湖北省監(jiān)利縣2023-2024學(xué)年數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第1頁
湖北省監(jiān)利縣2023-2024學(xué)年數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第2頁
湖北省監(jiān)利縣2023-2024學(xué)年數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第3頁
湖北省監(jiān)利縣2023-2024學(xué)年數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第4頁
湖北省監(jiān)利縣2023-2024學(xué)年數(shù)學(xué)九上期末聯(lián)考模擬試題含解析_第5頁
已閱讀5頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

湖北省監(jiān)利縣2023-2024學(xué)年數(shù)學(xué)九上期末聯(lián)考模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.在平面直角坐標系中,把點繞原點順時針旋轉(zhuǎn),所得到的對應(yīng)點的坐標為()A. B. C. D.2.如圖,是反比例函數(shù)與在x軸上方的圖象,點C是y軸正半軸上的一點,過點C作軸分別交這兩個圖象與點A和點B,P和Q在x軸上,且四邊形ABPQ為平行四邊形,則四邊形ABPQ的面積等于()A.20 B.15 C.10 D.53.如果點D、E分別在△ABC中的邊AB和AC上,那么不能判定DE∥BC的比例式是()A.AD:DB=AE:EC B.DE:BC=AD:ABC.BD:AB=CE:AC D.AB:AC=AD:AE4.已知(a≠0,b≠0),下列變形錯誤的是()A. B.2a=3b C. D.3a=2b5.如圖,在⊙O中,已知∠OAB=22.5°,則∠C的度數(shù)為()A.135° B.122.5° C.115.5° D.112.5°6.如圖,拋物線與軸交于點,頂點坐標為,與軸的交點在、之間(包含端點).有下列結(jié)論:①當(dāng)時,;②;③;④.其中正確的有()A.1個 B.2個 C.3個 D.4個7.如圖,⊙是的外接圓,,則的度數(shù)為()A.60° B.65° C.70° D.75°8.如圖:已知AB=10,點C、D在線段AB上且AC=DB=2;P是線段CD上的動點,分別以AP、PB為邊在線段AB的同側(cè)作等邊△AEP和等邊△PFB,連接EF,設(shè)EF的中點為G;當(dāng)點P從點C運動到點D時,則點G移動路徑的長是()A.5 B.4 C.3 D.09.如圖,為的直徑,為上一點,弦平分,交于點,,,則的長為()A.2.2 B.2.5 C.2 D.1.810.二次函數(shù)y=kx2+2x+1的部分圖象如圖所示,則k的取值范圍是()A.k≤1 B.k≥1 C.k<1 D.0<k<1二、填空題(每小題3分,共24分)11.一個口袋中放有除顏色外,形狀大小都相同的黑白兩種球,黑球6個,白球10個.現(xiàn)在往袋中放入m個白球和4個黑球,使得摸到白球的概率為,則m=__.12.周末小明到商場購物,付款時想從“微信”、“支付寶”、“銀行卡”三種支付方式中選一種方式進行支付,則選擇“微信”支付方式的概率為____________.13.如圖,點在直線上,點的橫坐標為,過作,交軸于點,以為邊,向右作正方形,延長交軸于點;以為邊,向右作正方形,延長交軸于點;以為邊,向右作正方形延長交軸于點;按照這個規(guī)律進行下去,點的橫坐標為_____(結(jié)果用含正整數(shù)的代數(shù)式表示)14.如圖,五邊形ABCDE是⊙O的內(nèi)接正五邊形,AF是⊙O的直徑,則∠BDF的度數(shù)是___________°.15.已知,=________.16.如圖,在反比例函數(shù)的圖象上任取一點P,過P點分別作x軸,y軸的垂線,垂足分別為M,N,那么四邊形PMON的面積為_____.17.如圖,PA,PB是⊙O的兩條切線,切點分別為A,B,連接OA,OP,AB,設(shè)OP與AB相交于點C,若∠APB=60°,OC=2cm,則PC=_________cm.18.如圖,坡角為30°的斜坡上兩樹間的水平距離AC為2m,則兩樹間的坡面距離AB為___________________三、解答題(共66分)19.(10分)已知拋物線C1的解析式為y=-x2+bx+c,C1經(jīng)過A(-2,5)、B(1,2)兩點.(1)求b、c的值;(2)若一條拋物線與拋物線C1都經(jīng)過A、B兩點,且開口方向相同,稱兩拋物線是“兄弟拋物線”,請直接寫出C1的一條“兄弟拋物線”的解析式.20.(6分)制作一種產(chǎn)品,需先將材料加熱達到60℃后,再進行操作.設(shè)該材料溫度為y(℃),從加熱開始計算的時間為x(分鐘).據(jù)了解,設(shè)該材料加熱時,溫度y與時間x成一次函數(shù)關(guān)系;停止加熱進行操作時,溫度y與時間x成反比例關(guān)系(如圖).已知該材料在操作加工前的溫度為15℃,加熱5分鐘后溫度達到60℃.(1)求將材料加熱時,y與x的函數(shù)關(guān)系式;(2)求停止加熱進行操作時,y與x的函數(shù)關(guān)系式;(3)根據(jù)工藝要求,當(dāng)材料的溫度低于15℃時,須停止操作,那么操作時間是多少?21.(6分)從甲、乙兩臺包裝機包裝的質(zhì)量為300g的袋裝食品中各抽取10袋,測得其實際質(zhì)量如下(單位:g)甲:301,300,305,302,303,302,300,300,298,299乙:305,302,300,300,300,300,298,299,301,305(1)分別計算甲、乙這兩個樣本的平均數(shù)和方差;(2)比較這兩臺包裝機包裝質(zhì)量的穩(wěn)定性.22.(8分)某果園有果樹80棵,現(xiàn)準備多種一些果樹提高果園產(chǎn)量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產(chǎn)量隨之降低,若該果園每棵果樹產(chǎn)果(千克),增種果樹(棵),它們之間的函數(shù)關(guān)系如圖所示.(1)求與之間的函數(shù)關(guān)系式;(2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?23.(8分)如圖,在平面直角坐標系中,一次函數(shù)y=x+2的圖象與y軸交于A點,與x軸交于B點,⊙P的半徑為,其圓心P在x軸上運動.(1)如圖1,當(dāng)圓心P的坐標為(1,0)時,求證:⊙P與直線AB相切;(2)在(1)的條件下,點C為⊙P上在第一象限內(nèi)的一點,過點C作⊙P的切線交直線AB于點D,且∠ADC=120°,求D點的坐標;(3)如圖2,若⊙P向左運動,圓心P與點B重合,且⊙P與線段AB交于E點,與線段BO相交于F點,G點為弧EF上一點,直接寫出AG+OG的最小值.24.(8分)如圖,是線段上--動點,以為直徑作半圓,過點作交半圓于點,連接.已知,設(shè)兩點間的距離為,的面積為.(當(dāng)點與點或點重合時,的值為)請根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進行探究.(注:本題所有數(shù)值均保留一位小數(shù))通過畫圖、測量、計算,得到了與的幾組值,如下表:補全表格中的數(shù)值:;;.根據(jù)表中數(shù)值,繼續(xù)描出中剩余的三個點,畫出該函數(shù)的圖象并寫出這個函數(shù)的一條性質(zhì);結(jié)合函數(shù)圖象,直接寫出當(dāng)?shù)拿娣e等于時,的長度約為____.25.(10分)如圖,是的角平分線,過點分別作、的平行線,交于點,交于點.(1)求證:四邊形是菱形.(2)若,.求四邊形的面積.26.(10分)如圖,在△ABC中,∠ACB=90°,D為AC的中點,DE⊥AB于點E,AC=8,AB=1.求AE的長.

參考答案一、選擇題(每小題3分,共30分)1、C【分析】根據(jù)題意得點P點P′關(guān)于原點的對稱,然后根據(jù)關(guān)于原點對稱的點的坐標特點即可得解.【詳解】∵P點坐標為(3,-2),∴P點的原點對稱點P′的坐標為(-3,2).故選C.【點睛】本題主要考查坐標與圖形變化-旋轉(zhuǎn),解此題的關(guān)鍵在于熟練掌握其知識點.2、C【解析】分別過A、B作AD、BE垂直x軸,易證,則平行四邊形ABPQ的面積等于矩形ADEB的面積,根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義分別求得矩形ADOC和矩形BEOC的面積,相加即可求得結(jié)果.【詳解】解:如圖,分別過A、B作AD、BE垂直x軸于點D、點E,則四邊形ADEB是矩形,易證,∴S矩形ABED,∵點A在反比例函數(shù)上,由反比例函數(shù)比例系數(shù)k的幾何意義可得:S矩形ADOC=|k|=3,同理可得:S矩形BEOC=7,∴S矩形ABED=S矩形ADOC+S矩形BEOC=3+7=10,故選:C.【點睛】本題考查了反比例函數(shù)比例系數(shù)k的幾何意義,熟練運用比例系數(shù)k的幾何意義是解決本題的關(guān)鍵.3、B【解析】由AD:DB=AE:EC,DE:BC=AD:AB與BD:AB=CE:ACAB:AC=AD:AE,根據(jù)平行線分線段成比例定理,均可判定DE∥BC,然后利用排除法即可求得答案.【詳解】A、∵AD:DB=AE:EC,∴DE∥BC,故本選項能判定DE∥BC;

B、由DE:BC=AD:AB,不能判定DE∥BC,故本選項不能判定DE∥BC.

C、∵BD:AB=CE:AC,∴DE∥BC,故本選項能判定DE∥BC;D、∵AB:AC=AD:AE,∴AB:AD=AC:AE,∴DE∥BC,,故本選項能判定DE∥BC.

所以選B.【點睛】此題考查了平行線分線段成比例定理.此題難度不大,解題的關(guān)鍵是注意準確應(yīng)用平行線分線段成比例定理與數(shù)形結(jié)合思想的應(yīng)用.4、B【分析】根據(jù)兩內(nèi)項之積等于兩外項之積對各選項分析判斷即可得解.【詳解】解:由得,3a=2b,A、由等式性質(zhì)可得:3a=2b,正確;B、由等式性質(zhì)可得2a=3b,錯誤;C、由等式性質(zhì)可得:3a=2b,正確;D、由等式性質(zhì)可得:3a=2b,正確;故選B.【點睛】本題考查了比例的性質(zhì),主要利用了兩內(nèi)項之積等于兩外項之積.5、D【解析】分析:∵OA=OB,∴∠OAB=∠OBC=22.5°.∴∠AOB=180°﹣22.5°﹣22.5°=135°.如圖,在⊙O取點D,使點D與點O在AB的同側(cè).則.∵∠C與∠D是圓內(nèi)接四邊形的對角,∴∠C=180°﹣∠D=112.5°.故選D.6、C【分析】①由拋物線的頂點坐標的橫坐標可得出拋物線的對稱軸為x=1,結(jié)合拋物線的對稱性及點A的坐標,可得出點B的坐標,由點B的坐標即可斷定①正確;②由拋物線的開口向下可得出a<1,結(jié)合拋物線對稱軸為x=-=1,可得出b=-2a,將b=-2a代入2a+b中,結(jié)合a<1即可得出②不正確;③由拋物線與y軸的交點的范圍可得出c的取值范圍,將(-1,1)代入拋物線解析式中,再結(jié)合b=-2a即可得出a的取值范圍,從而斷定③正確;④結(jié)合拋物線的頂點坐標的縱坐標為,結(jié)合a的取值范圍以及c的取值范圍即可得出n的范圍,從而斷定④正確.綜上所述,即可得出結(jié)論.【詳解】解:①由拋物線的對稱性可知:

拋物線與x軸的另一交點橫坐標為1×2-(-1)=2,

即點B的坐標為(2,1),

∴當(dāng)x=2時,y=1,①正確;

②∵拋物線開口向下,

∴a<1.

∵拋物線的頂點坐標為(1,n),

∴拋物線的對稱軸為x=-=1,

∴b=-2a,

2a+b=a<1,②不正確;

③∵拋物線與y軸的交點在(1,2)、(1,2)之間(包含端點),

∴2≤c≤2.

令x=-1,則有a-b+c=1,

又∵b=-2a,

∴2a=-c,即-2≤2a≤-2,

解得:-1≤a≤-,③正確;

④∵拋物線的頂點坐標為,∴n==c-,又∵b=-2a,2≤c≤2,-1≤a≤-,

∴n=c-a,≤n≤4,④正確.

綜上可知:正確的結(jié)論為①③④.

故選C.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系,解決該題型題目時,利用二次函數(shù)的系數(shù)表示出來拋物線的頂點坐標是關(guān)鍵.7、C【分析】連接OB,根據(jù)等腰三角形的性質(zhì)和圓周角定理即可得到結(jié)論.【詳解】連接OB,∵OC=OB,∠BCO=20,∴∠OBC=20,∴∠BOC=180?20?20=140,∴∠A=140×=70,故選:C.【點睛】本題考查了圓周角定理,要知道,同弧所對的圓周角等于它所對圓心角的一半.8、C【分析】本題通過做輔助線構(gòu)造新三角形,繼而利用等邊三角形性質(zhì)求證四邊形HFPE為平行四邊形,進一步結(jié)合點G中點性質(zhì)確定點G運動路徑為△HCD中位線,最后利用中位線性質(zhì)求解.【詳解】延長AE與BF使其相交于點H,連接HC、HD、HP,如下圖所示:由已知得:∠A=∠FPB=60°,∠B=∠EPA=60°,∴AH∥PF,BH∥PE,∴四邊形HFPE為平行四邊形,∴EF與PH互相平分,又∵點G為EF中點,∴點G為PH中點,即在點P運動過程中,點G始終為PH的中點,故點G的運動軌跡為△HCD的中位線MN.∵,,∴,∴,即點G的移動路徑長為1.故選:C.【點睛】本題考查等邊三角形性質(zhì)以及動點問題,此類型題目難點在于輔助線的構(gòu)造,需要多做類似題目積累題感,涉及動點運動軌跡時,其路徑通常是較為特殊的線段或圖形,例如中位線或圓.9、A【分析】連接BD、CD,由勾股定理先求出BD的長,再利用△ABD∽△BED,得出,可解得DE的長.【詳解】連接BD、CD,如圖所示:∵AB為⊙O的直徑,∴∠ADB=90°,∴,∵弦AD平分∠BAC,∴CD=BD=,∴∠CBD=∠DAB,在△ABD和△BED中,∠BAD=∠EBD,∠ADB=∠BDE,∴△ABD∽△BED,∴,即,解得DE=1.1.故選:A.【點睛】此題主要考查了三角形相似的判定和性質(zhì)及圓周角定理,解答此題的關(guān)鍵是得出△ABD∽△BED.10、D【分析】由二次函數(shù)y=kx2+2x+1的部分圖象可知開口朝上以及頂點在x軸下方進行分析.【詳解】解:由圖象可知開口朝上即有0<k,又因為頂點在x軸下方,所以頂點縱坐標從而解得k<1,所以k的取值范圍是0<k<1.故選D.【點睛】本題考查二次函數(shù)圖像性質(zhì),根據(jù)開口朝上以及頂點在x軸下方分別代入進行分析.二、填空題(每小題3分,共24分)11、1【分析】根據(jù)概率公式列出方程,即可求出答案.【詳解】解:由題意得,解得m=1,經(jīng)檢驗m=1是原分式方程的根,故答案為1.【點睛】本題主要考查了概率公式,根據(jù)概率公式列出方程是解題的關(guān)鍵.12、【分析】利用概率公式直接寫出答案即可.【詳解】∵共“微信”、“支付寶”、“銀行卡”三種支付方式,∴選擇“微信”支付方式的概率為,故答案為:.【點睛】本題考查概率的求法與運用,一般方法為:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.13、【解析】過點分別作軸,軸,軸,軸,軸,……垂足分別為,根據(jù)題意求出,得到圖中所有的直角三角形都相似,兩條直角邊的比都是可以求出點的橫坐標為:,再依次求出……即可求解.【詳解】解:過點分別作軸,軸,軸,軸,軸,……垂足分別為點在直線上,點的橫坐標為,點的縱坐標為,即:圖中所有的直角三角形都相似,兩條直角邊的比都是點的橫坐標為:,點的橫坐標為:點C3的橫坐標為:點的橫坐標為:點的橫坐標為:故答案為:【點睛】本題考查的是規(guī)律,熟練掌握相似三角形的性質(zhì)是解題的關(guān)鍵.14、1【分析】連接AD,根據(jù)圓周角定理得到∠ADF=90°,根據(jù)五邊形的內(nèi)角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圓周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到結(jié)論.【詳解】連接AD,∵AF是⊙O的直徑,∴∠ADF=90°,∵五邊形ABCDE是⊙O的內(nèi)接正五邊形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=1°,故答案為1.【點睛】本題考查正多邊形與圓,圓周角定理等知識,解題的關(guān)鍵靈活運用所學(xué)知識解決問題.15、【分析】先去分母,然后移項合并,即可得到答案.【詳解】解:∵,∴,∴,∴,∴;故答案為:.【點睛】本題考查了解二元一次方程,解題的關(guān)鍵是掌握解二元一次方程的方法.16、1【分析】設(shè)出點P的坐標,四邊形PMON的面積等于點P的橫縱坐標的積的絕對值,把相關(guān)數(shù)值代入即可.【詳解】設(shè)點P的坐標為(x,y),∵點P的反比例函數(shù)的圖象上,∴xy=﹣1,作軸于,作軸于,∴四邊形PMON為矩形,∴四邊形PMON的面積為|xy|=1,故答案為1.【點睛】考查反比例函數(shù)的比例系數(shù)的意義;用到的知識點為:在反比例函數(shù)圖象上的點的橫縱坐標的積等于反比例函數(shù)的比例系數(shù).注意面積應(yīng)為正值.17、6【分析】由切線長定理可知PA=PB,由垂徑定理可知OP垂直平分AB,所以O(shè)P平分,可得,利用直角三角形30度角的性質(zhì)可得OA、OP的長,即可.【詳解】解:PA,PB是⊙O的兩條切線,由垂徑定理可知OP垂直平分AB,OP平分,在中,在中,故答案為:6【點睛】本題主要考查了圓的性質(zhì)與三角形的性質(zhì),涉及的知識點主要有切線長定理、垂徑定理、等腰三角形的性質(zhì)、直角三角形30度角的性質(zhì),靈活的將圓與三角形相結(jié)合是解題的關(guān)鍵.18、m【分析】根據(jù)余弦的定義計算,得到答案.【詳解】在Rt△ABC中,cosA=,∴AB=,故答案為:m.【點睛】本題考查了三角函數(shù)的問題,掌握三角函數(shù)的定義以及應(yīng)用是解題的關(guān)鍵.三、解答題(共66分)19、(1)b=-2,c=5;(2)(答案不唯一).【分析】(1)直接把點代入,求出的值即可得出拋物線的解析式;(2)根據(jù)題意,設(shè)“兄弟拋物線”的解析式為:,直接把點代入即可求得答案.【詳解】(1)∵在C1上,∴,解得:.(2)根據(jù)“兄弟拋物線”的定義,知:“兄弟拋物線”經(jīng)過A(-2,5)、B(1,2)兩點,且開口方向相同,∴設(shè)“兄弟拋物線”的解析式為:,∵在“兄弟拋物線”上,∴,解得:.∴另一條“兄弟拋物線”的解析式為:.【點睛】本題主要考查了待定系數(shù)法求二次函數(shù),正確理解題意,明確“兄弟拋物線”的定義是解題的關(guān)鍵.20、(1)y=9x+15;(2)y=;(3)15分鐘【解析】(1)設(shè)加熱時y=kx+b(k≠0),停止加熱后y=a/x(a≠0),把b=15,(5,60)代入求解(2)把y=15代入反比例函數(shù)求得21、(1)甲平均數(shù)301,乙平均數(shù)301,甲方差3.2,乙方差4.2;(2)甲包裝機包裝質(zhì)量的穩(wěn)定性好,見解析【分析】(1)根據(jù)平均數(shù)就是對每組數(shù)求和后除以數(shù)的個數(shù);根據(jù)方差公式計算即可;(2)方差大說明這組數(shù)據(jù)波動大,方差小則波動小,就比較穩(wěn)定.依此判斷即可.【詳解】解:(1)=(1+0+5+2+3+2+0+0﹣2﹣1)+300=301,=(5+2+0+0+0+0﹣2﹣1+1+5)+300=301,=[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2]=3.2;=[(301﹣305)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2+(301﹣301)2+(301﹣305)2]=4.2;(2)∵<,∴甲包裝機包裝質(zhì)量的穩(wěn)定性好.【點睛】本題考查了平均數(shù)和方差,正確掌握平均數(shù)及方差的求解公式是解題的關(guān)鍵.22、(1);(2)增種果樹10棵時,果園可以收獲果實6750千克.【分析】(1)設(shè),將點(12,74)、(28,66)代入即可求出k與b的值,得到函數(shù)關(guān)系式;(2)根據(jù)題意列方程,求出x的值并檢驗即可得到答案.【詳解】(1)設(shè),將點(12,74)、(28,66)代入,得,解得,∴y與x的函數(shù)關(guān)系式為;(2)由題意得:,解得:,,∵投入成本最低,∴x=10,答:增種果樹10棵時,果園可以收獲果實6750千克.【點睛】此題考查待定系數(shù)法求一次函數(shù)解析式,一元二次方程的實際應(yīng)用,正確理解題意中的x、y的實際意義是解題的關(guān)鍵.23、(1)見解析;(2)D(,+2);(3).【分析】(1)連接PA,先求出點A和點B的坐標,從而求出OA、OB、OP和AP的長,即可確定點A在圓上,根據(jù)相似三角形的判定定理證出△AOB∽△POA,根據(jù)相似三角形的性質(zhì)和等量代換證出PA⊥AB,即可證出結(jié)論;(2)連接PA,PD,根據(jù)切線長定理可求出∠ADP=∠PDC=∠ADC=60°,利用銳角三角函數(shù)求出AD,設(shè)D(m,m+2),根據(jù)平面直角坐標系中任意兩點之間的距離公式求出m的值即可;(3)在BA上取一點J,使得BJ=,連接BG,OJ,JG,根據(jù)相似三角形的判定定理證出△BJG∽△BGA,列出比例式可得GJ=AG,從而得出AG+OG=GJ+OG,設(shè)J點的坐標為(n,n+2),根據(jù)平面直角坐標系中任意兩點之間的距離公式求出n,從而求出OJ的長,然后根據(jù)兩點之間線段最短可得GJ+OG≥OJ,即可求出結(jié)論.【詳解】(1)證明:如圖1中,連接PA.∵一次函數(shù)y=x+2的圖象與y軸交于A點,與x軸交于B點,∴A(0,2),B(﹣4,0),∴OA=2,OB=4,∵P(1,0),∴OP=1,∴OA2=OB?OP,AP=∴=,點A在圓上∵∠AOB=∠AOP=90°,∴△AOB∽△POA,∴∠OAP=∠ABO,∵∠OAP+∠APO=90°,∴∠ABO+∠APO=90°,∴∠BAP=90°,∴PA⊥AB,∴AB是⊙P的切線.(2)如圖1﹣1中,連接PA,PD.∵DA,DC是⊙P的切線,∠ADC=120°,∴∠ADP=∠PDC=∠ADC=60°,∴∠APD=30°,∵∠PAD=90°∴AD=PA?tan30°=,設(shè)D(m,m+2),∵A(0,2),∴m2+(m+2﹣2)2=,解得m=±,∵點D在第一象限,∴m=,∴D(,+2).(3)在BA上取一點J,使得BJ=,連接BG,O

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論