平面幾何的相似變換_第1頁
平面幾何的相似變換_第2頁
平面幾何的相似變換_第3頁
平面幾何的相似變換_第4頁
平面幾何的相似變換_第5頁
已閱讀5頁,還剩22頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

平面幾何的相似變換相似變換基本概念相似三角形相似多邊形與相似比圖形縮放與位似變換相似變換在生活中的應(yīng)用總結(jié)回顧與拓展延伸contents目錄相似變換基本概念01在平面幾何中,保持圖形形狀不變而只改變大小或方向的變換稱為相似變換。相似變換定義相似變換具有保持角度不變、保持線段比例不變的性質(zhì)。相似性質(zhì)定義與性質(zhì)在相似變換中,任意兩點(diǎn)間距離的比值稱為相似比。在相似變換中,存在一個(gè)固定點(diǎn)使得任意點(diǎn)與該點(diǎn)連線在變換前后保持方向不變,該點(diǎn)稱為相似中心。相似比與相似中心相似中心相似比定義兩個(gè)多邊形如果對應(yīng)角相等,則它們是相似的。對應(yīng)角相等對應(yīng)邊成比例綜合判定兩個(gè)多邊形如果對應(yīng)邊之間的比值相等,則它們是相似的。兩個(gè)多邊形如果既滿足對應(yīng)角相等又滿足對應(yīng)邊成比例,則它們是相似的。030201相似多邊形判定相似三角形02兩個(gè)三角形如果它們的對應(yīng)角相等,那么這兩個(gè)三角形相似。定義相似三角形的對應(yīng)邊成比例,對應(yīng)角相等,面積比等于相似比的平方。性質(zhì)相似三角形定義及性質(zhì)平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應(yīng)成比例。預(yù)備定理如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應(yīng)相等,那么這兩個(gè)三角形相似。判定定理1如果兩個(gè)三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么這兩個(gè)三角形相似。判定定理2如果兩個(gè)三角形的三組對應(yīng)邊的比相等,那么這兩個(gè)三角形相似。判定定理3相似三角形判定方法直角三角形相似的判定除了上述一般三角形的相似判定方法外,直角三角形還有特殊的相似判定方法。如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似。等腰三角形相似的判定對于等腰三角形,如果兩個(gè)等腰三角形的頂角和底邊對應(yīng)成比例,那么這兩個(gè)等腰三角形相似。特殊情況下相似三角形相似多邊形與相似比03定義兩個(gè)多邊形,如果它們的對應(yīng)角相等、對應(yīng)邊成比例,則稱這兩個(gè)多邊形相似。性質(zhì)相似多邊形具有許多重要的性質(zhì),如對應(yīng)角相等、對應(yīng)邊成比例、面積比等于相似比的平方等。相似多邊形定義及性質(zhì)如果兩個(gè)多邊形的對應(yīng)角相等,則這兩個(gè)多邊形相似。對應(yīng)角判定法如果兩個(gè)多邊形的對應(yīng)邊長成比例,則這兩個(gè)多邊形相似。邊長判定法同時(shí)滿足對應(yīng)角相等和對應(yīng)邊成比例兩個(gè)條件的多邊形一定相似。綜合判定法相似多邊形判定方法相似比定義01相似多邊形對應(yīng)邊之間的比值稱為相似比。相似比計(jì)算02通過測量相似多邊形對應(yīng)邊的長度,可以計(jì)算出相似比。相似比應(yīng)用03在解決平面幾何問題時(shí),相似比是一個(gè)重要的工具,可以用于計(jì)算面積、長度等。例如,在建筑設(shè)計(jì)、地圖制作等領(lǐng)域中,常常需要利用相似比進(jìn)行縮放和計(jì)算。相似比計(jì)算與應(yīng)用圖形縮放與位似變換04圖形縮放原理及方法縮放原理圖形縮放是指圖形在平面上按照一定比例進(jìn)行放大或縮小,而不改變其形狀??s放過程中,圖形各點(diǎn)相對于固定點(diǎn)(通常是原點(diǎn))的距離按相同比例變化??s放方法圖形縮放可以通過相似變換實(shí)現(xiàn),即找到一個(gè)相似中心,使得原圖形與縮放后的圖形關(guān)于該點(diǎn)相似。相似比等于縮放因子,通過相似比可以計(jì)算出縮放后圖形的各點(diǎn)坐標(biāo)。位似變換定義及性質(zhì)位似變換是一種特殊的相似變換,其中相似中心是兩個(gè)相似圖形的一個(gè)公共點(diǎn),且相似比不等于1。位似變換可以看作是圖形繞相似中心旋轉(zhuǎn)一定角度后,再進(jìn)行縮放的過程。位似變換定義位似變換具有保形性、保角性和保比性。即變換前后圖形的形狀、大小和角度關(guān)系保持不變,且對應(yīng)邊長成比例。此外,位似變換還具有傳遞性,即多個(gè)位似變換可以合并為一個(gè)位似變換。位似變換性質(zhì)位似中心是兩個(gè)相似圖形的公共點(diǎn),可以通過已知的兩個(gè)對應(yīng)點(diǎn)坐標(biāo)求解。具體方法為,設(shè)兩個(gè)對應(yīng)點(diǎn)分別為A(x1,y1)和B(x2,y2),則位似中心C的坐標(biāo)為((x1+x2)/2,(y1+y2)/2)。位似中心求解位似比等于相似圖形的對應(yīng)邊長之比??梢酝ㄟ^已知的兩個(gè)對應(yīng)邊長求解位似比。設(shè)原圖形中一條邊長為a,縮放后圖形中對應(yīng)邊長為b,則位似比k=b/a。需要注意的是,位似比可以大于1(放大)或小于1(縮小)。位似比求解位似中心與位似比求解相似變換在生活中的應(yīng)用05建筑設(shè)計(jì)中的縮放在建筑設(shè)計(jì)中,相似變換常被用于按比例縮放建筑模型,以便適應(yīng)不同場地和規(guī)劃要求。復(fù)雜結(jié)構(gòu)的分析對于復(fù)雜的建筑結(jié)構(gòu),可以利用相似變換將其簡化為更易于分析的幾何形狀,從而進(jìn)行力學(xué)分析和設(shè)計(jì)優(yōu)化。建筑設(shè)計(jì)中應(yīng)用VS分形藝術(shù)是一種基于相似變換的創(chuàng)作方式,通過不斷迭代相似變換,生成具有自相似性的復(fù)雜圖案。視覺藝術(shù)中的透視在視覺藝術(shù)中,相似變換被用于實(shí)現(xiàn)透視效果,即在二維平面上表現(xiàn)三維空間的深度感。分形藝術(shù)藝術(shù)創(chuàng)作中應(yīng)用醫(yī)學(xué)影像處理醫(yī)學(xué)影像處理中,相似變換可用于圖像的縮放、旋轉(zhuǎn)等操作,以便醫(yī)生更好地觀察和分析病情。地圖制作在地圖制作中,相似變換用于將地球表面的復(fù)雜地形按比例縮小到平面上,形成地圖。計(jì)算機(jī)圖形學(xué)在計(jì)算機(jī)圖形學(xué)中,相似變換是實(shí)現(xiàn)圖形變換和動(dòng)畫效果的基礎(chǔ)工具之一。例如,通過相似變換可以實(shí)現(xiàn)圖形的縮放、旋轉(zhuǎn)和平移等效果。其他領(lǐng)域應(yīng)用舉例總結(jié)回顧與拓展延伸06

關(guān)鍵知識(shí)點(diǎn)總結(jié)回顧相似圖形的定義與性質(zhì)兩個(gè)圖形如果對應(yīng)角相等、對應(yīng)邊成比例,則稱這兩個(gè)圖形相似。相似圖形具有許多重要的性質(zhì),如相似比、相似中心、相似軸等。相似三角形的判定與性質(zhì)介紹了多種判定兩個(gè)三角形相似的方法,如AA、SAS、SSS等,以及相似三角形在邊長、面積、周長等方面的性質(zhì)。相似多邊形的性質(zhì)探討了相似多邊形在對應(yīng)邊、對應(yīng)角、面積、周長等方面的性質(zhì),以及如何利用這些性質(zhì)解決相關(guān)問題。對應(yīng)邊與對應(yīng)角的確定在判定兩個(gè)圖形相似時(shí),需要正確確定對應(yīng)邊和對應(yīng)角。學(xué)生容易在這方面出錯(cuò),需要仔細(xì)分析圖形結(jié)構(gòu)。復(fù)雜圖形的相似判定對于較復(fù)雜的圖形,學(xué)生可能難以直接判定其相似性。這時(shí)可以嘗試通過添加輔助線、分解圖形等方法來簡化問題。相似與全等的混淆全等圖形是特殊的相似圖形,但相似圖形并不一定全等。學(xué)生容易將兩者混淆,需要注意區(qū)分。易錯(cuò)難點(diǎn)剖析講解射影變換是一種更一般的幾何變換,包括平移、旋轉(zhuǎn)、縮放、傾斜等多種變換。射影變換保持圖形的某些性質(zhì)不變,如共線性、共點(diǎn)性等。射影變換仿射變換是一種特殊的射影變

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論