2024屆重慶九龍坡區(qū)重點名校中考試題猜想數(shù)學(xué)試卷含解析_第1頁
2024屆重慶九龍坡區(qū)重點名校中考試題猜想數(shù)學(xué)試卷含解析_第2頁
2024屆重慶九龍坡區(qū)重點名校中考試題猜想數(shù)學(xué)試卷含解析_第3頁
2024屆重慶九龍坡區(qū)重點名校中考試題猜想數(shù)學(xué)試卷含解析_第4頁
2024屆重慶九龍坡區(qū)重點名校中考試題猜想數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆重慶九龍坡區(qū)重點名校中考試題猜想數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.平面上直線a、c與b相交(數(shù)據(jù)如圖),當(dāng)直線c繞點O旋轉(zhuǎn)某一角度時與a平行,則旋轉(zhuǎn)的最小度數(shù)是()A.60° B.50° C.40° D.30°2.下列立體圖形中,主視圖是三角形的是()A. B. C. D.3.如圖,中,,且,設(shè)直線截此三角形所得陰影部分的面積為S,則S與t之間的函數(shù)關(guān)系的圖象為下列選項中的A. B. C. D.4.如圖所示,若將△ABO繞點O順時針旋轉(zhuǎn)180°后得到△A1B1O,則A點的對應(yīng)點A1點的坐標(biāo)是()A.(3,﹣2) B.(3,2) C.(2,3) D.(2,﹣3)5.如圖,AB為⊙O的直徑,C,D為⊙O上的兩點,若AB=14,BC=1.則∠BDC的度數(shù)是()A.15° B.30° C.45° D.60°6.tan30°的值為()A.12 B.32 C.37.下列標(biāo)志中,可以看作是軸對稱圖形的是()A. B. C. D.8.如圖,直角三角形ABC中,∠C=90°,AC=2,AB=4,分別以AC、BC為直徑作半圓,則圖中陰影部分的面積為()A.2π﹣ B.π+ C.π+2 D.2π﹣29.2017年“智慧天津”建設(shè)成效顯著,互聯(lián)網(wǎng)出口帶寬達(dá)到17200吉比特每秒.將17200用科學(xué)記數(shù)法表示應(yīng)為()A.172×102 B.17.2×103 C.1.72×104 D.0.172×10510.不等式4-2x>0的解集在數(shù)軸上表示為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.欣欣超市為促銷,決定對A,B兩種商品統(tǒng)一進(jìn)行打8折銷售,打折前,買6件A商品和3件B商品需要54元,買3件A商品和4件B商品需要32元,打折后,小敏買50件A商品和40件B商品僅需________元.12.如圖,線段AC=n+1(其中n為正整數(shù)),點B在線段AC上,在線段AC同側(cè)作正方形ABMN及正方形BCEF,連接AM、ME、EA得到△AME.當(dāng)AB=1時,△AME的面積記為S1;當(dāng)AB=2時,△AME的面積記為S2;當(dāng)AB=3時,△AME的面積記為S3;…;當(dāng)AB=n時,△AME的面積記為Sn.當(dāng)n≥2時,Sn﹣Sn﹣1=▲.13.如圖,矩形ABCD中,BC=6,CD=3,以AD為直徑的半圓O與BC相切于點E,連接BD則陰影部分的面積為____(結(jié)果保留π)14.如圖,在矩形ABCD中,AB=4,BC=5,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE.延長AF交邊BC于點G,則CG為_____.15.使得分式值為零的x的值是_________;16.若a是方程的解,計算:=______.三、解答題(共8題,共72分)17.(8分)如圖,已知拋物線與軸交于兩點(A點在B點的左邊),與軸交于點.(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點在拋物線上,點在拋物線的對稱軸上,若以為邊,以點、、、Q為頂點的四邊形是平行四邊形,求點的坐標(biāo);(3)如圖2,過點作直線的平行線交拋物線于另一點,交軸于點,若﹕=1﹕1.求的值.18.(8分)如圖,AB為圓O的直徑,點C為圓O上一點,若∠BAC=∠CAM,過點C作直線l垂直于射線AM,垂足為點D.(1)試判斷CD與圓O的位置關(guān)系,并說明理由;(2)若直線l與AB的延長線相交于點E,圓O的半徑為3,并且∠CAB=30°,求AD的長.19.(8分)太原雙塔寺又名永祚寺,是國家級文物保護(hù)單位,由于雙塔(舍利塔、文峰塔)聳立,被人們稱為“文筆雙塔”,是太原的標(biāo)志性建筑之一,某校社會實踐小組為了測量舍利塔的高度,在地面上的C處垂直于地面豎立了高度為2米的標(biāo)桿CD,這時地面上的點E,標(biāo)桿的頂端點D,舍利塔的塔尖點B正好在同一直線上,測得EC=4米,將標(biāo)桿CD向后平移到點C處,這時地面上的點F,標(biāo)桿的頂端點H,舍利塔的塔尖點B正好在同一直線上(點F,點G,點E,點C與塔底處的點A在同一直線上),這時測得FG=6米,GC=53米.請你根據(jù)以上數(shù)據(jù),計算舍利塔的高度AB.20.(8分)在同一副撲克牌中取出6張撲克牌,分別是黑桃2、4、6,紅心6、7、8.將撲克牌背面朝上分別放在甲、乙兩張桌面上,先從甲桌面上任意摸出一張黑桃,再從乙桌面上任意摸出一張紅心.表示出所有可能出現(xiàn)的結(jié)果;小黃和小石做游戲,制定了兩個游戲規(guī)則:規(guī)則1:若兩次摸出的撲克牌中,至少有一張是“6”,小黃贏;否則,小石贏.規(guī)則2:若摸出的紅心牌點數(shù)是黑桃牌點數(shù)的整數(shù)倍時,小黃贏;否則,小石贏.小黃想要在游戲中獲勝,會選擇哪一條規(guī)則,并說明理由.21.(8分)我市某中學(xué)舉辦“網(wǎng)絡(luò)安全知識答題競賽”,初、高中部根據(jù)初賽成績各選出5名選手組成初中代表隊和高中代表隊參加學(xué)校決賽,兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.平均分(分)中位數(shù)(分)眾數(shù)(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根據(jù)圖示計算出a、b、c的值;結(jié)合兩隊成績的平均數(shù)和中位數(shù)進(jìn)行分析,哪個隊的決賽成績較好?計算初中代表隊決賽成績的方差s初中2,并判斷哪一個代表隊選手成績較為穩(wěn)定.22.(10分)在△ABC中,AB=AC,以AB為直徑的⊙O交AC于點E,交BC于點D,P為AC延長線上一點,且∠PBC=∠BAC,連接DE,BE.(1)求證:BP是⊙O的切線;(2)若sin∠PBC=,AB=10,求BP的長.23.(12分)如圖,AB是⊙O的一條弦,E是AB的中點,過點E作EC⊥OA于點C,過點B作⊙O的切線交CE的延長線于點D.(1)求證:DB=DE;(2)若AB=12,BD=5,求⊙O的半徑.24.我市某外資企業(yè)生產(chǎn)的一批產(chǎn)品上市后30天內(nèi)全部售完,該企業(yè)對這批產(chǎn)品上市后每天的銷售情況進(jìn)行了跟蹤調(diào)查.其中,國內(nèi)市場的日銷售量y1(萬件)與時間t(t為整數(shù),單位:天)的部分對應(yīng)值如下表所示.而國外市場的日銷售量y2(萬件)與時間t(t為整數(shù),單位:天)的關(guān)系如圖所示.(1)請你從所學(xué)過的一次函數(shù)、二次函數(shù)和反比例函數(shù)中確定哪種函數(shù)能表示y1與t的變化規(guī)律,寫出y1與t的函數(shù)關(guān)系式及自變量t的取值范圍;(2)分別探求該產(chǎn)品在國外市場上市20天前(不含第20天)與20天后(含第20天)的日銷售量y2與時間t所符合的函數(shù)關(guān)系式,并寫出相應(yīng)自變量t的取值范圍;(3)設(shè)國內(nèi)、外市場的日銷售總量為y萬件,寫出y與時間t的函數(shù)關(guān)系式,并判斷上市第幾天國內(nèi)、外市場的日銷售總量y最大,并求出此時的最大值.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

先根據(jù)平角的定義求出∠1的度數(shù),再由平行線的性質(zhì)即可得出結(jié)論.【詳解】解:∵∠1=180°﹣100°=80°,a∥c,∴∠α=180°﹣80°﹣60°=40°.故選:C.【點睛】本題考查的是平行線的性質(zhì),用到的知識點為:兩直線平行,同旁內(nèi)角互補.2、A【解析】

考查簡單幾何體的三視圖.根據(jù)從正面看得到的圖形是主視圖,可得圖形的主視圖【詳解】A、圓錐的主視圖是三角形,符合題意;B、球的主視圖是圓,不符合題意;C、圓柱的主視圖是矩形,不符合題意;D、正方體的主視圖是正方形,不符合題意.故選A.【點睛】主視圖是從前往后看,左視圖是從左往右看,俯視圖是從上往下看3、D【解析】

Rt△AOB中,AB⊥OB,且AB=OB=3,所以很容易求得∠AOB=∠A=45°;再由平行線的性質(zhì)得出∠OCD=∠A,即∠AOD=∠OCD=45°,進(jìn)而證明OD=CD=t;最后根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.【詳解】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S與t之間的函數(shù)關(guān)系的圖象應(yīng)為定義域為[0,3],開口向上的二次函數(shù)圖象;故選D.【點睛】本題主要考查的是二次函數(shù)解析式的求法及二次函數(shù)的圖象特征,解答本題的關(guān)鍵是根據(jù)三角形的面積公式,解答出S與t之間的函數(shù)關(guān)系式,由函數(shù)解析式來選擇圖象.4、A【解析】

由題意可知,點A與點A1關(guān)于原點成中心對稱,根據(jù)圖象確定點A的坐標(biāo),即可求得點A1的坐標(biāo).【詳解】由題意可知,點A與點A1關(guān)于原點成中心對稱,∵點A的坐標(biāo)是(﹣3,2),∴點A關(guān)于點O的對稱點A'點的坐標(biāo)是(3,﹣2).故選A.【點睛】本題考查了中心對稱的性質(zhì)及關(guān)于原點對稱點的坐標(biāo)的特征,熟知中心對稱的性質(zhì)及關(guān)于原點對稱點的坐標(biāo)的特征是解決問題的關(guān)鍵.5、B【解析】

只要證明△OCB是等邊三角形,可得∠CDB=∠COB即可解決問題.【詳解】如圖,連接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等邊三角形,∴∠COB=60°,∴∠CDB=∠COB=30°,故選B.【點睛】本題考查圓周角定理,等邊三角形的判定等知識,解題的關(guān)鍵是學(xué)會利用數(shù)形結(jié)合的首先解決問題,屬于中考??碱}型.6、D【解析】

直接利用特殊角的三角函數(shù)值求解即可.【詳解】tan30°=33,故選:D【點睛】本題考查特殊角的三角函數(shù)的值的求法,熟記特殊的三角函數(shù)值是解題的關(guān)鍵.7、D【解析】

根據(jù)軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;

B、不是軸對稱圖形,是中心對稱圖形,不符合題意;

C、不是軸對稱圖形,是中心對稱圖形,不符合題意;

D、是軸對稱圖形,符合題意.

故選D.【點睛】本題考查了中心對稱圖形和軸對稱圖形的定義,掌握中心對稱圖形與軸對稱圖形的概念,解答時要注意:判斷軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部沿對稱軸疊后可重合;判斷中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180度后與原圖重合.8、D【解析】分析:觀察圖形可知,陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC,然后根據(jù)扇形面積公式和三角形面積公式計算即可.詳解:連接CD.∵∠C=90°,AC=2,AB=4,∴BC==2.∴陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC==.故選:D.點睛:本題考查了勾股定理,圓的面積公式,三角形的面積公式及割補法求圖形的面積,根據(jù)圖形判斷出陰影部分的面積=S半圓ACD+S半圓BCD-S△ABC是解答本題的關(guān)鍵.9、C【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】解:將17200用科學(xué)記數(shù)法表示為1.72×1.

故選C.【點睛】此題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.10、D【解析】

根據(jù)解一元一次不等式基本步驟:移項、系數(shù)化為1可得.【詳解】移項,得:-2x>-4,

系數(shù)化為1,得:x<2,

故選D.【點睛】考查解一元一次不等式的基本能力,嚴(yán)格遵循解不等式的基本步驟是關(guān)鍵,尤其需要注意不等式兩邊都乘以或除以同一個負(fù)數(shù)不等號方向要改變.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】

設(shè)A、B兩種商品的售價分別是1件x元和1件y元,根據(jù)題意列出x和y的二元一次方程組,解方程組求出x和y的值,進(jìn)而求解即可.【詳解】解:設(shè)A、B兩種商品的售價分別是1件x元和1件y元,根據(jù)題意得,解得.所以0.8×(8×50+2×40)=1(元).即打折后,小敏買50件A商品和40件B商品僅需1元.故答案為1.【點睛】本題考查了利用二元一次方程組解決現(xiàn)實生活中的問題.解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程組,再求解.12、【解析】連接BE,∵在線段AC同側(cè)作正方形ABMN及正方形BCEF,∴BE∥AM.∴△AME與△AMB同底等高.∴△AME的面積=△AMB的面積.∴當(dāng)AB=n時,△AME的面積為,當(dāng)AB=n-1時,△AME的面積為.∴當(dāng)n≥2時,13、π.【解析】

如圖,連接OE,利用切線的性質(zhì)得OD=3,OE⊥BC,易得四邊形OECD為正方形,先利用扇形面積公式,利用S正方形OECD-S扇形EOD計算由弧DE、線段EC、CD所圍成的面積,然后利用三角形的面積減去剛才計算的面積即可得到陰影部分的面積.【詳解】連接OE,如圖,∵以AD為直徑的半圓O與BC相切于點E,∴OD=CD=3,OE⊥BC,∴四邊形OECD為正方形,∴由弧DE、線段EC、CD所圍成的面積=S正方形OECD﹣S扇形EOD=32﹣,∴陰影部分的面積,故答案為π.【點睛】本題考查了切線的性質(zhì):圓的切線垂直于經(jīng)過切點的半徑.若出現(xiàn)圓的切線,必連過切點的半徑,構(gòu)造定理圖,得出垂直關(guān)系.也考查了矩形的性質(zhì)和扇形的面積公式.14、【解析】

如圖,作輔助線,首先證明△EFG≌△ECG,得到FG=CG(設(shè)為x),∠FEG=∠CEG;同理可證AF=AD=5,∠FEA=∠DEA,進(jìn)而證明△AEG為直角三角形,運用相似三角形的性質(zhì)即可解決問題.【詳解】連接EG;∵四邊形ABCD為矩形,∴∠D=∠C=90°,DC=AB=4;由題意得:EF=DE=EC=2,∠EFG=∠D=90°;在Rt△EFG與Rt△ECG中,,∴Rt△EFG≌Rt△ECG(HL),∴FG=CG(設(shè)為x),∠FEG=∠CEG;同理可證:AF=AD=5,∠FEA=∠DEA,∴∠AEG=×180°=90°,而EF⊥AG,可得△EFG∽△AFE,∴∴22=5?x,∴x=,∴CG=,故答案為:.【點睛】此題考查矩形的性質(zhì),翻折變換的性質(zhì),以考查全等三角形的性質(zhì)及其應(yīng)用、射影定理等幾何知識點為核心構(gòu)造而成;對綜合的分析問題解決問題的能力提出了一定的要求.15、2【解析】

根據(jù)分式的性質(zhì),要使分式有意義,則必須分母不能為0,要使分式為零,則只有分子為0,因此計算即可.【詳解】解:要使分式有意義則,即要使分式為零,則,即綜上可得故答案為2【點睛】本題主要考查分式的性質(zhì),關(guān)鍵在于分式的分母不能為0.16、1【解析】

根據(jù)一元二次方程的解的定義得a2﹣3a+1=1,即a2﹣3a=﹣1,再代入,然后利用整體思想進(jìn)行計算即可.【詳解】∵a是方程x2﹣3x+1=1的一根,∴a2﹣3a+1=1,即a2﹣3a=﹣1,a2+1=3a∴故答案為1.【點睛】本題考查了一元二次方程的解:使一元二次方程兩邊成立的未知數(shù)的值叫一元二次方程的解.也考查了整體思想的運用.三、解答題(共8題,共72分)17、(1);(2)和;(3)【解析】

(1)設(shè),,再根據(jù)根與系數(shù)的關(guān)系得到,根據(jù)勾股定理得到:、,根據(jù)列出方程,解方程即可;(2)求出A、B坐標(biāo),設(shè)出點Q坐標(biāo),利用平行四邊形的性質(zhì),分類討論點P坐標(biāo),利用全等的性質(zhì)得出P點的橫坐標(biāo)后,分別代入拋物線解析式,求出P點坐標(biāo);(3)過點作DH⊥軸于點,由::,可得::.設(shè),可得點坐標(biāo)為,可得.設(shè)點坐標(biāo)為.可證△∽△,利用相似性質(zhì)列出方程整理可得到①,將代入拋物線上,可得②,聯(lián)立①②解方程組,即可解答.【詳解】解:設(shè),,則是方程的兩根,∴.∵已知拋物線與軸交于點.∴在△中:,在△中:,∵△為直角三角形,由題意可知∠°,∴,即,∴,∴,解得:,又,∴.由可知:,令則,∴,∴.①以為邊,以點、、、Q為頂點的四邊形是四邊形時,設(shè)拋物線的對稱軸為,l與交于點,過點作⊥l,垂足為點,即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點的橫坐標(biāo)為,∴即點坐標(biāo)為.②當(dāng)以為邊,以點、、、Q為頂點的四邊形是四邊形時,設(shè)拋物線的對稱軸為,l與交于點,過點作⊥l,垂足為點,即∠°∠.∵四邊形為平行四邊形,∴∥,又l∥軸,∴∠∠=∠,∴△≌△,∴,∴點的橫坐標(biāo)為,∴即點坐標(biāo)為∴符合條件的點坐標(biāo)為和.過點作DH⊥軸于點,∵::,∴::.設(shè),則點坐標(biāo)為,∴.∵點在拋物線上,∴點坐標(biāo)為,由(1)知,∴,∵∥,∴△∽△,∴,∴,即①,又在拋物線上,∴②,將②代入①得:,解得(舍去),把代入②得:.【點睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)圖象性質(zhì)、一元二次方程根與系數(shù)關(guān)系、三角形相似以及平行四邊形的性質(zhì),解答關(guān)鍵是綜合運用數(shù)形結(jié)合分類討論思想.18、(1)CD與圓O的位置關(guān)系是相切,理由詳見解析;(2)AD=.【解析】

(1)連接OC,求出OC和AD平行,求出OC⊥CD,根據(jù)切線的判定得出即可;(2)連接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.【詳解】(1)CD與圓O的位置關(guān)系是相切,理由是:連接OC,∵OA=OC,∴∠OCA=∠CAB,∵∠CAB=∠CAD,∴∠OCA=∠CAD,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∵OC為半徑,∴CD與圓O的位置關(guān)系是相切;(2)連接BC,∵AB是⊙O的直徑,∴∠BCA=90°,∵圓O的半徑為3,∴AB=6,∵∠CAB=30°,∴∵∠BCA=∠CDA=90°,∠CAB=∠CAD,∴△CAB∽△DAC,∴∴∴【點睛】本題考查了切線的性質(zhì)和判定,圓周角定理,相似三角形的性質(zhì)和判定,解直角三角形等知識點,能綜合運用知識點進(jìn)行推理是解此題的關(guān)鍵.19、55米【解析】

由題意可知△EDC∽△EBA,△FHC∽△FBA,根據(jù)相似三角形的性質(zhì)可得,又DC=HG,可得,代入數(shù)據(jù)即可求得AC=106米,再由即可求得AB=55米.【詳解】∵△EDC∽△EBA,△FHC∽△FBA,,,,即,∴AC=106米,又,∴,∴AB=55米.答:舍利塔的高度AB為55米.【點睛】本題考查相似三角形的判定和性質(zhì)的應(yīng)用,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,利用相似三角形的性質(zhì)建立方程解決問題.20、(1):,,,,,,,,共9種;(2)小黃要在游戲中獲勝,小黃會選擇規(guī)則1,理由見解析【解析】

(1)利用列舉法,列舉所有的可能情況即可;

(2)分別求出至少有一張是“6”和摸出的紅心牌點數(shù)是黑桃牌點數(shù)的整數(shù)倍時的概率,進(jìn)行選擇即可.【詳解】(1)所有可能出現(xiàn)的結(jié)果如下:,,,,,,,,共9種;(1)摸牌的所有可能結(jié)果總數(shù)為9,至少有一張是6的有5種可能,∴在規(guī)劃1中,(小黃贏);紅心牌點數(shù)是黑桃牌點數(shù)的整倍數(shù)有4種可能,∴在規(guī)劃2中,(小黃贏).∵,∴小黃要在游戲中獲勝,小黃會選擇規(guī)則1.【點睛】考查列舉法以及概率的計算,明確概率的意義是解題的關(guān)鍵,概率等于所求情況數(shù)與總情況數(shù)的比.21、(1)85,85,80;(2)初中部決賽成績較好;(3)初中代表隊選手成績比較穩(wěn)定.【解析】

分析:(1)根據(jù)成績表,結(jié)合平均數(shù)、眾數(shù)、中位數(shù)的計算方法進(jìn)行解答;(2)比較初中部、高中部的平均數(shù)和中位數(shù),結(jié)合比較結(jié)果得出結(jié)論;(3)利用方差的計算公式,求出初中部的方差,結(jié)合方差的意義判斷哪個代表隊選手的成績較為穩(wěn)定.【詳解】詳解:(1)初中5名選手的平均分,眾數(shù)b=85,高中5名選手的成績是:70,75,80,100,100,故中位數(shù)c=80;(2)由表格可知初中部與高中部的平均分相同,初中部的中位數(shù)高,故初中部決賽成績較好;(3)=70,∵,∴初中代表隊選手成績比較穩(wěn)定.【點睛】本題是一道有關(guān)條形統(tǒng)計圖、平均數(shù)、眾數(shù)、中位數(shù)、方差的統(tǒng)計類題目,掌握平均數(shù)、眾數(shù)、中位數(shù)、方差的概念及計算方法是解題的關(guān)鍵.22、(1)證明見解析;(2)【解析】

(1)連接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根據(jù)切線的判定得出即可;(2)解直角三角形求出BD,求出BC,根據(jù)勾股定理求出AD,根據(jù)相似三角形的判定和性質(zhì)求出BE,根據(jù)相似三角形的性質(zhì)和判定求出BP即可.【詳解】解:(1)連接AD,∵AB是⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠BAD=∠BAC,∵∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠PBC=∠BAC,∴∠PBC+∠ABD=90°,∴∠ABP=90°,即AB⊥BP,∴PB是⊙O的切線;(2)∵∠PBC=∠BAD,∴sin∠PBC=sin∠BAD,∵sin∠PBC==,AB=10,∴BD=2,由勾股定理得:AD==4,∴BC=2BD=4,∵由三角形面積公式得:AD×BC=BE×AC,∴4×4=BE×10,∴BE=8,∴在Rt△ABE中,由勾股定理得:AE=6,∵∠BAE=∠BAP,∠AEB=∠ABP=90°,∴△ABE∽△APB,∴=,∴PB===.【點睛】本題考查了切線的判定、圓周角定理、勾股定理、解直角三角形、相似三角形的性質(zhì)和判定等知識點,能綜合運用性質(zhì)定理進(jìn)行推理是解此題的關(guān)鍵.23、(1)證明見

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論