




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
湖南省永州市保安鄉(xiāng)中學(xué)2022年高二數(shù)學(xué)理模擬試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.設(shè)點(diǎn)P對(duì)應(yīng)的復(fù)數(shù)為,以原點(diǎn)為極點(diǎn),實(shí)軸正半軸為極軸建立極坐標(biāo)系,則點(diǎn)P的極坐標(biāo)為(
)A.(,)
B.(,)
C.(,)
D.(,)參考答案:A2.函數(shù)的單調(diào)遞增區(qū)間是 (
)A.
B.
C.
D.
參考答案:D略3.用數(shù)學(xué)歸納法證明不等式時(shí),不等式在時(shí)的形式是(
)A.B.C.D.參考答案:D4.在正方體ABCD﹣A1B1C1D1中,E,F(xiàn)分別為CC1和BB1的中點(diǎn),則異面直線AE與D1F所成角的余弦值為()A.0 B. C. D.參考答案:D【考點(diǎn)】異面直線及其所成的角.【分析】以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出直線AE與D1F所成角的余弦值.【解答】解:以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,設(shè)正方體ABCD﹣A1B1C1D1中棱長(zhǎng)為2,則A(2,0,0),E(0,2,1),D1(0,0,2),F(xiàn)(2,2,1),=(﹣2,2,1),=(2,2,﹣1),設(shè)直線AE與D1F所成角為θ,則cosθ=||=.∴直線AE與D1F所成角的余弦值為.故選D.5.已知復(fù)數(shù)、在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,,則=(
)A.2 B. C. D.1參考答案:D【分析】由復(fù)數(shù)、在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱且,得,即可求解的值,得到答案.【詳解】由題意,復(fù)數(shù)、在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)關(guān)于虛軸對(duì)稱,,則,所以,故選D.【點(diǎn)睛】本題主要考查了復(fù)數(shù)的表示,以及復(fù)數(shù)的運(yùn)算與求模,其中解答熟記復(fù)數(shù)的運(yùn)算公式和復(fù)數(shù)的表示是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.6.如圖1是函數(shù)的導(dǎo)函數(shù)的圖象,那么函數(shù)的圖象最有可能是(
)A
B
C
D 圖1參考答案:C7.已知等比數(shù)列的前n項(xiàng)和為,且,則A.54
B.48
C.32
D.16參考答案:D略8.已知中,,,,那么角等于(
)A.
B.
C.
D.參考答案:A9.復(fù)數(shù)z=的共軛復(fù)數(shù)是()A.2+i B.2﹣i C.﹣1+i D.﹣1﹣i參考答案:D【考點(diǎn)】A5:復(fù)數(shù)代數(shù)形式的乘除運(yùn)算;A2:復(fù)數(shù)的基本概念.【分析】利用復(fù)數(shù)的分子、分母同乘分母的共軛復(fù)數(shù),把復(fù)數(shù)化為a+bi的形式,然后求法共軛復(fù)數(shù)即可.【解答】解:復(fù)數(shù)z====﹣1+i.所以復(fù)數(shù)的共軛復(fù)數(shù)為:﹣1﹣i.故選D.10.a,b表示空間兩條直線,為一平面,若p:a,b與平面所成角相等;q:a與b平行,則p是q(
)A.充要條件
B.充分不必要條件
C.必要不充分條件
D.既不充分又不必要條件參考答案:C與所成角相等,未必平行;平行,則與所成角相等;則但不能推出,故選C二、填空題:本大題共7小題,每小題4分,共28分11.甲乙丙丁四個(gè)人參加某項(xiàng)比賽,只有一人獲獎(jiǎng),甲說:是乙或丙獲獎(jiǎng),乙說:甲丙都未獲獎(jiǎng),丙說:我獲獎(jiǎng)了,丁說:是乙獲獎(jiǎng).已知四人中有且只有一人說了假話,則獲獎(jiǎng)的人為________.參考答案:乙【分析】本題首先可根據(jù)題意中的“四人中有且只有一人說了假話”將題目分為四種情況,然后對(duì)四種情況依次進(jìn)行分析,觀察四人所說的話是否沖突,最后即可得出結(jié)果?!驹斀狻咳艏渍f了假話,則乙丙丁說的是真話,但是丙丁所說的話沖突,故不正確;若乙說了假話,則甲丙丁說的是真話,但是丙丁所說的話沖突,故不正確;若丙說了假話,則甲乙丁說的是真話且丙未獲獎(jiǎng),由“是乙或丙獲獎(jiǎng)”、“甲丙都未獲獎(jiǎng)”、“丙未獲獎(jiǎng)”以及“是乙獲獎(jiǎng)”可知,獲獎(jiǎng)?wù)呤且?;若丁說了假話,則甲乙丙說的是真話,但是乙丙所說的話沖突,故不正確,綜上所述,獲獎(jiǎng)?wù)呤且?。【點(diǎn)睛】本題是一個(gè)簡(jiǎn)單的合情推理題,能否根據(jù)“四人中有且只有一人說了假話”將題目所給條件分為四種情況并通過推理判斷出每一種情況的正誤是解決本題的關(guān)鍵,考查推理能力,是簡(jiǎn)單題。12.在等比數(shù)列{an}中,已知Sn=3n+b,則b的值為_______.參考答案:-1略13.長(zhǎng)方體一個(gè)頂點(diǎn)上三條棱的長(zhǎng)分別為3、4、5,且它的八個(gè)頂點(diǎn)都在同一球面上,這個(gè)球的表面積是
參考答案:略14.(坐標(biāo)系與參數(shù)方程選做題)極坐標(biāo)系中,直線l的極坐標(biāo)方程為ρsin(θ+)=2,則極點(diǎn)在直線l上的射影的極坐標(biāo)是
.參考答案:極點(diǎn)在直線上的射影是直線上取得最小值的點(diǎn),把變形為,可知,當(dāng)時(shí),取得最小值2.15.
已知平面區(qū)域如圖所示,在平面區(qū)域內(nèi)取得最大值的最優(yōu)解有無數(shù)多個(gè),則
.
參考答案:16.函數(shù)f(x)=x3+3ax2+3(a+2)x+1有極大值又有極小值,則a的范圍是.參考答案:{a|a<﹣1或a>2}【考點(diǎn)】函數(shù)在某點(diǎn)取得極值的條件.【專題】計(jì)算題.【分析】先對(duì)函數(shù)進(jìn)行求導(dǎo),根據(jù)函數(shù)f(x)=x3+3ax2+3(a+2)x+1既有極大值又有極小值,可以得到導(dǎo)函數(shù)為0的方程有兩個(gè)不等的實(shí)數(shù)根,從而有△>0,進(jìn)而可解出a的范圍.【解答】解:f′(x)=3x2+6ax+3(a+2),要使函數(shù)f(x)有極大值又有極小值,需f′(x)=3x2+6ax+3(a+2)=0有兩個(gè)不等的實(shí)數(shù)根,所以△=36a2﹣36(a+2)>0,解得a<﹣1或a>2.故答案為:{a|a<﹣1或a>2}【點(diǎn)評(píng)】本題主要考查了函數(shù)的極值問題及導(dǎo)數(shù)的應(yīng)用,利用導(dǎo)數(shù)作為工具去研究函數(shù)的性質(zhì)非常方便.17.利用分層抽樣的方法在學(xué)生總數(shù)為800的年級(jí)中抽取20名同學(xué),其中女生人數(shù)為8人,則該年級(jí)男生人數(shù)為.參考答案:480【考點(diǎn)】B4:系統(tǒng)抽樣方法.【分析】先求得分層抽樣的抽取比例,根據(jù)樣本中女生抽到的人數(shù),求總體中女生數(shù),可得總體中男生數(shù).【解答】解由于樣本容量為20,則男生的人數(shù)為12人,則該年級(jí)男生人數(shù)為×800=480,故答案為:480三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.如圖,已知矩形ABCD所在平面外一點(diǎn)P,PA⊥平面ABCD,E、F分別是AB、PC的中點(diǎn).(1)求證:EF∥平面PAD;(2)求證:EF⊥CD;
參考答案:(1)證明:(1)取的中點(diǎn),連結(jié),,則
,又,四邊形為平行四邊形,則∥又
EF∥平面PAD
………6分(2)
又由矩形知
由(1)問證明知∥
…………12分注:用向量方法參照上述解答給分略19.(本題滿分12分)已知等比數(shù)列前項(xiàng)之和為,若,,求和.參考答案:解:(1)當(dāng)q=1時(shí),
無解
…………3分(2)當(dāng)時(shí),①
②
……………5分,
……………………7分當(dāng)=3時(shí),
………………9分當(dāng)=-3時(shí),…………………11分即=,=3,或=1,=-3
…………12分
略20.已知函數(shù).(Ⅰ)當(dāng)時(shí),求不等式的解集;(Ⅱ)當(dāng)不等式的解集為R時(shí),求實(shí)數(shù)a的取值范圍.參考答案:(Ⅰ)(Ⅱ)或【分析】(Ⅰ)根據(jù)的范圍得到分段函數(shù)的解析式,從而分別在三段區(qū)間上求解不等式,取并集得到所求解集;(Ⅱ)由絕對(duì)值三角不等式得到的最小值,則最小值大于,得到不等式,解不等式求得結(jié)果.【詳解】(Ⅰ)時(shí),當(dāng)時(shí),,即
當(dāng)時(shí),,即
當(dāng)時(shí),,無解綜上,的解集為(Ⅱ)當(dāng),即時(shí),時(shí)等號(hào)成立;當(dāng),即時(shí),時(shí)等號(hào)成立所以的最小值為即或【點(diǎn)睛】本題考查含絕對(duì)值不等式的求解、絕對(duì)值三角不等式的應(yīng)用問題,屬于常規(guī)題型.21.函數(shù)的定義域?yàn)榈亩x域?yàn)?1)求
(2)若求實(shí)數(shù)的取值范圍。參考答案:解:(1)由得,解得或,(2)由得,解得
又或即或又或.略22.如圖,在四棱錐P﹣ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=AD,E、F分別為PC、BD的中點(diǎn). (1)求證:EF∥平面PAD; (2)求證:面PAB⊥平面PDC. 參考答案:【考點(diǎn)】平面與平面垂直的判定;直線與平面平行的判定. 【專題】證明題;空間位置關(guān)系與距離. 【分析】(1)連接AC,則F是AC的中點(diǎn),E為PC的中點(diǎn),證明EF∥PA,利用直線與平面平行的判定定理證明EF∥平面PAD; (2)先證明CD⊥PA,然后證明PA⊥PD.利用直線與平面垂直的判定定理證明PA⊥平面PCD,最后根據(jù)面面垂直的判定定理即可得到面PAB⊥面PDC. 【解答】證明:(1)連接AC,由正方形性質(zhì)可知,AC與BD相交于BD的中點(diǎn)F,F(xiàn)也為AC中點(diǎn),E為PC中點(diǎn). 所以在△CPA中,EF∥PA, 又PA?平面PAD,EF?平面PAD, 所以EF∥平面PAD; (2)平面PAD⊥平面ABCD 平面PAD∩面ABCD=AD?C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 企業(yè)內(nèi)部財(cái)務(wù)審計(jì)與合規(guī)檢查合同
- 節(jié)慶慶典場(chǎng)大廳主題攤位租賃與慶典活動(dòng)服務(wù)合同
- 礦山場(chǎng)地租賃合同及安全生產(chǎn)管理協(xié)議
- 中科軟件園辦公場(chǎng)地使用權(quán)及網(wǎng)絡(luò)設(shè)施合同
- 代理終止合同協(xié)議書范本
- 生物醫(yī)藥研發(fā)股份認(rèn)購(gòu)及市場(chǎng)推廣服務(wù)合同
- 離婚協(xié)議簽訂中隱私保護(hù)及信息保密合同
- 餐飲加盟店加盟店業(yè)績(jī)分析與考核合同
- 城市綜合體車位銷售及物業(yè)管理服務(wù)合同
- 退租房屋合同協(xié)議書
- 2025年物聯(lián)網(wǎng)工程師考試試題及答案
- 肥胖癥診療指南(2024年版)解讀
- DBJ50-T-078-2016重慶市城市道路工程施工質(zhì)量驗(yàn)收規(guī)范
- 中國(guó)歷史地理智慧樹知到期末考試答案章節(jié)答案2024年北京大學(xué)
- MOOC 跨文化交際通識(shí)通論-揚(yáng)州大學(xué) 中國(guó)大學(xué)慕課答案
- C-TPAT反恐程序文件(完整版)
- 艾默生PEX系列精密空調(diào)技術(shù)手冊(cè)
- 發(fā)改委招標(biāo)代理服務(wù)收費(fèi)管理暫行辦法
- 10kV備自投調(diào)試報(bào)告
- 名著導(dǎo)讀《簡(jiǎn)愛》ppt課件(58頁(yè))
- 人教部編版初中英語(yǔ)中考100個(gè)長(zhǎng)難句實(shí)例分析
評(píng)論
0/150
提交評(píng)論