版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
專題02反比例函數(shù)與幾何綜合問題一、【知識回顧】(1)平面直角坐標系中對稱點的坐標特征平面直角坐標系內(nèi)有一點P(a,b)點P(a,b)關于x軸的對稱點(a,-b)點P(a,b)關于y軸的對稱點(-a,b)點P(a,b)關于原點的對稱點(-a,-b)點P(a,b)關于y=x的對稱點(b,a)點P(a,b)關于y=-x的對稱點(-b,-a)(2)反比例函數(shù)k的幾何意義常見模型備注:熟練運用幾大模型:①一點一垂線②一點兩垂線③兩點一垂線④兩點兩垂線⑤兩點也原點反比例函數(shù)幾何綜合解法技巧:設點的坐標,利用點的對稱關系,表示其他點的坐標;并通過點的坐標表示線段長度,通過面積構建方程,解方程。二、【考點類型】考點1:反比例函數(shù)與直線結合典例1:(2022·安徽馬鞍山·??家荒#┤鐖D,已知正比例函數(shù)SKIPIF1<0的圖象與反比例函數(shù)SKIPIF1<0的圖象交于SKIPIF1<0兩點,SKIPIF1<0的值為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【分析】先根據(jù)圖象過點,坐標滿足函數(shù)解析式,再根據(jù)對稱性求解.【詳解】解:∵反比例函數(shù)SKIPIF1<0的圖象過點SKIPIF1<0∴SKIPIF1<0,∵正比例函數(shù)SKIPIF1<0的圖象與反比例函數(shù)SKIPIF1<0的圖象都是關于原點成中心對稱,∴SKIPIF1<0關于原點成中心對稱,∴SKIPIF1<0,∴SKIPIF1<0,故選:C.【點睛】本題考查了反比例函數(shù)和一次函數(shù)的交點,圖象的對稱性是解題的關鍵.【變式1】(2022春·九年級單元測試)如圖,在平面直角坐標系中,直線SKIPIF1<0(SKIPIF1<0,m為常數(shù))與雙曲線SKIPIF1<0(SKIPIF1<0,k為常數(shù))交于點A,B,若SKIPIF1<0,過點A作SKIPIF1<0軸,垂足為M,連接SKIPIF1<0,則SKIPIF1<0的面積是()A.2 B.SKIPIF1<0 C.3 D.6【答案】C【分析】根據(jù)反比例的圖象關于原點中心對稱得到點A與點B關于原點中心對稱,則SKIPIF1<0,SKIPIF1<0,代入解析式求得SKIPIF1<0,然后根據(jù)反比例函數(shù)SKIPIF1<0系數(shù)k的幾何意義即可得到SKIPIF1<0,進一步得出SKIPIF1<0.【詳解】解:∵直線SKIPIF1<0(SKIPIF1<0,m為常數(shù))與雙曲線SKIPIF1<0(SKIPIF1<0,k為常數(shù))交于點A,B,∴點A與點B關于原點中心對稱,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0軸,垂足為M,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,故選:C.【點睛】本題考查了正比例函數(shù)的性質,反比例函數(shù)SKIPIF1<0系數(shù)k的幾何意義:從反比例函數(shù)SKIPIF1<0圖象上任意一點向x軸和y軸作垂線,垂線與坐標軸所圍成的矩形面積為SKIPIF1<0.【變式2】(2022秋·貴州銅仁·九年級統(tǒng)考期中)如圖,在平面直角坐標系中,反比例函數(shù)SKIPIF1<0的圖象與一次函數(shù)SKIPIF1<0的圖象交于點SKIPIF1<0,則代數(shù)式SKIPIF1<0的值為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【分析】根據(jù)反比例函數(shù)SKIPIF1<0的圖象與一次函數(shù)SKIPIF1<0的圖象交于點SKIPIF1<0,得到SKIPIF1<0,利用整體思想代入SKIPIF1<0,求值即可.【詳解】解:∵反比例函數(shù)SKIPIF1<0的圖象與一次函數(shù)SKIPIF1<0的圖象交于點SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0;故選A.【點睛】本題考查反比例函數(shù)與一次函數(shù)的交點問題,以及分式求值.熟練掌握交點坐標同時滿足反比例函數(shù)解析式和一次函數(shù)解析式,利用整體思想,進行求值,是解題的關鍵.【變式3】(2021·四川內(nèi)江·統(tǒng)考中考真題)如圖,一次函數(shù)SKIPIF1<0的圖象與反比例函數(shù)SKIPIF1<0的圖像相交于SKIPIF1<0、SKIPIF1<0兩點.(1)求一次函數(shù)和反比例函數(shù)的解析式;(2)根據(jù)圖象,直接寫出滿足SKIPIF1<0的SKIPIF1<0的取值范圍;(3)若點SKIPIF1<0在線段SKIPIF1<0上,且SKIPIF1<0,求點SKIPIF1<0的坐標.【答案】(1)一次函數(shù)的解析式為SKIPIF1<0;反比例函數(shù)為SKIPIF1<0;(2)SKIPIF1<0或SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0.【分析】(1)將A點坐標代入反比例函數(shù)求得SKIPIF1<0,再將B點代入反比例函數(shù)求得n,再把A、B兩點坐標代入一次函數(shù)求得SKIPIF1<0從而得出兩函數(shù)解析式;(2)觀察圖案結合(1)題求得A、B兩點坐標即可求出所求x的范圍;(3)連接BO、AO,則△AOP和△BOP高相同,面積之比就是底邊長度之比,因此BP:AP=4:1,再用AB之間橫坐標差值按比例分配求得P點橫坐標,再把橫坐標代入一次函數(shù)求得縱坐標從而求出P點坐標.【詳解】解:(1)SKIPIF1<0反比例函數(shù)SKIPIF1<0經(jīng)過SKIPIF1<0,SKIPIF1<0,SKIPIF1<0反比例函數(shù)為SKIPIF1<0,SKIPIF1<0在比例函數(shù)SKIPIF1<0的圖象上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0直線SKIPIF1<0經(jīng)過SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0一次函數(shù)的解析式為SKIPIF1<0;(2)觀察圖象,SKIPIF1<0的SKIPIF1<0的取值范圍是SKIPIF1<0或SKIPIF1<0;(3)設SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0(舍去),SKIPIF1<0點坐標為(SKIPIF1<0,SKIPIF1<0).【點睛】本題考查了一次函數(shù)與反比例函數(shù)的綜合題,涉及了待定系數(shù)法,函數(shù)與不等式,三角形的面積等,熟練掌握相關知識是解題的關鍵.注意數(shù)形結合思想的應用.考點2:反比例函數(shù)與特殊三角形結合典例2:(2022·四川宜賓·統(tǒng)考中考真題)如圖,△OMN是邊長為10的等邊三角形,反比例函數(shù)y=SKIPIF1<0(x>0)的圖象與邊MN、OM分別交于點A、B(點B不與點M重合).若AB⊥OM于點B,則k的值為______.【答案】SKIPIF1<0【分析】過點B作BC⊥x軸于點C,過點A作AD⊥x軸于點D,設OC=x,利用含30度角的直角三角形的性質以及勾股定理求得點B(x,SKIPIF1<0x),點A(15-2x,2SKIPIF1<0x-5SKIPIF1<0),再利用反比例函數(shù)的性質列方程,解方程即可求解.【詳解】解:過點B作BC⊥x軸于點C,過點A作AD⊥x軸于點D,如圖:∵△OMN是邊長為10的等邊三角形,∴OM=MN=ON=10,∠MON=∠MNO=∠M=60°,∴∠OBC=∠MAB=∠NAD=30°,設OC=x,則OB=2x,BC=SKIPIF1<0x,MB=10-2x,MA=2MB=20-4x,∴NA=10-MA=4x-10,DN=SKIPIF1<0NA=2x-5,AD=SKIPIF1<0DN=SKIPIF1<0(2x-5)=2SKIPIF1<0x-5SKIPIF1<0,∴OD=ON-DN=15-2x,∴點B(x,SKIPIF1<0x),點A(15-2x,2SKIPIF1<0x-5SKIPIF1<0),∵反比例函數(shù)y=SKIPIF1<0(x>0)的圖象與邊MN、OM分別交于點A、B,∴x?SKIPIF1<0x=(15-2x)(2SKIPIF1<0x-5SKIPIF1<0),解得x=5(舍去)或x=3,∴點B(3,SKIPIF1<0),∴k=9SKIPIF1<0.故答案為:9SKIPIF1<0.【點睛】本題是反比例函數(shù)的綜合題,考查了等邊三角形的性質,含30度角的直角三角形的性質以及勾股定理,解題的關鍵是學會利用參數(shù)構建方程解決問題.【變式1】(2022·安徽合肥·統(tǒng)考一模)如圖,在平面直角坐標系中,點A的坐標為(4,0),點B在第一象限,且SKIPIF1<0OAB為等邊三角形,若反比例函數(shù)y=SKIPIF1<0在第一象限的圖象經(jīng)過邊AB的中點,則k的值為___________【答案】SKIPIF1<0【分析】設AB中點為D,分別過B、D作BN⊥OA、DM⊥OA,根據(jù)等邊三角形的邊長為4,利用等邊三角形的性質,算出OM和DM的長,從而得出點D的坐標,即可得出k的值.【詳解】設AB中點為D,分別過B、D作BN⊥OA、DM⊥OA,垂足分別為N、M如圖所示:∵OA=4,△OAB為等邊三角形,∴AB=OA=OB=4,SKIPIF1<0,∵BN⊥OA,∴ON=AN=2,BN=SKIPIF1<02SKIPIF1<0,∵DM⊥OA,∴SKIPIF1<0,∴SKIPIF1<0,∵點D為AB的中點,∴SKIPIF1<0,∴DM=SKIPIF1<0,AM=1,∴OM=OA-AM=4-1=3,∴D(3,SKIPIF1<0),∴k=3×SKIPIF1<0=3SKIPIF1<0.故答案為:3SKIPIF1<0.【點睛】本題主要考查了等邊三角形的性質,求反比例函數(shù)關系式和平行線分線段成比例定理,作出相應的輔助線是解題的關鍵.【變式2】(2020·吉林長春·統(tǒng)考模擬預測)如圖,在平面直角坐標系中,函數(shù)y=SKIPIF1<0(k>0,x>0)的圖象與等邊三角形OAB的邊OA,AB分別交于點M,N,且OM=2MA,若AB=3,那么點N的橫坐標為()A.SKIPIF1<0 B.SKIPIF1<0 C.4 D.6【答案】B【分析】根據(jù)等邊三角形的性質和已知條件,可求出OM,通過做垂線,利用解直角三角形,求出點M的坐標,進而確定反比例函數(shù)的關系式;用直線AB的關系式與反比例函數(shù)的關系式組成方程組,解出x的值即可.【詳解】過點N、M分別作NC⊥OB,MD⊥OB,垂足為C、D,∵△AOB是等邊三角形,∴AB=OA=OB=3,∠AOB=∠ABO=60°,又∵OM=2MA,∴OM=2,MA=1,在Rt△MOD中,∠OMD=90SKIPIF1<0-∠MOD=30°,OD=SKIPIF1<0OM=1,MDSKIPIF1<0ODSKIPIF1<0,∴點M的坐標為(1,SKIPIF1<0),∴反比例函數(shù)的關系式為:y=SKIPIF1<0,設OC=a,則BC=3-a,NC=SKIPIF1<0,在Rt△BCN中,∠BNC=90SKIPIF1<0-∠NBC=30°,∴NC=SKIPIF1<0BC,∴SKIPIF1<0=SKIPIF1<0(3-a),解得:SKIPIF1<0,SKIPIF1<0(舍去),∴點N的橫坐標為SKIPIF1<0,故選:B.【點睛】本題是反比例函數(shù)與幾何的綜合題,考查了等邊三角形的性質、含30度角直角三角形的性質、待定系數(shù)法求函數(shù)的表達式、反比例函數(shù)圖象上點的坐標特征,求得交點坐標是解題的關鍵.【變式3】(2023秋·河南許昌·九年級校考期末)已知點SKIPIF1<0在反比例函數(shù)SKIPIF1<0的圖象上,點SKIPIF1<0在SKIPIF1<0軸正半軸上,若SKIPIF1<0為等腰三角形,且腰長為5,則點SKIPIF1<0坐標為______.【答案】SKIPIF1<0或SKIPIF1<0或SKIPIF1<0【分析】因為等腰三角形的腰不確定,所以分三種情況分別計算即可.【詳解】解:當SKIPIF1<0時,過點A作SKIPIF1<0,垂足為C,∵SKIPIF1<0,設SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0或SKIPIF1<0或SKIPIF1<0(舍)或SKIPIF1<0(舍),代入SKIPIF1<0計算可得:SKIPIF1<0或SKIPIF1<0,∴點B的坐標為SKIPIF1<0或SKIPIF1<0;當SKIPIF1<0時,∵腰長為5,∴SKIPIF1<0,∴點B坐標為SKIPIF1<0;當SKIPIF1<0時,∵腰長為5,∴SKIPIF1<0,∴點B坐標為SKIPIF1<0;綜上:點B的坐標為SKIPIF1<0或SKIPIF1<0或SKIPIF1<0.【點睛】本題考查了等腰三角形的性質,反比例函數(shù)圖象上點的坐標特征,考查分類討論的思想,當SKIPIF1<0時,求出點SKIPIF1<0的坐標是解題的關鍵.考點3:反比例函數(shù)與特殊四邊形結合典例3:(2022春·福建龍巖·九年級??茧A段練習)如圖,反比例函數(shù)SKIPIF1<0點SKIPIF1<0,SKIPIF1<0是該反比例函數(shù)圖象上的另外兩點,且點SKIPIF1<0與點SKIPIF1<0,點SKIPIF1<0與點SKIPIF1<0關于原點對稱.若已知四邊形SKIPIF1<0為矩形,SKIPIF1<0,且矩形SKIPIF1<0的面積為18,則SKIPIF1<0的值為___________.【答案】SKIPIF1<0【分析】利用矩形面積以及長寬的關系,找出關系式,再利用完全平方公式算出SKIPIF1<0.【詳解】解:由題意可知,設SKIPIF1<0點為SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,反比例函數(shù)SKIPIF1<0SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0故答案為SKIPIF1<0.【點睛】本題考查了反比例函數(shù),勾股定理,完全平方公式,解題關鍵是利用矩形的面積及長寬關系找出關系式.【變式1】(2020·福建漳州·統(tǒng)考二模)如圖,在直角坐標系中,四邊形OABC為菱形,OA在x軸的正半軸上,∠AOC=60°,過點C的反比例函數(shù)SKIPIF1<0的圖象與AB交于點D,則△COD的面積為()A.SKIPIF1<0 B.SKIPIF1<0 C.4 D.SKIPIF1<0【答案】B【分析】易證S菱形ABCO=2S△CDO,再根據(jù)tan∠AOC的值即可求得菱形的邊長,即可求得點C的坐標,可得菱形的面積和結論.【詳解】解:作DF∥AO,CE⊥AO,∵∠AOC=60°,∴tan∠AOC=SKIPIF1<0,∴設OE=x,CE=SKIPIF1<0x,∴x?SKIPIF1<0x=4SKIPIF1<0,∴x=±2,∴OE=2,CE=2SKIPIF1<0,由勾股定理得:OC=4,∴S菱形OABC=OA?CE=4×2SKIPIF1<0=8SKIPIF1<0,∵四邊形OABC為菱形,∴AB∥CO,AO∥BC,∵DF∥AO,∴S△ADO=S△DFO,同理S△BCD=S△CDF,∵S菱形ABCO=S△ADO+S△DFO+S△BCD+S△CDF,∴S菱形ABCO=2(S△DFO+S△CDF)=2S△CDO=8SKIPIF1<0,∴S△CDO=4SKIPIF1<0;故選:B.【點睛】本題考查了菱形的性質,反比例函數(shù)的性質,三角函數(shù)的定義,考查了菱形面積的計算,本題中求得S菱形ABCO=2S△CDO是解題的關鍵.【變式2】(2022·福建漳州·九年級統(tǒng)考期末)如圖,反比例函數(shù)SKIPIF1<0(x>0)的圖象經(jīng)過矩形OABC對角線的交點M,分別于AB、BC交于點D、E,若四邊形ODBE的面積為9,則k的值為【】A.1 B.2 C.3 D.4【答案】C【分析】本題可從反比例函數(shù)圖象上的點E、M、D入手,分別找出△OCE、△OAD、矩形OABC的面積與|k|的關系,列出等式求出k值.【詳解】由題意得:E、M、D位于反比例函數(shù)圖象上,則SKIPIF1<0,過點M作MG⊥y軸于點G,作MN⊥x軸于點N,則S□ONMG=|k|.又∵M為矩形ABCO對角線的交點,∴S矩形ABCO=4S□ONMG=4|k|,∵函數(shù)圖象在第一象限,k>0,∴SKIPIF1<0.解得:k=3.故選C.【點睛】本題考查反比例函數(shù)系數(shù)k的幾何意義,過雙曲線上的任意一點分別向兩條坐標軸作垂線,與坐標軸圍成的矩形面積就等于|k|,本知識點是中考的重要考點,同學們應高度關注.【變式3】(2022·山東濟南·統(tǒng)考模擬預測)正方形ABCD的邊長為4,AC,BD交于點E.在點A處建立平面直角坐標系如圖所示.(1)如圖(1),雙曲線y=SKIPIF1<0過點E,完成填空:點C的坐標是,點E的坐標是,雙曲線的解析式是;(2)如圖(2),雙曲線y=SKIPIF1<0與BC,CD分別交于點M,N.求證:SKIPIF1<0;(3)如圖(3),將正方形ABCD向右平移m(m>0)個單位長度,使過點E的雙曲線y=SKIPIF1<0與AB交于點P.當SKIPIF1<0AEP為等腰三角形時,求m的值.【答案】(1)(4,4),(2,2),SKIPIF1<0;(2)見解析;(3)2或2SKIPIF1<0+2【分析】(1)根據(jù)正方形的邊長可確定C點的坐標,再利用正方形的性質得出E點坐標,用待定系數(shù)法求出雙曲線解析式即可;(2)設出M點和N點的坐標,根據(jù)坐標的性質得出MC=NC,推出∠CMN=∠CDB即可得出MN∥BD;(3)根據(jù)E點的坐標求出AE的長,再分三種情況討論分別求出m的值即可.【詳解】解:(1)∵正方形ABCD的邊長為4,AC,BD交于點E,∴C(4,4),E(2,2),將E點坐標代入雙曲線y=SKIPIF1<0,得2=SKIPIF1<0,解得k1=4,∴雙曲線的解析式為y=SKIPIF1<0,故答案為:(4,4),(2,2),SKIPIF1<0;(2)∵雙曲線y=SKIPIF1<0與BC,CD分別交于點M,N,∴設M(m,4),N(4,n),∴4m=4n,∴m=n,∴MC=NC,由正方形可知,∠BCD=90°,∴∠CMN=45°,∠CBD=45°,∴∠CMN=∠CBD,∴MN∥BD;(3)∵正方形邊長為4,由(1)知E(2,2),∴AE=SKIPIF1<0,①當AP=AE=2SKIPIF1<0時,∵P(m,2SKIPIF1<0),E(m+2,2),點P、E在反比例函數(shù)圖象上,∴2SKIPIF1<0m=2(m+2),∴m=2SKIPIF1<0+2;②當EP=AE時,點P與點B重合,∵P(m,4),E(m+2,2),點P、E在反比例函數(shù)圖象上,∴4m=2(m+2),∴m=2;③SKIPIF1<0SKIPIF1<0當EP=AP時,SKIPIF1<0即SKIPIF1<0SKIPIF1<0當EP=AP時,點P、E不可能都在反比例函數(shù)圖象上,故此情況不存在;綜上所述,滿足條件的m的值為2或2SKIPIF1<0+2.【點睛】本題考查了反比例函數(shù)與幾何圖形,正方形的性質,掌握反比例函數(shù)的性質是解題的關鍵.鞏固訓練一、單選題1.(2022春·全國·九年級專題練習)如圖,在平面直角坐標系中,平行四邊形SKIPIF1<0的頂點SKIPIF1<0在反比例函數(shù)SKIPIF1<0上,頂點SKIPIF1<0在反比例函數(shù)SKIPIF1<0上,點SKIPIF1<0在SKIPIF1<0軸的正半軸上,則平行四邊形SKIPIF1<0的面積是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.3 D.5【答案】C【分析】過點SKIPIF1<0作SKIPIF1<0軸于點SKIPIF1<0,設點SKIPIF1<0的坐標為SKIPIF1<0,點SKIPIF1<0的坐標為SKIPIF1<0,從而可得SKIPIF1<0,再將點SKIPIF1<0的坐標分別代入兩個函數(shù)的解析式可得SKIPIF1<0,然后根據(jù)平行四邊形的面積公式即可得.【詳解】解:如圖,過點SKIPIF1<0作SKIPIF1<0軸于點SKIPIF1<0,設點SKIPIF1<0的坐標為SKIPIF1<0,點SKIPIF1<0的坐標為SKIPIF1<0,則SKIPIF1<0,將點SKIPIF1<0代入函數(shù)SKIPIF1<0得:SKIPIF1<0,將點SKIPIF1<0代入函數(shù)SKIPIF1<0得:SKIPIF1<0,則平行四邊形SKIPIF1<0的面積是SKIPIF1<0,故選:C.【點睛】本題考查了反比例函數(shù)與幾何綜合、平行四邊形的面積公式,熟練掌握反比例函數(shù)的性質是解題關鍵.2.(2021秋·廣東佛山·九年級佛山市第四中學??茧A段練習)兩個反比例函數(shù)SKIPIF1<0和SKIPIF1<0在第一象限內(nèi)的圖象如圖所示,點SKIPIF1<0在SKIPIF1<0的圖象上,SKIPIF1<0軸于點SKIPIF1<0,交SKIPIF1<0的圖象于點A,SKIPIF1<0軸于點SKIPIF1<0,交SKIPIF1<0的圖象于點SKIPIF1<0,當點SKIPIF1<0在SKIPIF1<0的圖象上運動時,下列結論錯誤的是(
)A.SKIPIF1<0與SKIPIF1<0的面積相等B.當點A是PC的中點時,點B一定是PD的中點C.SKIPIF1<0D.只有當四邊形OCPD為正方形時,四邊形PAOB的面積最大【答案】D【分析】設SKIPIF1<0,SKIPIF1<0,根據(jù)反比例函數(shù)的性質,分別得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,通過計算即可得SKIPIF1<0與SKIPIF1<0的面積相等;設SKIPIF1<0,根據(jù)反比例函數(shù)、坐標的性質計算,即可判斷選項B和C;根據(jù)四邊形PAOB的面積=四邊形OCPD面積-SKIPIF1<0-SKIPIF1<0的關系計算,推導得四邊形PAOB的面積SKIPIF1<0,即可完成求解.【詳解】設SKIPIF1<0,SKIPIF1<0根據(jù)題意,得:SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0與SKIPIF1<0的面積相等,即選項A正確;設SKIPIF1<0∵SKIPIF1<0軸∴SKIPIF1<0∵點A是PC的中點,∴SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∵SKIPIF1<0軸∴點SKIPIF1<0的縱坐標為:SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,即當點A是PC的中點時,點B一定是PD的中點,即選項B正確;∵SKIPIF1<0∵SKIPIF1<0軸∴SKIPIF1<0∵SKIPIF1<0軸∴點SKIPIF1<0的縱坐標為:SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,即選項C正確;根據(jù)題意,四邊形PAOB的面積=四邊形OCPD面積-SKIPIF1<0-SKIPIF1<0=四邊形OCPD面積-1;四邊形OCPD面積SKIPIF1<0∴四邊形PAOB的面積SKIPIF1<0,即無論四邊形OCPD是否為正方形,四邊形PAOB的面積均為SKIPIF1<0∴選項D不正確;故選:D.【點睛】本題考查了反比例函數(shù)、直角坐標系的知識;解題的關鍵是熟練掌握反比例函數(shù)的性質,從而完成求解.3.(2022秋·吉林長春·九年級吉林省第二實驗學校??茧A段練習)如圖,在平面直角坐標系中,點A的坐標是SKIPIF1<0,點B的坐標是(0,SKIPIF1<0),直線SKIPIF1<0與反比例函數(shù)SKIPIF1<0(SKIPIF1<0)的圖象交于點D,過點A作SKIPIF1<0軸與反比例函數(shù)的圖象相交于點C,若SKIPIF1<0,則k的值為(
)A.3 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】設直線SKIPIF1<0的函數(shù)解析式為SKIPIF1<0,將點A、B代入確定直線解析式,過點D作SKIPIF1<0軸于E,根據(jù)相似三角形的判定可得SKIPIF1<0SKIPIF1<0SKIPIF1<0,得出SKIPIF1<0,進而可得D點坐標,再代入反比例函數(shù)解析式計算求值即可;【詳解】解:設直線SKIPIF1<0的函數(shù)解析式為SKIPIF1<0,將點A、B代入得:SKIPIF1<0,解得:SKIPIF1<0,∴一次函數(shù)的解析式為SKIPIF1<0,∴過點D作SKIPIF1<0軸于E,∵點A的坐標是SKIPIF1<0,點B的坐標是(0,SKIPIF1<0),∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,∵AC⊥x軸,∴C點橫坐標SKIPIF1<0,∴SKIPIF1<0,即SKIPIF1<0,∴SKIPIF1<0,∵DE⊥x軸,則SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0(舍去)或SKIPIF1<0,故選:B.【點睛】本題考查了一次函數(shù)和反比例函數(shù)的綜合,相似三角形的判定和性質,正確作出輔助線是解題關鍵.4.(2022春·江蘇蘇州·八年級??计谥校┤鐖D,已知點A是一次函數(shù)SKIPIF1<0的圖像與反比例函數(shù)SKIPIF1<0的圖像在第一象限內(nèi)的交點,SKIPIF1<0軸于點B,點C在x軸的負半軸上,且SKIPIF1<0,SKIPIF1<0的面積為SKIPIF1<0,則SKIPIF1<0的長為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.4【答案】B【分析】先確定反比例函數(shù)解析式為SKIPIF1<0,聯(lián)立方程組SKIPIF1<0,確定點SKIPIF1<0,得到SKIPIF1<0,計算SKIPIF1<0,利用勾股定理得SKIPIF1<0,計算即可.【詳解】∵SKIPIF1<0的面積為SKIPIF1<0,∴SKIPIF1<0,∴反比例函數(shù)解析式為SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,∴點SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,故選B.【點睛】本題考查了反比例函數(shù)的解析式,一次函數(shù)與反比例函數(shù)的交點,勾股定理,熟練掌握一次函數(shù)與反比例函數(shù)的交點問題,勾股定理是解題的關鍵.5.(2021·湖北武漢·九年級專題練習)已知點A是雙曲線y=SKIPIF1<0在第一象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為邊作等邊三角形ABC,點C在第四象限內(nèi),隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=SKIPIF1<0(x>0)上運動,則k的值是()A.3 B.SKIPIF1<0 C.﹣3 D.﹣SKIPIF1<0【答案】C【分析】連接OC,根據(jù)反比例函數(shù)的中心對稱性質,知OA=OB,根據(jù)等腰三角形三線合一,可得OC⊥AB,且OC:OA=SKIPIF1<0,過點A作AD⊥x軸,垂足為點D,過點C作CE⊥x軸,垂足為點E,可證明△DOA∽△ECO,得EC=SKIPIF1<0DO,OE=SKIPIF1<0AD,把線段轉化為坐標,結合反比例函數(shù)的解析式求解即可.【詳解】如圖,連接OC,根據(jù)反比例函數(shù)的中心對稱性質,得OA=OB,∵△ABC是等邊三角形,∴OC⊥AB,∠OCA=30°,∴OC:OA=SKIPIF1<0,過點A作AD⊥x軸,垂足為點D,過點C作CE⊥x軸,垂足為點E,∴∠ADO=∠OEC=90°,∵∠AOD+∠OAD=90°,∠AOD+∠COE=90°,∴∠OAD=∠COE,∴△DOA∽△ECO,∴EC:DO=OE:AD=OC:AD,∴EC=SKIPIF1<0DO,OE=SKIPIF1<0AD,設點A(a,b),則DO=a,AD=b,ab=1,∵點C在第四象限,∴點C的坐標為(SKIPIF1<0b,-SKIPIF1<0a),∵點C始終在雙曲線y=SKIPIF1<0(x>0)上運動,∴k=(-SKIPIF1<0a)×SKIPIF1<0b=-3ab=-3,故選C.【點睛】本題考查了反比例函數(shù)的對稱性,等腰三角形三線合一的性質,三角形的相似,坐標與線段之間的關系,熟練掌握反比例函數(shù)的對稱性,靈活選擇方法證明三角形的相似是解題的關鍵.6.(2022春·河南南陽·八年級統(tǒng)考期末)如圖,點A是反比例函數(shù)SKIPIF1<0的圖象上任意一點,SKIPIF1<0軸交反比例函數(shù)SKIPIF1<0的圖象于點B,以AB為邊作平行四邊形ABCD,其中C、D在x軸上,則SKIPIF1<0為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】設A的縱坐標是b,則B的縱坐標也是b,即可求得A、B的橫坐標,進而可表示AB的長度,然后根據(jù)平行四邊形的面積公式求解即可.【詳解】解:設A的縱坐標是b,∵四邊形SKIPIF1<0是平行四邊形,∴點B的縱坐標也是b,把y=b代入SKIPIF1<0得,SKIPIF1<0,∴A的橫坐標是SKIPIF1<0,把y=b代入SKIPIF1<0得,SKIPIF1<0,∴B的橫坐標是SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.故選:B.【點睛】本題考查了是反比例函數(shù)與平行四邊形的綜合題,理解A、B的縱坐標是同一個值,表示出AB的長度是解決本題關鍵.7.(2023·全國·九年級專題練習)如圖,O為坐標原點,四邊形OACB是菱形,OB在x軸的正半軸上,cos∠AOB=SKIPIF1<0反比例函數(shù)SKIPIF1<0在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,則△AOF的面積等于()A.15 B.20 C.30 D.40【答案】B【分析】過點A作AM⊥x軸于點M,設OA=a,通過解直角三角形找出點A的坐標,結合反比例函數(shù)圖象上點的坐標特征即可求出a的值,再根據(jù)四邊形OACB是菱形、點F在邊BC上,即可得出SKIPIF1<0,結合菱形的面積公式即可得出結論.【詳解】解:過點A作AM⊥x軸于點M,如圖所示.設OA=a,在Rt△OAM中,∠AMO=90°,OA=a,cos∠AOB=SKIPIF1<0,∴OM=OA?cos∠AOB=SKIPIF1<0a,AM=SKIPIF1<0=SKIPIF1<0a,∴點A的坐標為(SKIPIF1<0a,SKIPIF1<0a).∵點A在反比例函數(shù)y=SKIPIF1<0的圖象上,∴SKIPIF1<0a×SKIPIF1<0a=24,解得:a=5SKIPIF1<0,或a=-5SKIPIF1<0(舍去).∴OM=3SKIPIF1<0,AM=4SKIPIF1<0,OB=OA=5SKIPIF1<0.∵四邊形OBCA是菱形,點F在邊BC上,∴SKIPIF1<0.故選:B.【點睛】本題考查了菱形的性質、解直角三角形以及反比例函數(shù)圖象上點的坐標特征,解題的關鍵是找出SKIPIF1<0.8.(2012春·福建泉州·八年級統(tǒng)考期末)如圖,A、B是雙曲線SKIPIF1<0上關于原點對稱的任意兩點,AC∥y軸,BD∥y軸,則四邊形ACBD的面積S滿足()A.S=1 B.1<S<2 C.S=2 D.S>2【答案】C【分析】連接AB,利用反比例函數(shù)比例系數(shù)k的幾何意義及等底等高的兩個三角形面積相等,即可求得結果.【詳解】解:如圖,連接AB,∵A,B是函數(shù)SKIPIF1<0的圖象上關于原點O對稱的任意兩點,且AC平行于y軸,BD平行于y軸,∴S△AOC=S△BOD=SKIPIF1<0,假設A點坐標為(x,y),則B點坐標為(-x,-y),則OC=OD=x,∴S△AOD=S△AOC=SKIPIF1<0,S△BOC=S△BOD=SKIPIF1<0,∴四邊形ABCD面積=S△AOD+S△AOC+S△BOC+S△BOD=SKIPIF1<0,故選C.【點睛】本題考查了反比例函數(shù)比例系數(shù)的幾何意義,掌握這一知識是關鍵.9.(2022春·全國·九年級專題練習)如圖,點SKIPIF1<0為函數(shù)SKIPIF1<0圖象上一點,連結SKIPIF1<0,交函數(shù)SKIPIF1<0的圖象于點SKIPIF1<0,點SKIPIF1<0是SKIPIF1<0軸上一點,且SKIPIF1<0,則三角形SKIPIF1<0的面積為(
)A.9 B.12 C.20 D.36【答案】B【分析】根據(jù)題意可以分別設出點A、點B的坐標,根據(jù)點O、A、B在同一條直線上可以得到A、B的坐標之間的關系,由AO=AC可知點C的橫坐標是點A的橫坐標的2倍,從而可以得到△ABC的面積.【詳解】解:設點A的坐標為(a,SKIPIF1<0),點B的坐標為(b,SKIPIF1<0),∵點C是x軸上一點,且AO=AC,∴點C的坐標是(2a,0),設過點O(0,0),A(a,SKIPIF1<0)的直線的解析式為:y=kx,∴SKIPIF1<0=ak,解得,k=SKIPIF1<0,又∵點B(b,SKIPIF1<0)在y=SKIPIF1<0x上,∴SKIPIF1<0=SKIPIF1<0?b,解得,SKIPIF1<0或SKIPIF1<0(舍去),∴S△ABC=S△AOC-S△OBC=SKIPIF1<0=18-6=12.故選:B.【點睛】本題考查反比例函數(shù)的圖象、三角形的面積、等腰三角形的性質,解題的關鍵是明確題意,找出所求問題需要的條件.10.(2023·全國·九年級專題練習)如圖,直角三角形的直角頂點在坐標原點,SKIPIF1<0,點A在反比例函數(shù)SKIPIF1<0的圖象上,則經(jīng)過點B的反比例函數(shù)解析式為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【分析】直接利用相似三角形的判定與性質得出SKIPIF1<0,進而得出SKIPIF1<0,即可得出答案.【詳解】解:過點B作SKIPIF1<0軸于點C,過點A作SKIPIF1<0軸于點D,∵SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵點A在反比例函數(shù)SKIPIF1<0上,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∵經(jīng)過點B的反比例函數(shù)圖象在第二象限,故反比例函數(shù)解析式為:SKIPIF1<0.故選:B.【點睛】此題主要考查了相似三角形的判定與性質以及反比例函數(shù)數(shù)的性質,正確得出SKIPIF1<0是解題關鍵.二、填空題11.(2022秋·湖南懷化·九年級校考階段練習)如圖,設直線SKIPIF1<0與雙曲線SKIPIF1<0相交于SKIPIF1<0兩點,則SKIPIF1<0的值為___________.【答案】10【分析】根據(jù)關于原點對稱的點的坐標并結合函數(shù)圖象上點的坐標特征來解答即可.【詳解】解:根據(jù)題意,SKIPIF1<0,并且SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.故答案為:10.【點睛】本題考查了反比例函數(shù)圖象的對稱性,重點是掌握兩點關于原點成中心對稱.12(2023春·遼寧沈陽·九年級沈陽市南昌初級中學(沈陽市第二十三中學)??奸_學考試)如圖,點A在雙曲線SKIPIF1<0上,點B在雙曲線SKIPIF1<0上,點A在點B的左側,SKIPIF1<0軸,點C,D在x軸上,若四邊形SKIPIF1<0為面積是9的矩形,則k的值為______.【答案】13【分析】延長SKIPIF1<0交y軸于點E,根據(jù)反比例函數(shù)系數(shù)k的幾何意義,可得四邊形SKIPIF1<0的面積是4,四邊形SKIPIF1<0的面積是SKIPIF1<0,再由四邊形SKIPIF1<0的面積是9,即可求出.【詳解】解:延長SKIPIF1<0交y軸于點E,則SKIPIF1<0軸,∵點A在反比例函數(shù)SKIPIF1<0上,∴四邊形SKIPIF1<0的面積是4,∵點B在反比例函數(shù)SKIPIF1<0上,∴四邊形SKIPIF1<0的面積是SKIPIF1<0,∵四邊形SKIPIF1<0的面積是9,∴SKIPIF1<0,∵反比例函數(shù)SKIPIF1<0在第一象限,∴SKIPIF1<0.故答案為13.【點睛】本題考查了反比例函數(shù)系數(shù)k的幾何意義,靈活運用數(shù)形結合思想是解題的關鍵。13.(2019·福建三明·統(tǒng)考一模)如圖,在直角坐標系中,四邊形OABC為菱形,OA在x軸的正半軸上,∠AOC=60°,過點C的反比例函數(shù)SKIPIF1<0的圖象與AB交于點D,則△COD的面積為_____.【答案】SKIPIF1<0【分析】易證S菱形ABCO=2S△CDO,再根據(jù)tan∠AOC的值即可求得菱形的邊長,即可求得點C的坐標,可得菱形的面積和結論.【詳解】解:作DF∥AO,CE⊥AO,∵∠AOC=60°,∴tan∠AOC=SKIPIF1<0,∴設OE=x,CE=SKIPIF1<0,∴x?SKIPIF1<0,∴x=±2,∴OE=2,CE=2SKIPIF1<0,由勾股定理得:OC=4,∴S菱形OABC=OA?CE=4×2SKIPIF1<0,∵四邊形OABC為菱形,∴AB∥CO,AO∥BC,∵DF∥AO,∴S△ADO=S△DFO,同理S△BCD=S△CDF,∵S菱形ABCO=S△ADO+S△DFO+S△BCD+S△CDF,∴S菱形ABCO=2(S△DFO+S△CDF)=2S△CDO=8SKIPIF1<0,∴S△CDO=4SKIPIF1<0;故答案為4SKIPIF1<0.【點睛】本題考查了菱形的性質,反比例函數(shù)的性質,三角函數(shù)的定義,考查了菱形面積的計算,本題中求得S菱形ABCO=2S△CDO是解題的關鍵.14.(2021春·福建泉州·八年級統(tǒng)考期末)圖,已知在平面直角坐標系SKIPIF1<0中,SKIPIF1<0的直角頂點SKIPIF1<0在SKIPIF1<0軸的正半軸上,點SKIPIF1<0在第一象限,反比例函數(shù)SKIPIF1<0的圖象經(jīng)過SKIPIF1<0的中點SKIPIF1<0.交SKIPIF1<0于點SKIPIF1<0,連接SKIPIF1<0.若SKIPIF1<0的面積是3,則四邊形SKIPIF1<0的面積是______.【答案】5【分析】作輔助線,構建直角三角形,利用反比例函數(shù)SKIPIF1<0的幾何意義得到SKIPIF1<0,根據(jù)SKIPIF1<0的中點SKIPIF1<0,利用中線的性質和三線合一得到△OCE和△OAB的面積比為SKIPIF1<0,代入可得結論.【詳解】解:連接SKIPIF1<0,SKIPIF1<0,過SKIPIF1<0作SKIPIF1<0,交SKIPIF1<0軸于SKIPIF1<0,SKIPIF1<0,反比例函數(shù)SKIPIF1<0的圖象經(jīng)過SKIPIF1<0的中點SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴CE⊥OB,∴OE=BE,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0的面積為SKIPIF1<0,故答案為:5.【點睛】本題考查了反比例函數(shù)比例系數(shù)SKIPIF1<0的幾何意義:在反比例函數(shù)SKIPIF1<0圖象中任取一點,過這一個點向SKIPIF1<0軸和SKIPIF1<0軸分別作垂線,與坐標軸圍成的矩形的面積是定值SKIPIF1<0.在反比例函數(shù)的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構成的三角形的面積是SKIPIF1<0,且保持不變.15.(2022·江蘇淮安·模擬預測)如圖,一次函數(shù)SKIPIF1<0的圖像交坐標軸于SKIPIF1<0、SKIPIF1<0兩點,交反比例函數(shù)SKIPIF1<0圖像的一個分支于點SKIPIF1<0,若點SKIPIF1<0恰好是SKIPIF1<0的中點,則SKIPIF1<0的值是___________.【答案】SKIPIF1<0【分析】由一次函數(shù)解析式可得SKIPIF1<0、SKIPIF1<0的坐標,再由點SKIPIF1<0恰好是SKIPIF1<0的中點求得SKIPIF1<0的坐標,然后代入SKIPIF1<0求得k即可解答.【詳解】解:SKIPIF1<0一次函數(shù)SKIPIF1<0的圖像交坐標軸于SKIPIF1<0、SKIPIF1<0兩點,SKIPIF1<0,SKIPIF1<0點SKIPIF1<0恰好是SKIPIF1<0的中點,SKIPIF1<0,SKIPIF1<0反比例函數(shù)SKIPIF1<0圖像過點SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0【點睛】本題主要考查了反比例函數(shù)與一次函數(shù)的交點問題、一次函數(shù)圖像上點的坐標特征、運用待定系數(shù)法求反比例函數(shù)的解析式等知識點,求得點SKIPIF1<0的坐標是解題的關鍵.16.(2021春·福建廈門·九年級廈門市湖濱中學??计谥校┤鐖D,已知A、B兩點都在反比例函數(shù)y=SKIPIF1<0位于第二象限部分的圖像上,且△OAB為等邊三角形,若AB=6,則k的值為____.【答案】-9【分析】根據(jù)等邊三角形和反比例函數(shù)圖象的軸對稱性,可知:A、B兩點關于直線y=-x軸對稱,從而設A(m,n),則B(-n,-m),結合兩點間的距離公式,即可求解.【詳解】∵A、B兩點都在反比例函數(shù)y=SKIPIF1<0位于第二象限部分的圖像上,且△OAB為等邊三角形,∴A、B兩點關于直線y=-x軸對稱,設A(m,n),則B(-n,-m),∵AB=OA=6,∴SKIPIF1<0且SKIPIF1<0,化簡整理得:-4mn=36,∴mn=-9,即:k=-9.故答案是:-9【點睛】本題主要考查反比例函數(shù)的圖象和性質,等邊三角形的性質,掌握反比例函數(shù)圖象上點的坐標特征,反比例函數(shù)圖象的軸對稱性以及兩點間的距離公式,是解題的關鍵.三、解答題17.(2022秋·福建福州·九年級校考期末)如圖,在平面直角坐標系中,四邊形SKIPIF1<0為矩形,C,A兩點分別在x軸的正半軸上和y軸的正半軸上,D為線段SKIPIF1<0的中點,反比例函數(shù)SKIPIF1<0的圖象經(jīng)過點B.(1)當點C坐標為SKIPIF1<0時,求點D的坐標;(用含k的代數(shù)式表示)(2)若一次函數(shù)SKIPIF1<0的圖象經(jīng)過C,D兩點,求k的值.【答案】(1)SKIPIF1<0(2)k的值為6【分析】(1)先由B點的橫坐標為1,反比例函數(shù)SKIPIF1<0的圖象經(jīng)過點B,求得SKIPIF1<0,進而根據(jù)D為線段SKIPIF1<0的中點即可得解;(2)根據(jù)求得SKIPIF1<0,SKIPIF1<0,進而得SKIPIF1<0,又由點D為SKIPIF1<0的中點,得點SKIPIF1<0,再由點D在直線SKIPIF1<0上,即可求解.【詳解】(1)解:∵四邊形SKIPIF1<0為矩形,C,A兩點分別在x軸的正半軸上和y軸的正半軸上,點C坐標為SKIPIF1<0,∴B點的橫坐標為1,∵反比例函數(shù)SKIPIF1<0的圖象經(jīng)過點B,∴SKIPIF1<0,∵D為線段SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年激光影像輸出膠片項目合作計劃書
- 2024年非洲聯(lián)盟成員國間貨物交換協(xié)議
- 2024年租賃:建材臨時使用合同
- 2024年網(wǎng)絡安全防護合作協(xié)議
- 二零二五年土地開發(fā)土方開挖與運輸合同2篇
- 2025版租賃物租賃合同6篇
- 2024年餐飲業(yè)專業(yè)廚師勞動協(xié)議范本版B版
- 2025版工程項目造價編制與咨詢合同3篇
- 2024年高性能膨潤土產(chǎn)品采購與銷售協(xié)議模板版B版
- 2024年版規(guī)范化集體企業(yè)承包協(xié)議模板一
- 有機肥料及微生物肥料生產(chǎn)技術的創(chuàng)新與發(fā)展
- 銀行市場份額提升方案
- 鎮(zhèn)海煉化線上測評試題
- 2024寧夏高級電工證考試題庫電工理論考試試題(全國通用)
- 浙江省溫州市2022-2023學年八年級上學期數(shù)學期末試題(含答案)
- 2023年客訴工程師年度總結及下一年計劃
- 廣東省佛山市2022-2023學年三年級上學期語文期末試卷(含答案)
- 網(wǎng)絡運維從入門到精通29個實踐項目詳解
- 2024屆黃岡市啟黃中學中考試題猜想數(shù)學試卷含解析
- 揚州育才小學2023-2024一年級上冊數(shù)學期末復習卷(一)及答案
- 04某污水處理廠630kW柔性支架光伏發(fā)電項目建議書
評論
0/150
提交評論