第46講:導(dǎo)數(shù)的應(yīng)用_第1頁(yè)
第46講:導(dǎo)數(shù)的應(yīng)用_第2頁(yè)
第46講:導(dǎo)數(shù)的應(yīng)用_第3頁(yè)
第46講:導(dǎo)數(shù)的應(yīng)用_第4頁(yè)
第46講:導(dǎo)數(shù)的應(yīng)用_第5頁(yè)
已閱讀5頁(yè),還剩19頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第46講:導(dǎo)數(shù)的應(yīng)用【考綱要求】1、了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系:能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)性區(qū)間(其中多項(xiàng)式函數(shù)一般不超過三次)2、了解函數(shù)在某點(diǎn)取得極值的必要條件和充分條件:會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值(其中多項(xiàng)式函數(shù)一般不超過三次);會(huì)求閉期間上函數(shù)的最大值、最小值(其中多項(xiàng)式函數(shù)一般不超過三次)二、求函數(shù)的極值的一般步驟先求定義域SKIPIF1<0,再求導(dǎo),再解方程SKIPIF1<0(注意和SKIPIF1<0求交集),最后列表確定極值。一般地,函數(shù)在SKIPIF1<0點(diǎn)SKIPIF1<0連續(xù)時(shí),如果SKIPIF1<0附近左側(cè)SKIPIF1<0>0,右側(cè)SKIPIF1<0<0,那么SKIPIF1<0是極大值。一般地,函數(shù)在SKIPIF1<0點(diǎn)SKIPIF1<0連續(xù)時(shí),如果SKIPIF1<0附近左側(cè)SKIPIF1<0<0,右側(cè)SKIPIF1<0>0,那么SKIPIF1<0是極小值。應(yīng)用一求函數(shù)的單調(diào)性解題步驟求函數(shù)的定義域SKIPIF1<0→求導(dǎo)SKIPIF1<0→解不等式SKIPIF1<0>SKIPIF1<00得解集SKIPIF1<0→求SKIPIF1<0,得函數(shù)的單調(diào)遞增(減)區(qū)間。例1.已知函數(shù)f(x)=SKIPIF1<0,求導(dǎo)函數(shù)SKIPIF1<0,并確定f(x)的單調(diào)區(qū)間.當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0的變化情況如下表:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<00SKIPIF1<0所以,當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0上單調(diào)遞減.當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),SKIPIF1<0,所以函數(shù)SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞減.學(xué)應(yīng)用二求函數(shù)的極值解題步驟先求定義域SKIPIF1<0,再求導(dǎo),再解方程SKIPIF1<0(注意和SKIPIF1<0求交集),最后列表確定極值。例2已知函數(shù),其中(1)當(dāng)滿足什么條件時(shí),取得極值?(2)已知,且在區(qū)間上單調(diào)遞增,試用表示出的取值范圍.當(dāng)時(shí),x(-∞,x1)x1(x1,x2)x2(x2,+∞)f’(x)+0-0+f(x)增函數(shù)極大值減函數(shù)極小值增函數(shù)所以在x1,x2處分別取得極大值和極小值.當(dāng)時(shí),x(-∞,x2)x2(x2,x1)x1(x1,+∞)f’(x)-0+0-f(x)減函數(shù)極小值增函數(shù)極大值減函數(shù)所以在x1,x2處分別取得極大值和極小值.綜上,當(dāng)滿足時(shí),取得極值.(2)要使在區(qū)間上單調(diào)遞增,需使在上恒成立.即恒成立,所以設(shè),,令得或(舍去),當(dāng)時(shí),,當(dāng)時(shí),單調(diào)增函數(shù);當(dāng)時(shí),單調(diào)減函數(shù),所以當(dāng)時(shí),取得最大,最大值為.所以當(dāng)時(shí),,此時(shí)在區(qū)間恒成立,所以在區(qū)間上單調(diào)遞增,當(dāng)時(shí)最大,最大值為,所以綜上,當(dāng)時(shí),;當(dāng)時(shí),(Ⅰ)當(dāng)SKIPIF1<0時(shí),求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(Ⅱ)當(dāng)SKIPIF1<0時(shí),求函數(shù)SKIPIF1<0的極大值和極小值;(Ⅲ)當(dāng)SKIPIF1<0時(shí),證明存在SKIPIF1<0,使得不等式SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立.已知函數(shù)SKIPIF1<0.(Ⅰ)求SKIPIF1<0的最小值;(Ⅱ)若對(duì)所有SKIPIF1<0都有SKIPIF1<0,求實(shí)數(shù)SKIPIF1<0的取值范圍.學(xué)SKIPIF1<0恒成立.令SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),因?yàn)镾KIPIF1<0,故SKIPIF1<0是SKIPIF1<0上的增函數(shù),所以SKIPIF1<0的最小值是SKIPIF1<0,所以SKIPIF1<0的取值范圍是SKIPIF1<0.【方法點(diǎn)評(píng)】(1)如果是開區(qū)間SKIPIF1<0,則必須通過求導(dǎo),求函數(shù)的單調(diào)區(qū)間,最后確定函數(shù)的最值。(2)分離參數(shù)法是處理參數(shù)問題常用的方法,注意靈活運(yùn)用。【變式演練3】已知函數(shù)f(x)=SKIPIF1<0(Ⅰ)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的最大值;(Ⅱ)設(shè)SKIPIF1<0,SKIPIF1<0是SKIPIF1<0圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0恒成立?若存在,求SKIPIF1<0的取值范圍;若不存在,請(qǐng)說明理由.應(yīng)用四證明不等式解題步驟一般先要構(gòu)造函數(shù),再利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、最值和極值等來解答。例4.求證下列不等式(1)SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0(3)SKIPIF1<0SKIPIF1<0∴SKIPIF1<0在SKIPIF1<0上SKIPIF1<0∴SKIPIF1<0SKIPIF1<0恒成立(2)原式SKIPIF1<0令SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0(3)令SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0應(yīng)用五解應(yīng)用題解題步驟(1)讀題和審題,主要是讀懂那些字母和數(shù)字的含義。(2)分析實(shí)際問題中各量之間的關(guān)系,列出實(shí)際問題的數(shù)學(xué)模型,寫出實(shí)際問題中變量之間的函數(shù)關(guān)系SKIPIF1<0(注意確定函數(shù)的定義域);(3)求函數(shù)的導(dǎo)數(shù)SKIPIF1<0,解方程SKIPIF1<0;(4)如果函數(shù)的定義域是閉區(qū)間,可以比較函數(shù)在區(qū)間端點(diǎn)和使SKIPIF1<0的點(diǎn)的函數(shù)值的大小,最大(?。┱邽樽畲螅ㄐ。┲?;如果函數(shù)的定義域不是閉區(qū)間,SKIPIF1<0又只有一個(gè)解,則該函數(shù)就在此點(diǎn)取得函數(shù)的最大(?。┲?,但是要進(jìn)行必要的單調(diào)性說明。例5為了在夏季降溫和冬季供暖時(shí)減少能源損耗,房屋的屋頂和外墻需要建造隔熱層。某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元。該建筑物每年的能源消耗費(fèi)用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關(guān)系:C(x)=SKIPIF1<0若不建隔熱層,每年能源消耗費(fèi)用為8萬元。設(shè)f(x)為隔熱層建造費(fèi)用與20年的能源消耗費(fèi)用之和。(Ⅰ)求k的值及f(x)的表達(dá)式。(Ⅱ)隔熱層修建多厚時(shí),總費(fèi)用f(x)達(dá)到最小,并求最小值。解得SKIPIF1<0,SKIPIF1<0(舍去).當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,故SKIPIF1<0是SKIPIF1<0的最小值點(diǎn),對(duì)應(yīng)的最小值為SKIPIF1<0。當(dāng)隔熱層修建SKIPIF1<0厚時(shí),總費(fèi)用達(dá)到最小值為70萬元?!军c(diǎn)評(píng)】(1)本題主要考察函數(shù)、導(dǎo)數(shù)等基礎(chǔ)知識(shí),同時(shí)考查運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力。(2)理解函數(shù)f(x)的含義并求出函數(shù)的表達(dá)式是此題的關(guān)鍵點(diǎn)?!咀兪窖菥?】統(tǒng)計(jì)表明,某種型號(hào)的汽車在勻速行駛中每小時(shí)的耗油量(升)關(guān)于行駛速度(千米/小時(shí))的函數(shù)解析式可以表示為:已知甲、乙兩地相距100千米。(1)當(dāng)汽車以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?(2)當(dāng)汽車以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升2、(2012高考真題廣東理21).(本小題滿分14分)設(shè),集合,,。(1)求集合(用區(qū)間表示)(2)求函數(shù)在內(nèi)的極值點(diǎn)。當(dāng)時(shí),,,所以此時(shí),當(dāng)時(shí),,所以此時(shí),(2),3.【2012高考真題安徽理19】(本小題滿分13分)設(shè)SKIPIF1<0。(=1\*ROMANI)求SKIPIF1<0在SKIPIF1<0上的最小值;(=2\*ROMANII)設(shè)曲線SKIPIF1<0在點(diǎn)SKIPIF1<0的切線方程為SKIPIF1<0;求SKIPIF1<0的值?!窘馕觥浚?1\*ROMANI)設(shè)SKIPIF1<0;則SKIPIF1<0,=1\*GB3①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0在SKIPIF1<0上是增函數(shù),得:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為SKIPIF1<0。=2\*GB3②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為SKIPIF1<0。(=2\*ROMANII)SKIPIF1<0,由題意得:SKIPIF1<0。4、(2012高考真題福建理20)(本小題滿分14分)已知函數(shù)(Ⅰ)若曲線在點(diǎn)處的切線平行于軸,求函數(shù)的單調(diào)區(qū)間;(Ⅱ)試確定的取值范圍,使得曲線上存在唯一的點(diǎn),曲線在該點(diǎn)處的切線與曲線只有一個(gè)公共點(diǎn)。(Ⅰ)由題意得:得:函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為①當(dāng)時(shí),當(dāng)且僅當(dāng)時(shí),在上單調(diào)遞增只有一個(gè)根②當(dāng)時(shí),得:,又存在兩個(gè)數(shù)使,得:又存在使,與條件不符。③當(dāng)時(shí),同理可證,與條件不符從上得:當(dāng)時(shí),存在唯一的點(diǎn)使該點(diǎn)處的切線與曲線只有一個(gè)公共點(diǎn)5.【2012高考真題新課標(biāo)理21】(本小題滿分12分)已知函數(shù)SKIPIF1<0滿足滿足SKIPIF1<0;(1)求SKIPIF1<0的解析式及單調(diào)區(qū)間;(2)若SKIPIF1<0,求SKIPIF1<0的最大值.且單調(diào)遞增區(qū)間為SKIPIF1<0,單調(diào)遞減區(qū)間為SKIPIF1<0(2)SKIPIF1<0得SKIPIF1<0=1\*GB3①當(dāng)SKIPIF1<0時(shí),SKIPIF1<0在SKIPIF1<0上單調(diào)遞增SKIPIF1<0時(shí),SKIPIF1<0與SKIPIF1<0矛盾=2\*GB3②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0得:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0令SKIPIF1<0;則SKIPIF1<0SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最大值為SKIPIF1<06.【2012高考真題浙江理22】(本小題滿分14分)已知a>0,bSKIPIF1<0R,函數(shù)SKIPIF1<0.(Ⅰ)證明:當(dāng)0≤x≤1時(shí),(ⅰ)函數(shù)SKIPIF1<0的最大值為|2a-b|﹢a;(ⅱ)SKIPIF1<0+|2a-b|﹢a≥0;(Ⅱ)若﹣1≤SKIPIF1<0≤1對(duì)xSKIPIF1<0[0,1]恒成立,求a+b的取值范圍.當(dāng)b≤0時(shí),SKIPIF1<0>0在0≤x≤1上恒成立,此時(shí)SKIPIF1<0的最大值為:SKIPIF1<0=|2a-b|﹢a;當(dāng)b>0時(shí),SKIPIF1<0在0≤x≤1上的正負(fù)性不能判斷,此時(shí)SKIPIF1<0的最大值為:SKIPIF1<0=|2a-b|﹢a;綜上所述:函數(shù)SKIPIF1<0在0≤x≤1上的最大值為|2a-b|﹢a;(ⅱ)要證SKIPIF1<0+|2a-b|﹢a≥0,即證SKIPIF1<0=﹣SKIPIF1<0≤|2a-b|﹢a.亦即證SKIPIF1<0在0≤x≤1上的最大值小于(或等于)|2a-b|﹢a,∵SKIPIF1<0,∴令SKIPIF1<0.當(dāng)b≤0時(shí),SKIPIF1<0<0在0≤x≤1上恒成立,此時(shí)SKIPIF1<0的最大值為:SKIPIF1<0=|2a-b|﹢a;當(dāng)b<0時(shí),SKIPIF1<0在0≤x≤1上的正負(fù)性不能判斷,SKIPIF1<0SKIPIF1<0≤|2a-b|﹢a取b為縱軸,a為橫軸.則可行域?yàn)椋篠KIPIF1<0和SKIPIF1<0,目標(biāo)函數(shù)為z=a+b.作圖如下:由圖易得:當(dāng)目標(biāo)函數(shù)為z=a+b過P(1,2)時(shí),有SKIPIF1<0.∴所求a+b的取值范圍為:SKIPIF1<0.7、(2012高考真題山東理22)(本小題滿分13分)已知函數(shù)(為常數(shù),是自然對(duì)數(shù)的底數(shù)),曲線在點(diǎn)處的切線與軸平行.(Ⅰ)求的值;(Ⅱ)求的單調(diào)區(qū)間;(Ⅲ)設(shè),其中是的導(dǎo)函數(shù).證明:對(duì)任意,.(22)解:(Ⅰ),依題意,為所求.(Ⅱ)此時(shí)記,,所以在,單減,又,所以,當(dāng)時(shí),,,單增;當(dāng)時(shí),,,單減.所以,增區(qū)間為(0,1);減區(qū)間為(1,.所以,,即綜①、②知,【反饋訓(xùn)練】已知函數(shù)SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0.(Ⅰ)求函數(shù)SKIPIF1<0的單調(diào)區(qū)間;學(xué)科網(wǎng)(Ⅱ)若以函數(shù)SKIPIF1<0圖像上任意一點(diǎn)SKIPIF1<0為切點(diǎn)的切線的斜率SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的最小值;2、設(shè)SKIPIF1<0,求函數(shù)SKIPIF1<0的單調(diào)區(qū)間.3、已知函數(shù).設(shè),求函數(shù)的極值;(2)若,且當(dāng)時(shí),12a恒成立,試確定的取值范圍.4、已知函數(shù)f(x)=SKIPIF1<0x2+lnx.(I)求函數(shù)f(x)在[1,e]上的最大、最小值;(II)求證:在區(qū)間[1,+∞SKIPIF1<0上,函數(shù)f(x)的圖象在函數(shù)g(x)=SKIPIF1<0x3的圖象的下方;(III)求證:[SKIPIF1<0(x)]n-SKIPIF1<0(xn)≥2n-2(n∈N*).5、設(shè),且曲線y=f(x)在x=1處的切線與x軸平行。(1)求a的值,并討論f(x)的單調(diào)性;(2)證明:當(dāng) 6、某單位用2160萬元購(gòu)得一塊空地,計(jì)劃在該地塊上建造一棟至少10層、每層2000平方米的樓房.經(jīng)測(cè)算,如果將樓房建為x(x≥10)層,則每平方米的平均建筑費(fèi)用為560+48x(單位:元).為了使樓房每平方米的平均綜合費(fèi)用最少,該樓房應(yīng)建為多少層?(注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購(gòu)地費(fèi)用,平均購(gòu)地費(fèi)用=)當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),僅對(duì)SKIPIF1<0有SKIPIF1<0,對(duì)其余的SKIPIF1<0都有SKIPIF1<0,此時(shí)SKIPIF1<0在SKIPIF1<0上也是增函數(shù)。當(dāng)SKIPIF1<0,即SKIPIF1<0時(shí),w.w.w.zxxk.c.o.m方程SKIPIF1<0有兩個(gè)不同的實(shí)根SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0+0_0+SKIPIF1<0單調(diào)遞增SKIPIF1<0極大單調(diào)遞減SKIPIF1<0極小單調(diào)遞增此時(shí)SKIPIF1<0在SKIPIF1<0上單調(diào)遞增,在SKIPIF1<0是上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增.【變式演練2詳細(xì)解析】(Ⅰ)解:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,得SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0.所以,曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程是SKIPIF1<0,整理得SKIPIF1<0.(Ⅱ)解:SKIPIF1<0SKIPIF1<0.令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.由于SKIPIF1<0,以下分兩種情況討論.(1)若SKIPIF1<0,當(dāng)SKIPIF1<0變化時(shí),SKIPIF1<0的正負(fù)如下表:因此,函數(shù)SKIPIF1<0在SKIPIF1<0處取得極小值SKIPIF1<0,且SKIPIF1<0;函數(shù)SKIPIF1<0在SKIPIF1<0處取得極大值SKIPIF1<0,且SKIPIF1<0.(2)若SKIPIF1<0,當(dāng)SKIPIF1<0變化時(shí),SKIPIF1<0的正負(fù)如下表:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0因此,函數(shù)SKIPIF1<0在SKIPIF1<0處取得極小值SKIPIF1<0,且SKIPIF1<0;函數(shù)SKIPIF1<0在SKIPIF1<0處取得極大值SKIPIF1<0,且SKIPIF1<0.(Ⅲ)證明:由SKIPIF1<0,得SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0.由(Ⅱ)知,SKIPIF1<0在SKIPIF1<0上是減函數(shù),要使SKIPIF1<0,SKIPIF1<0只要SKIPIF1<0即SKIPIF1<0①設(shè)SKIPIF1<0,則函數(shù)SKIPIF1<0在SKIPIF1<0上的最大值為SKIPIF1<0.要使①式恒成立,必須SKIPIF1<0,即SKIPIF1<0或SKIPIF1<0.所以,在區(qū)間SKIPIF1<0上存在SKIPIF1<0,使得SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立.【變式演練3詳細(xì)解析】(Ⅰ)當(dāng)-2≤SKIPIF1<0<SKIPIF1<0時(shí),由SKIPIF1<0=0得x1=SKIPIF1<0顯然-1≤x1<SKIPIF1<0,SKIPIF1<0<x2≤2,SKIPIF1<0又SKIPIF1<0=-SKIPIF1<0當(dāng)SKIPIF1<0≤x≤x2時(shí),SKIPIF1<0≥0,SKIPIF1<0單調(diào)遞增;當(dāng)x2<x≤2時(shí),SKIPIF1<0<0,SKIPIF1<0單調(diào)遞減,∴SKIPIF1<0max=SKIPIF1<0(x2)=SKIPIF1<0=-SKIPIF1<0(Ⅱ)答:存在SKIPIF1<0符合條件因?yàn)镾KIPIF1<0,所以1+SKIPIF1<0SKIPIF1<0,故存在SKIPIF1<0符合條件。故知SKIPIF1<0在SKIPIF1<0內(nèi)是減函數(shù),在SKIPIF1<0內(nèi)是增函數(shù),所以,在SKIPIF1<0處取得極小值SKIPIF1<0.(Ⅱ)證明:由SKIPIF1<0知,SKIPIF1<0的極小值SKIPIF1<0.于是由上表知,對(duì)一切SKIPIF1<0,恒有SKIPIF1<0.從而當(dāng)SKIPIF1<0時(shí),恒有SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)增加.所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0.故當(dāng)SKIPIF1<0時(shí),恒有SKIPIF1<0.【變式演練5詳細(xì)解析】(1)若千米/小時(shí),每小時(shí)耗油量為升/小時(shí).共耗油升.所以,從甲地到乙地要耗油17.5升.(2)設(shè)當(dāng)汽車以千米/小時(shí)的速度勻速行駛時(shí)耗油量最少,,耗油量為S升.則,,令,解得,.列表:?jiǎn)握{(diào)減極小值11.25單調(diào)增所以,當(dāng)汽車以80千米/小時(shí)的速度勻速行駛時(shí),耗油量最少,為11.25升.【反饋訓(xùn)練詳細(xì)解析】當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值SKIPIF1<0?!郤KIPIF1<0,∴SKIPIF1<02、【解析】:SKIPIF1<0.當(dāng)SKIPIF1<0時(shí)SKIPIF1<0.SKIPIF1<0(i)當(dāng)SKIPIF1<0時(shí),對(duì)所有SKIPIF1<0,有SKIPIF1<0.即SKIPIF1<0,此時(shí)SKIPIF1<0在SKIPIF1<0內(nèi)單調(diào)遞增.(ii)當(dāng)SKIPIF1<0時(shí),對(duì)SKIPIF1<0,有SKIPIF1<0,即SKIPIF1<0,此時(shí)SKIPIF1<0在(0,1)內(nèi)單調(diào)遞增,又知函數(shù)SKIPIF1<0在x=1處連續(xù),因此,函數(shù)SKIPIF1<0在(0,+SKIPIF1<0)內(nèi)單調(diào)遞增(iii)當(dāng)SKIPIF

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論