轉(zhuǎn)化思想在小學(xué)數(shù)學(xué)“空間與圖形”中的運(yùn)用_第1頁(yè)
轉(zhuǎn)化思想在小學(xué)數(shù)學(xué)“空間與圖形”中的運(yùn)用_第2頁(yè)
轉(zhuǎn)化思想在小學(xué)數(shù)學(xué)“空間與圖形”中的運(yùn)用_第3頁(yè)
轉(zhuǎn)化思想在小學(xué)數(shù)學(xué)“空間與圖形”中的運(yùn)用_第4頁(yè)
轉(zhuǎn)化思想在小學(xué)數(shù)學(xué)“空間與圖形”中的運(yùn)用_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

轉(zhuǎn)化思想在小學(xué)數(shù)學(xué)“空間與圖形”中的運(yùn)用一、本文概述Overviewofthisarticle隨著教育改革的不斷深化,小學(xué)數(shù)學(xué)教學(xué)逐漸強(qiáng)調(diào)對(duì)學(xué)生空間思維能力的培養(yǎng),而“空間與圖形”作為小學(xué)數(shù)學(xué)的重要組成部分,更是對(duì)學(xué)生空間觀念、幾何直覺(jué)和推理能力的關(guān)鍵訓(xùn)練領(lǐng)域。在這一背景下,轉(zhuǎn)化思想作為一種重要的教學(xué)策略和思維方法,其在小學(xué)數(shù)學(xué)“空間與圖形”教學(xué)中的運(yùn)用顯得尤為重要。Withthecontinuousdeepeningofeducationalreform,primaryschoolmathematicsteachinggraduallyemphasizesthecultivationofstudents'spatialthinkingability.Asanimportantcomponentofprimaryschoolmathematics,"spaceandgraphics"isakeytrainingfieldforstudents'spatialconcepts,geometricintuition,andreasoningability.Inthiscontext,theapplicationoftransformationalthinkingasanimportantteachingstrategyandthinkingmethodintheteachingof"spaceandgraphics"inprimaryschoolmathematicsisparticularlyimportant.轉(zhuǎn)化思想,簡(jiǎn)而言之,就是將復(fù)雜問(wèn)題通過(guò)某種方式轉(zhuǎn)化為更簡(jiǎn)單、更直觀的問(wèn)題,從而便于學(xué)生理解和解決。在小學(xué)數(shù)學(xué)“空間與圖形”的教學(xué)中,轉(zhuǎn)化思想能夠幫助學(xué)生從已知的知識(shí)出發(fā),通過(guò)圖形的變換、關(guān)系的轉(zhuǎn)化等方式,深入理解圖形的性質(zhì)、特點(diǎn)和規(guī)律,提高空間想象力和問(wèn)題解決能力。Transformingthinking,inshort,istheprocessoftransformingcomplexproblemsintosimplerandmoreintuitiveproblemsinacertainway,makingiteasierforstudentstounderstandandsolve.Intheteachingof"spaceandgraphics"inelementaryschoolmathematics,thetransformationofideascanhelpstudentsstartfromknownknowledge,deeplyunderstandtheproperties,characteristics,andlawsofgraphicsthroughthetransformationofgraphicsandrelationships,andimprovespatialimaginationandproblem-solvingabilities.本文旨在探討轉(zhuǎn)化思想在小學(xué)數(shù)學(xué)“空間與圖形”教學(xué)中的具體運(yùn)用,分析其在不同教學(xué)內(nèi)容和方法中的實(shí)際案例,總結(jié)其有效性和局限性,以期為小學(xué)數(shù)學(xué)教師提供一些有益的啟示和建議。本文也期望通過(guò)深入研究轉(zhuǎn)化思想的教學(xué)價(jià)值和實(shí)踐策略,為推動(dòng)小學(xué)數(shù)學(xué)教學(xué)的創(chuàng)新和發(fā)展貢獻(xiàn)一份力量。Thisarticleaimstoexplorethespecificapplicationoftransformationthinkingintheteachingof"spaceandgraphics"inprimaryschoolmathematics,analyzeitspracticalcasesindifferentteachingcontentsandmethods,summarizeitseffectivenessandlimitations,andprovidesomeusefulinsightsandsuggestionsforprimaryschoolmathematicsteachers.Thisarticlealsohopestocontributetotheinnovationanddevelopmentofprimaryschoolmathematicsteachingbyconductingin-depthresearchontheteachingvalueandpracticalstrategiesoftransformingideas.二、轉(zhuǎn)化思想在小學(xué)數(shù)學(xué)“空間與圖形”教學(xué)中的具體運(yùn)用Thespecificapplicationoftransformationthinkingintheteachingof"spaceandgraphics"inprimaryschoolmathematics在小學(xué)數(shù)學(xué)“空間與圖形”的教學(xué)中,轉(zhuǎn)化思想具有廣泛的應(yīng)用。它不僅能夠幫助學(xué)生更好地理解和掌握抽象的數(shù)學(xué)概念,還能夠培養(yǎng)他們的空間想象力和解決問(wèn)題的能力。下面將詳細(xì)介紹轉(zhuǎn)化思想在“空間與圖形”教學(xué)中的具體運(yùn)用。Intheteachingof"spaceandgraphics"inelementaryschoolmathematics,theconceptoftransformationhasawiderangeofapplications.Itcannotonlyhelpstudentsbetterunderstandandmasterabstractmathematicalconcepts,butalsocultivatetheirspatialimaginationandproblem-solvingabilities.Below,wewillprovideadetailedintroductiontothespecificapplicationoftransformationthinkingintheteachingof"spaceandgraphics".在平面圖形的教學(xué)中,轉(zhuǎn)化思想主要體現(xiàn)在圖形的等價(jià)變換和組合上。例如,在教學(xué)三角形、四邊形等平面圖形時(shí),教師可以通過(guò)旋轉(zhuǎn)、平移等方式,將不規(guī)則的圖形轉(zhuǎn)化為規(guī)則的圖形,從而使學(xué)生更容易理解圖形的性質(zhì)和特點(diǎn)。同時(shí),教師還可以引導(dǎo)學(xué)生利用已知圖形組合成新的圖形,培養(yǎng)他們的空間想象力。Intheteachingofflatgraphics,theideaoftransformationismainlyreflectedintheequivalenttransformationandcombinationofgraphics.Forexample,whenteachingflatshapessuchastrianglesandquadrilaterals,teacherscanconvertirregularshapesintoregularshapesthroughrotation,translation,andothermethods,makingiteasierforstudentstounderstandthepropertiesandcharacteristicsoftheshapes.Meanwhile,teacherscanalsoguidestudentstocombineknownshapesintonewones,cultivatingtheirspatialimagination.在立體圖形的教學(xué)中,轉(zhuǎn)化思想主要體現(xiàn)在空間觀念和空間想象力的培養(yǎng)上。教師可以通過(guò)引導(dǎo)學(xué)生觀察、操作、想象等方式,將復(fù)雜的立體圖形轉(zhuǎn)化為簡(jiǎn)單的立體圖形,從而幫助學(xué)生更好地理解和掌握立體圖形的性質(zhì)。例如,在教學(xué)圓柱、圓錐等立體圖形時(shí),教師可以引導(dǎo)學(xué)生將其轉(zhuǎn)化為長(zhǎng)方體或正方體等簡(jiǎn)單的立體圖形,從而方便他們進(jìn)行計(jì)算和理解。Intheteachingofthree-dimensionalgraphics,thetransformationofideasismainlyreflectedinthecultivationofspatialconceptsandspatialimagination.Teacherscanguidestudentstoobserve,operate,imagine,andtransformcomplexthree-dimensionalshapesintosimpleones,therebyhelpingstudentsbetterunderstandandmasterthepropertiesofthree-dimensionalshapes.Forexample,whenteachingsolidshapessuchascylindersandcones,teacherscanguidestudentstoconvertthemintosimplesolidshapessuchasrectanglesorcubes,makingiteasierforthemtocalculateandunderstand.在“空間與圖形”的教學(xué)中,轉(zhuǎn)化思想還可以體現(xiàn)在圖形與數(shù)量之間的轉(zhuǎn)化上。教師可以通過(guò)引導(dǎo)學(xué)生將圖形問(wèn)題轉(zhuǎn)化為數(shù)量問(wèn)題,從而方便他們進(jìn)行計(jì)算和解決。例如,在教學(xué)面積、體積等概念時(shí),教師可以引導(dǎo)學(xué)生將圖形問(wèn)題轉(zhuǎn)化為數(shù)值問(wèn)題,通過(guò)計(jì)算面積、體積等數(shù)值來(lái)理解和解決問(wèn)題。Intheteachingof"spaceandgraphics",theconceptoftransformationcanalsobereflectedinthetransformationbetweengraphicsandquantity.Teacherscanguidestudentstotransformgraphicproblemsintoquantityproblems,makingiteasierforthemtocalculateandsolve.Forexample,whenteachingconceptssuchasareaandvolume,teacherscanguidestudentstotransformgraphicproblemsintonumericalproblems,andunderstandandsolveproblemsbycalculatingnumericalvaluessuchasareaandvolume.轉(zhuǎn)化思想在小學(xué)數(shù)學(xué)“空間與圖形”的教學(xué)中具有廣泛的應(yīng)用。通過(guò)運(yùn)用轉(zhuǎn)化思想,教師可以幫助學(xué)生更好地理解和掌握抽象的數(shù)學(xué)概念,培養(yǎng)他們的空間想象力和解決問(wèn)題的能力。轉(zhuǎn)化思想還能夠激發(fā)學(xué)生的學(xué)習(xí)興趣和動(dòng)力,提高他們的數(shù)學(xué)素養(yǎng)和綜合素質(zhì)。因此,在實(shí)際教學(xué)中,教師應(yīng)該注重轉(zhuǎn)化思想的應(yīng)用,從而更好地實(shí)現(xiàn)“空間與圖形”的教學(xué)目標(biāo)。Theconceptoftransformationhasawiderangeofapplicationsintheteachingofspaceandgraphicsinprimaryschoolmathematics.Byapplyingtransformationthinking,teacherscanhelpstudentsbetterunderstandandmasterabstractmathematicalconcepts,cultivatetheirspatialimaginationandproblem-solvingabilities.Transformingthinkingcanalsostimulatestudents'interestandmotivationinlearning,improvetheirmathematicalliteracyandcomprehensivequality.Therefore,inpracticalteaching,teachersshouldpayattentiontotheapplicationoftransformingideas,inordertobetterachievetheteachingobjectivesof"spaceandgraphics".三、轉(zhuǎn)化思想在“空間與圖形”教學(xué)中的實(shí)施策略TheImplementationStrategyofTransformingIdeasintheTeachingof"SpaceandGraphics"在小學(xué)數(shù)學(xué)“空間與圖形”的教學(xué)中,轉(zhuǎn)化思想的應(yīng)用至關(guān)重要。轉(zhuǎn)化思想不僅有助于簡(jiǎn)化復(fù)雜問(wèn)題,還能幫助學(xué)生更好地理解和掌握空間與圖形的核心概念。以下是轉(zhuǎn)化思想在“空間與圖形”教學(xué)中的實(shí)施策略:Theapplicationoftransformationalthinkingiscrucialintheteachingofspaceandgraphicsinprimaryschoolmathematics.Transformingideasnotonlyhelpssimplifycomplexproblems,butalsohelpsstudentsbetterunderstandandmasterthecoreconceptsofspaceandgraphics.Thefollowingaretheimplementationstrategiesfortransformingideasin"SpaceandGraphics"teaching:化抽象為具體:對(duì)于小學(xué)生來(lái)說(shuō),抽象的空間概念往往難以理解。因此,教師可以通過(guò)具體的教學(xué)工具和實(shí)例,將抽象的空間概念轉(zhuǎn)化為具體的圖形或物體,從而幫助學(xué)生建立直觀的空間感知。例如,通過(guò)實(shí)物模型或動(dòng)畫(huà)演示,展示圖形的旋轉(zhuǎn)、平移和對(duì)稱等變換過(guò)程,使學(xué)生能夠更加直觀地理解這些概念。Transformingabstractionintoconcrete:Forelementaryschoolstudents,abstractspatialconceptsareoftendifficulttounderstand.Therefore,teacherscanusespecificteachingtoolsandexamplestotransformabstractspatialconceptsintoconcreteshapesorobjects,therebyhelpingstudentsestablishintuitivespatialperception.Forexample,byusingphysicalmodelsoranimateddemonstrations,studentscandemonstratethetransformationprocessesofshapessuchasrotation,translation,andsymmetry,enablingthemtohaveamoreintuitiveunderstandingoftheseconcepts.化復(fù)雜為簡(jiǎn)單:在處理復(fù)雜的空間與圖形問(wèn)題時(shí),教師可以通過(guò)轉(zhuǎn)化思想,將復(fù)雜問(wèn)題分解為若干個(gè)簡(jiǎn)單的問(wèn)題。這樣不僅能降低問(wèn)題的難度,還能幫助學(xué)生逐步建立解決復(fù)雜問(wèn)題的信心和能力。例如,在教授學(xué)生如何求解不規(guī)則圖形的面積時(shí),可以先引導(dǎo)學(xué)生求解規(guī)則圖形的面積,然后通過(guò)分割、平移或旋轉(zhuǎn)等方法,將不規(guī)則圖形轉(zhuǎn)化為規(guī)則圖形進(jìn)行計(jì)算。Transformingcomplexityintosimplicity:Whendealingwithcomplexspatialandgraphicproblems,teacherscandecomposecomplexproblemsintoseveralsimpleonesbytransformingtheirthinking.Thisnotonlyreducesthedifficultyoftheproblem,butalsohelpsstudentsgraduallybuildconfidenceandabilitytosolvecomplexproblems.Forexample,whenteachingstudentshowtosolvefortheareaofirregularshapes,theycanfirstguidethemtosolvefortheareaofregularshapes,andthenconvertirregularshapesintoregularshapesforcalculationthroughmethodssuchassegmentation,translation,orrotation.化未知為已知:在解決空間與圖形問(wèn)題時(shí),學(xué)生常常會(huì)遇到未知量或難以直接求解的問(wèn)題。此時(shí),教師可以通過(guò)轉(zhuǎn)化思想,引導(dǎo)學(xué)生將未知量轉(zhuǎn)化為已知量,或?qū)㈦y以直接求解的問(wèn)題轉(zhuǎn)化為已知的問(wèn)題。例如,在求解三角形的高時(shí),可以先引導(dǎo)學(xué)生利用已知的底和面積求解高,然后再利用高和底求解其他相關(guān)的量。TransformingUnknownintoKnown:Whensolvingspatialandgraphicalproblems,studentsoftenencounterunknownquantitiesorproblemsthataredifficulttosolvedirectly.Atthispoint,teacherscanguidestudentstoconvertunknownquantitiesintoknownquantitiesorconvertdifficulttosolveproblemsdirectlyintoknownproblemsbytransformingtheirthinking.Forexample,whensolvingtheheightofatriangle,studentscanbeguidedtofirstusetheknownbaseandareatosolvetheheight,andthenusetheheightandbasetosolveotherrelatedquantities.化一般為特殊:在處理一些具有普遍性的空間與圖形問(wèn)題時(shí),教師可以通過(guò)轉(zhuǎn)化思想,將一般問(wèn)題轉(zhuǎn)化為特殊問(wèn)題進(jìn)行處理。這樣不僅能簡(jiǎn)化問(wèn)題的求解過(guò)程,還能幫助學(xué)生更好地理解和掌握問(wèn)題的本質(zhì)。例如,在教授學(xué)生如何求解一般多邊形的內(nèi)角和時(shí),可以先引導(dǎo)學(xué)生求解特殊多邊形(如三角形、四邊形等)的內(nèi)角和,然后通過(guò)歸納和推理等方法,將特殊問(wèn)題的結(jié)果推廣到一般問(wèn)題。TransformingGeneralintoSpecial:Whendealingwithsomeuniversalspatialandgraphicproblems,teacherscantransformgeneralproblemsintospecialproblemsbytransformingtheirthinking.Thisnotonlysimplifiestheproblem-solvingprocess,butalsohelpsstudentsbetterunderstandandmastertheessenceoftheproblem.Forexample,whenteachingstudentshowtosolvetheinneranglesandofgeneralpolygons,theycanfirstguidestudentstosolvetheinneranglesandofspecialpolygons(suchastriangles,quadrilaterals,etc.),andthenusemethodssuchasinductionandreasoningtogeneralizetheresultsofspecialproblemstogeneralproblems.轉(zhuǎn)化思想在小學(xué)數(shù)學(xué)“空間與圖形”教學(xué)中的實(shí)施策略包括化抽象為具體、化復(fù)雜為簡(jiǎn)單、化未知為已知以及化一般為特殊。這些策略的運(yùn)用不僅有助于提高學(xué)生的空間感知能力和解決問(wèn)題的能力,還能幫助學(xué)生更好地理解和掌握空間與圖形的核心概念。Theimplementationstrategiesoftransformingideasintheteachingof"spaceandgraphics"inprimaryschoolmathematicsincludetransformingabstractionintoconcrete,transformingcomplexityintosimplicity,transformingunknownintoknown,andtransforminggeneralintospecial.Theapplicationofthesestrategiesnotonlyhelpstoimprovestudents'spatialperceptionandproblem-solvingabilities,butalsohelpsthembetterunderstandandmasterthecoreconceptsofspaceandgraphics.四、轉(zhuǎn)化思想在“空間與圖形”教學(xué)中的案例分析CaseAnalysisofTransformingIdeasin"SpaceandGraphics"Teaching在小學(xué)數(shù)學(xué)“空間與圖形”的教學(xué)中,轉(zhuǎn)化思想的應(yīng)用廣泛而深入。以下,我將通過(guò)一個(gè)具體的案例來(lái)分析轉(zhuǎn)化思想在實(shí)際教學(xué)中的應(yīng)用。Intheteachingof"spaceandgraphics"inprimaryschoolmathematics,theapplicationoftransformationalthinkingisextensiveandin-depth.Below,Iwillanalyzetheapplicationoftransformationalthinkinginpracticalteachingthroughaspecificcasestudy.在這個(gè)案例中,我們的教學(xué)目標(biāo)是讓學(xué)生掌握平行四邊形的面積計(jì)算公式。為了達(dá)到這個(gè)目標(biāo),我們可以運(yùn)用轉(zhuǎn)化思想,將平行四邊形轉(zhuǎn)化為已經(jīng)學(xué)過(guò)的矩形,從而簡(jiǎn)化問(wèn)題。Inthiscase,ourteachingobjectiveistoenablestudentstomastertheformulaforcalculatingtheareaofparallelograms.Toachievethisgoal,wecanusetransformationthinkingtotransformparallelogramsintopreviouslylearnedrectangles,therebysimplifyingtheproblem.我們引導(dǎo)學(xué)生回顧矩形的面積計(jì)算公式(長(zhǎng)×寬),然后引出平行四邊形的面積計(jì)算。由于平行四邊形和矩形有相似之處(都有對(duì)邊平行且等長(zhǎng)),我們可以引導(dǎo)學(xué)生思考如何將平行四邊形轉(zhuǎn)化為矩形。Weguidestudentstoreviewtheformulaforcalculatingtheareaofrectangles(lengthxwidth),andthenintroducethecalculationoftheareaofparallelograms.Duetothesimilaritiesbetweenparallelogramsandrectangles(bothhaveoppositesidesparallelandofequallength),wecanguidestudentstothinkabouthowtoconvertparallelogramsintorectangles.接著,我們讓學(xué)生動(dòng)手操作,將平行四邊形通過(guò)剪切和拼接的方式轉(zhuǎn)化為矩形。在操作過(guò)程中,學(xué)生發(fā)現(xiàn)平行四邊形的底和高分別對(duì)應(yīng)矩形的長(zhǎng)和寬。因此,他們得出平行四邊形的面積等于其底乘以高。Next,wehavestudentshands-onoperatetoconvertparallelogramsintorectanglesthroughcuttingandsplicing.Duringtheoperation,studentsdiscoveredthatthebaseandheightofaparallelogramcorrespondtothelengthandwidthoftherectangle,respectively.Therefore,theyconcludedthattheareaofaparallelogramisequaltoitsbasemultipliedbyitsheight.我們通過(guò)一些練習(xí)題來(lái)鞏固學(xué)生的理解和掌握。這些練習(xí)題包括給定平行四邊形的底和高,讓學(xué)生計(jì)算面積;以及給定平行四邊形的面積和底,讓學(xué)生求出高等。Weusesomepracticequestionstoconsolidatestudents'understandingandmastery.Theseexercisequestionsincludegivingthebaseandheightofaparallelogramandaskingstudentstocalculatethearea;Andgiventheareaandbaseofaparallelogram,letstudentscalculatethehigher.通過(guò)這個(gè)案例,我們可以看到轉(zhuǎn)化思想在“空間與圖形”教學(xué)中的重要作用。通過(guò)將平行四邊形轉(zhuǎn)化為矩形,我們不僅簡(jiǎn)化了問(wèn)題,還幫助學(xué)生建立了新舊知識(shí)之間的聯(lián)系。這種教學(xué)方法不僅提高了學(xué)生的學(xué)習(xí)興趣和積極性,還培養(yǎng)了他們的空間觀念和思維能力。Throughthiscasestudy,wecanseetheimportantroleoftransformationthinkingintheteachingof"spaceandgraphics".Bytransformingparallelogramsintorectangles,wenotonlysimplifiedtheproblembutalsohelpedstudentsestablishconnectionsbetweennewandoldknowledge.Thisteachingmethodnotonlyenhancesstudents'interestandenthusiasminlearning,butalsocultivatestheirspatialconceptsandthinkingabilities.以上案例只是轉(zhuǎn)化思想在“空間與圖形”教學(xué)中的一個(gè)縮影。實(shí)際上,轉(zhuǎn)化思想在解決各種空間與圖形問(wèn)題時(shí)都具有廣泛的應(yīng)用。因此,教師在教學(xué)過(guò)程中應(yīng)該注重培養(yǎng)學(xué)生的轉(zhuǎn)化意識(shí),引導(dǎo)他們運(yùn)用轉(zhuǎn)化思想來(lái)解決問(wèn)題。Theabovecaseisjustamicrocosmofthetransformationofideasintheteachingof"spaceandgraphics".Infact,theconceptoftransformationhasawiderangeofapplicationsinsolvingvariousspatialandgraphicproblems.Therefore,teachersshouldpayattentiontocultivatingstudents'awarenessoftransformationandguidethemtousetransformationthinkingtosolveproblemsintheteachingprocess.五、結(jié)論Conclusion隨著教育改革的不斷深入,小學(xué)數(shù)學(xué)教學(xué)越來(lái)越注重培養(yǎng)學(xué)生的空間觀念和幾何直覺(jué)。轉(zhuǎn)化思想作為一種重要的數(shù)學(xué)思維方式,在小學(xué)數(shù)學(xué)“空間與圖形”的教學(xué)中具有廣泛的應(yīng)用。通過(guò)對(duì)轉(zhuǎn)化思想的深入研究和教學(xué)實(shí)踐,我們可以得出以下幾點(diǎn)Withthecontinuousdeepeningofeducationalreform,primaryschoolmathematicsteachingisincreasinglyfocusingoncultivatingstudents'spatialconceptsandgeometricintuition.Transformationalthinking,asanimportantmathematicalwayofthinking,hasawiderangeofapplicationsintheteachingof"spaceandgraphics"inprimaryschoolmathematics.Throughin-depthresearchandteachingpracticeonthetransformationofideas,wecandrawthefollowingpoints轉(zhuǎn)化思想有助于降低學(xué)習(xí)難度,提高學(xué)生的學(xué)習(xí)興趣。通過(guò)將復(fù)雜的問(wèn)題轉(zhuǎn)化為簡(jiǎn)單的形式,學(xué)生可以更容易地理解和掌握相關(guān)的知識(shí)點(diǎn),從而增強(qiáng)學(xué)習(xí)的自信心和積極性。Transformingthinkingcanhelpreducelearningdifficultyandenhancestudents'interestinlearning.Bytransformingcomplexproblemsintosimpleforms,studentscanmoreeasilyunderstandandmasterrelevantknowledgepoints,therebyenhancingtheirconfidenceandenthusiasmforlearning.轉(zhuǎn)化思想有助于培養(yǎng)學(xué)生的邏輯思維能力和創(chuàng)新能力。在運(yùn)用轉(zhuǎn)化思想解決問(wèn)題的過(guò)程中,學(xué)生需要不斷地進(jìn)行思考和探索,尋找合適的轉(zhuǎn)化方法和策略。這種過(guò)程不僅鍛煉了學(xué)生的邏輯思維能力,還激發(fā)了學(xué)生的創(chuàng)新精神和探索欲望。Transformingideashelpscultivatestudents'logic

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論