于原點對稱點的性質(zhì),正確記憶橫縱坐標(biāo)的符號關(guān)系是解題關(guān)鍵.16、【解析】根據(jù)勾股定理求出OA的長度,根據(jù)余弦等于鄰邊比斜邊求解即可.【詳解】∵點A坐標(biāo)為(3,4),∴OA==5,∴cosα=,故答案為【點睛】本題主要考查銳角三角函數(shù)的概念,在直角三角形中,在直角三角形中,正弦等于對邊比斜邊;余弦等于鄰邊比斜邊;正切等于對邊比鄰邊,熟練掌握三角函數(shù)的概念是解題關(guān)鍵.17、20%【分析】設(shè)平均每次降價的百分率是x,根據(jù)“經(jīng)過兩次降價,零售價由100元降為64元”,列出一元二次方程,求解即可.【詳解】設(shè)平均每次降價的百分率是x,根據(jù)題意得:100(1﹣x)2=64,解得:x1=0.2,x2=1.8(舍去),即平均每次降價的百分率是20%.故答案為:20%.【點睛】本題考查了一元二次方程的應(yīng)用,解答本題的關(guān)鍵是明確題意,列出相應(yīng)的方程,這是一道典型的增長率問題.18、3【解析】在同樣條件下,大量重復(fù)實驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關(guān)系入手,列出等式解答.【詳解】解:根據(jù)題意得,=0.3,解得m=3.故答案為:3.【點睛】本題考查隨機事件概率的意義,關(guān)鍵是要知道在同樣條件下,大量重復(fù)實驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近.三、解答題(共66分)19、(1)7,7.5,4.2;(2)①乙,②乙;③甲【分析】(1)根據(jù)平均數(shù)、中位數(shù)、方差的定義分別計算即可解決問題;
(2)由表中數(shù)據(jù)可知,甲,乙平均成績相等,乙的中位數(shù),眾數(shù)均大于甲,說明乙的成績好于甲,從方差來看,乙的方差大于甲,所以甲的成績相對較穩(wěn)定.【詳解】解:(l)a=(5+2×6+4×7+2×8+9)=7(環(huán)),b=(7+8)=7.5(環(huán)),c=[(3﹣7)2+(4﹣7)2+(6﹣7)2+(8﹣7)2+(7﹣7)2+(8﹣7)2+(7﹣7)2+(8﹣7)2+(10﹣7)2+(9﹣7)2]=4.2(環(huán)2);故答案為:7,7.5,4.2;(2)由表中數(shù)據(jù)可知,甲,乙平均成績相等,乙的中位數(shù),眾數(shù)均大于甲,說明乙的成績好于甲,乙的方差大于甲.①從平均數(shù)和中位數(shù)的角度來比較,成績較好的是:乙;②從平均數(shù)和眾數(shù)的角度來比較,成績較好的是乙;?③成績相對較穩(wěn)定的是:甲.故答案為:乙,乙,甲.【點睛】本題考查了條形統(tǒng)計圖、折線統(tǒng)計圖、平均數(shù)、中位數(shù)、方差等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.20、(1)見解析;(2)【分析】(1)連接OD,由AD為角平分線得到∠BAD=∠CAD,再由等邊對等角得到∠OAD=∠ODA,等量代換得到∠ODA=∠CAD,進而得到OD∥AC,得到OD與BC垂直,即可得證;
(2)連接DF,由(1)得到BC為圓O的切線,結(jié)合角度的運算得出∠CDF=∠DAF,進而得到∠AFD=∠ADB,結(jié)合∠BAD=∠DAF得到△ABD∽△ADF,由相似得比例,即可表示出AD;【詳解】(1)證明:如圖,連接OD,則OD為圓O的半徑,∵AD平分∠BAC,∴∠BAD=∠CAD,∵OD=OA,∴∠OAD=∠ODA,∴∠ODA=∠CAD,∴OD∥AC,∴∠ODC=∠C=90°即OD⊥BC,∴BC是⊙O切線.(2)連接DF,OF,由(1)知BC為圓O的切線,∴∠ODC=90°,∴∠ODF+∠CDF=90°,∴∠ODF=90°-∠CDF,∵OD=OF,∴∠ODF=∠OFD=,又∵∠DAF=,∴∠ODF=∴∠CDF=∠DAF又∵∠CDF+∠CFD=90°,∠DAF+∠CDA=90°,∴∠CDA=∠CFD,
∴∠AFD=∠ADB,
∵∠BAD=∠DAF,
∴△ABD∽△ADF,∴,則∵AB=m,AF=n,∴∴【點睛】此題屬于圓的綜合題,涉及的知識有:切線的判定與性質(zhì),相似三角形的判定與性質(zhì),以及平行線的判定與性質(zhì),熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.21、(1)詳見解析;(2).【解析】(1)通過列表展示即可得到所有可能的結(jié)果;
(2)找出在第一象限或第三象限的結(jié)果數(shù),然后根據(jù)概率公式計即可.【詳解】解:列表如下:從上面的表格可以看出,所有可能出現(xiàn)的結(jié)果共有種,且每種結(jié)果出現(xiàn)的可能性相同,其中點在第一象限或第三象限的結(jié)果有種,所以其的概率.【點睛】考查概率公式計算以及用頻率估計概率,比較簡單,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比,用概率公式計算,比較即可.22、(1)詳見解析;(2)2秒;(3)2秒或秒或秒.【分析】(1)由題意通過計算發(fā)現(xiàn)EQ=FQ=6,由此即可證明;(2)根據(jù)題意利用三角形的面積建立方程即可得出結(jié)論;(3)由題意分點E在Q的左側(cè)以及點E在Q的右側(cè)這兩種情況,分別進行分析即可得出結(jié)論.【詳解】解:(1)證明:若運動時間t=秒,則BE=2×=(cm),DF=(cm),∵四邊形ABCD是矩形∴AD=BC=8(cm),AB=DC=6(cm),∠D=∠BCD=90°∵∠D=∠FQC=∠QCD=90°,∴四邊形CDFQ也是矩形,∴CQ=DF,CD=QF=6(cm),∴EQ=BC﹣BE﹣CQ=8﹣﹣=6(cm),∴EQ=QF=6(cm),又∵FQ⊥BC,∴△EQF是等腰直角三角形;(2)由(1)知,CE=8﹣2t,CQ=t,在Rt△ABC中,tan∠ACB==,在Rt△CPQ中,tan∠ACB===,∴PQ=t,∵△EPC的面積為3cm2,∴S△EPC=CE×PQ=×(8﹣2t)×t=3,∴t=2秒,即t的值為2秒;(3)解:分兩種情況:Ⅰ.如圖1中,點E在Q的左側(cè).①∠PEQ=∠CAD時,△EQP∽△ADC,∵四邊形ABCD是矩形,∴AD∥BC,∴∠CAD=∠ACB,∵△EQP∽△ADC,∴∠CAD=∠QEP,∴∠ACB=∠QEP,∴EQ=CQ,∴CE=2CQ,由(1)知,CQ=t,CE=8-2t,∴8-2t=2t,∴t=2秒;②∠PEQ=∠ACD時,△EPQ∽△CAD,∴,∵FQ⊥BC,∴FQ∥AB,∴△CPQ∽△CAB,∴,即,解得:,∴,解得:;Ⅱ.如圖2中,點E在Q的右側(cè).∵0<t<4,∴點E不能與點C重合,∴只存在△EPQ∽△CAD,可得,即,解得:;綜上所述,t的值為2秒或秒或秒時,△EPQ與△ADC相似.【點睛】本題是相似形綜合題,主要考查矩形的性質(zhì)和判定,三角函數(shù),相似三角形的判定和性質(zhì),用方程的思想解決問題是解本題的關(guān)鍵.23、(1);(2)3;(3).【分析】(1)利用待定系數(shù)法進行求解即可;(2)作直線DE⊥軸于點E,交BC于點G,作CF⊥DE,垂足為F,先求出S△OAC=6,再根據(jù)S△BCD=S△AOC,得到S△BCD=,然后求出BC的解析式為,則可得點G的坐標(biāo)為,由此可得,再根據(jù)S△BCD=S△CDG+S△BDG=,可得關(guān)于m的方程,解方程即可求得答案;(3)存在,如下圖所示,以BD為邊或者以BD為對角線進行平行四邊形的構(gòu)圖,以BD為邊時,有3種情況,由點D的坐標(biāo)可得點N點縱坐標(biāo)為±,然后分點N的縱坐標(biāo)為和點N的縱坐標(biāo)為兩種情況分別求解;以BD為對角線時,有1種情況,此時N1點與N2點重合,根據(jù)平行四邊形的對邊平行且相等可求得BM1=N1D=4,繼而求得OM1=8,由此即可求得答案.【詳解】(1)拋物線經(jīng)過點A(-2,0),B(4,0),∴,解得,∴拋物線的函數(shù)表達式為;(2)作直線DE⊥軸于點E,交BC于點G,作CF⊥DE,垂足為F,∵點A的坐標(biāo)為(-2,0),∴OA=2,由,得,∴點C的坐標(biāo)為(0,6),∴OC=6,∴S△OAC=,∵S△BCD=S△AOC,∴S△BCD=,設(shè)直線BC的函數(shù)表達式為,由B,C兩點的坐標(biāo)得,解得,∴直線BC的函數(shù)表達式為,∴點G的坐標(biāo)為,∴,∵點B的坐標(biāo)為(4,0),∴OB=4,∵S△BCD=S△CDG+S△BDG=,∴S△BCD=,∴,解得(舍),,∴的值為3;(3)存在,如下圖所示,以BD為邊或者以BD為對角線進行平行四邊形的構(gòu)圖,以BD為邊時,有3種情況,∵D點坐標(biāo)為,∴點N點縱坐標(biāo)為±,當(dāng)點N的縱坐標(biāo)為時,如點N2,此時,解得:(舍),∴,∴;當(dāng)點N的縱坐標(biāo)為時,如點N3,N4,此時,解得:∴,,∴,;以BD為對角線時,有1種情況,此時N1點與N2點重合,∵,D(3,),∴N1D=4,∴BM1=N1D=4,∴OM1=OB+BM1=8,∴M1(8,0),綜上,點M的坐標(biāo)為:.【點睛】本題考查的是二次函數(shù)的綜合題,涉及了待定系數(shù)法、三角形的面積、解一元二次方程、平行四邊形的性質(zhì)等知識,運用了數(shù)形結(jié)合思想、分類討論思想等數(shù)學(xué)思想,熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.24、(1)(3,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度跨境電商平臺100%股權(quán)出讓協(xié)議3篇
- 2024某書法家與某拍賣行之間關(guān)于書法作品拍賣之合作協(xié)議
- 廣西桂林市2025年中考語文模擬試題三套【附參考答案】
- 18書湖陰先生壁 說課稿-2024-2025學(xué)年六年級上冊語文統(tǒng)編版
- 2024年運動場地使用權(quán)轉(zhuǎn)讓合同
- 16《朱德扁擔(dān)》第一課時 說課稿-2024-2025學(xué)年語文二年級上冊統(tǒng)編版
- 2024文化墻環(huán)保材料供應(yīng)及安裝一體化工程合同3篇
- 2024年通信行業(yè)保密合同精簡版范文版
- 2024浴池租賃合同-溫泉度假村合作管理服務(wù)協(xié)議3篇
- 2024某電商平臺與某物流公司關(guān)于2024年物流服務(wù)合同
- 房屋租賃管理條例2024年
- 《文獻檢索與論文寫作》教學(xué)大綱思政版
- 《成人有創(chuàng)機械通氣氣道內(nèi)吸引技術(shù)操作》標(biāo)準解讀
- 檔案館查資料委托書
- 高中數(shù)學(xué)人教A版必修第一冊 全冊 思維導(dǎo)圖
- 【基于自由現(xiàn)金流貼現(xiàn)法的企業(yè)估值的案例探析3300字(論文)】
- 江門市廣雅中學(xué)2023-2024學(xué)年七年級下學(xué)期月考數(shù)學(xué)試題 (B卷)
- 鑄件工藝性分析報告
- 船舶維修搶修方案
- 九年級初三中考物理綜合復(fù)習(xí)測試卷3套(含答案)
- (正式版)JTT 1218.5-2024 城市軌道交通運營設(shè)備維修與更新技術(shù)規(guī)范 第5部分:通信
評論
0/150
提交評論