版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省杭州余杭區(qū)重點名校2023-2024學年中考押題數(shù)學預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.實數(shù)a,b,c在數(shù)軸上對應點的位置大致如圖所示,O為原點,則下列關(guān)系式正確的是()A.a(chǎn)﹣c<b﹣c B.|a﹣b|=a﹣b C.a(chǎn)c>bc D.﹣b<﹣c2.如圖,在等邊三角形ABC中,點P是BC邊上一動點(不與點B、C重合),連接AP,作射線PD,使∠APD=60°,PD交AC于點D,已知AB=a,設(shè)CD=y,BP=x,則y與x函數(shù)關(guān)系的大致圖象是()A. B. C. D.3.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的正半軸相交于A,B兩點,與y軸相交于點C,對稱軸為直線x=2,且OA=OC.有下列結(jié)論:①abc<0;②3b+4c<0;③c>﹣1;④關(guān)于x的方程ax2+bx+c=0有一個根為﹣,其中正確的結(jié)論個數(shù)是()A.1 B.2 C.3 D.44.(2011?雅安)點P關(guān)于x軸對稱點為P1(3,4),則點P的坐標為()A.(3,﹣4)B.(﹣3,﹣4)C.(﹣4,﹣3)D.(﹣3,4)5.一個多邊形內(nèi)角和是外角和的2倍,它是()A.五邊形 B.六邊形 C.七邊形 D.八邊形6.下列因式分解正確的是()A.x2+9=(x+3)2 B.a(chǎn)2+2a+4=(a+2)2C.a(chǎn)3-4a2=a2(a-4) D.1-4x2=(1+4x)(1-4x)7.若點A(2,),B(-3,),C(-1,)三點在拋物線的圖象上,則、、的大小關(guān)系是()A.B.C.D.8.世界上最小的鳥是生活在古巴的吸蜜蜂鳥,它的質(zhì)量約為0.056盎司.將0.056用科學記數(shù)法表示為()A.5.6×10﹣1 B.5.6×10﹣2 C.5.6×10﹣3 D.0.56×10﹣19.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣310.如圖,矩形ABOC的頂點A的坐標為(﹣4,5),D是OB的中點,E是OC上的一點,當△ADE的周長最小時,點E的坐標是()A.(0,) B.(0,) C.(0,2) D.(0,)二、填空題(共7小題,每小題3分,滿分21分)11.當﹣4≤x≤2時,函數(shù)y=﹣(x+3)2+2的取值范圍為_____________.12.若代數(shù)式在實數(shù)范圍內(nèi)有意義,則x的取值范圍是_______.13.一元二次方程x(x﹣2)=x﹣2的根是_____.14.如圖(1),將一個正六邊形各邊延長,構(gòu)成一個正六角星形AFBDCE,它的面積為1;取△ABC和△DEF各邊中點,連接成正六角星形A1F1B1D1C1E1,如圖(2)中陰影部分;取△A1B1C1和△D1E1F1各邊中點,連接成正六角星形A2F2B2D2C2E2,如圖(3)中陰影部分;如此下去…,則正六角星形A4F4B4D4C4E4的面積為_________________.15.有一張三角形紙片ABC,∠A=80°,點D是AC邊上一點,沿BD方向剪開三角形紙片后,發(fā)現(xiàn)所得兩張紙片均為等腰三角形,則∠C的度數(shù)可以是__________.16.如果一個矩形的面積是40,兩條對角線夾角的正切值是,那么它的一條對角線長是__________.17.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,點E,F(xiàn)分別在邊AB,AC上,將△AEF沿直線EF翻折,點A落在點P處,且點P在直線BC上.則線段CP長的取值范圍是____.三、解答題(共7小題,滿分69分)18.(10分)如圖,在△ABC中,點D是AB邊的中點,點E是CD邊的中點,過點C作CF∥AB交AE的延長線于點F,連接BF.求證:DB=CF;(2)如果AC=BC,試判斷四邊形BDCF的形狀,并證明你的結(jié)論.19.(5分)某超市開展早市促銷活動,為早到的顧客準備一份簡易早餐,餐品為四樣A:菜包、B:面包、C:雞蛋、D:油條.超市約定:隨機發(fā)放,早餐一人一份,一份兩樣,一樣一個.(1)按約定,“某顧客在該天早餐得到兩個雞蛋”是事件(填“隨機”、“必然”或“不可能”);(2)請用列表或畫樹狀圖的方法,求出某顧客該天早餐剛好得到菜包和油條的概率.20.(8分)“大美濕地,水韻鹽城”.某校數(shù)學興趣小組就“最想去的鹽城市旅游景點”隨機調(diào)查了本校部分學生,要求每位同學選擇且只能選擇一個最想去的景點,下面是根據(jù)調(diào)查結(jié)果進行數(shù)據(jù)整理后繪制出的不完整的統(tǒng)計圖:請根據(jù)圖中提供的信息,解答下列問題:(1)求被調(diào)查的學生總?cè)藬?shù);(2)補全條形統(tǒng)計圖,并求扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)若該校共有800名學生,請估計“最想去景點B“的學生人數(shù).21.(10分)如圖,已知拋物線(>0)與軸交于A,B兩點(A點在B點的左邊),與軸交于點C。(1)如圖1,若△ABC為直角三角形,求的值;(2)如圖1,在(1)的條件下,點P在拋物線上,點Q在拋物線的對稱軸上,若以BC為邊,以點B,C,P,Q為頂點的四邊形是平行四邊形,求P點的坐標;(3)如圖2,過點A作直線BC的平行線交拋物線于另一點D,交軸交于點E,若AE:ED=1:4,求的值.22.(10分)先化簡:,再從、2、3中選擇一個合適的數(shù)作為a的值代入求值.23.(12分)(14分)如圖,在平面直角坐標系中,拋物線y=mx2﹣8mx+4m+2(m>2)與y軸的交點為A,與x軸的交點分別為B(x1,0),C(x2,0),且x2﹣x1=4,直線AD∥x軸,在x軸上有一動點E(t,0)過點E作平行于y軸的直線l與拋物線、直線AD的交點分別為P、Q.(1)求拋物線的解析式;(2)當0<t≤8時,求△APC面積的最大值;(3)當t>2時,是否存在點P,使以A、P、Q為頂點的三角形與△AOB相似?若存在,求出此時t的值;若不存在,請說明理由.24.(14分)列方程或方程組解應用題:為響應市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他用騎公共自行車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程少45千米,他從家出發(fā)到上班地點,騎公共自行車方式所用的時間是自駕車方式所用的時間的4倍.小張用騎公共自行車方式上班平均每小時行駛多少千米?
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
根據(jù)數(shù)軸上點的位置確定出a,b,c的范圍,判斷即可.【詳解】由數(shù)軸上點的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故選A.【點睛】考查了實數(shù)與數(shù)軸,弄清數(shù)軸上點表示的數(shù)是解本題的關(guān)鍵.2、C【解析】
根據(jù)等邊三角形的性質(zhì)可得出∠B=∠C=60°,由等角的補角相等可得出∠BAP=∠CPD,進而即可證出△ABP∽△PCD,根據(jù)相似三角形的性質(zhì)即可得出y=-x2+x,對照四個選項即可得出.【詳解】∵△ABC為等邊三角形,
∴∠B=∠C=60°,BC=AB=a,PC=a-x.
∵∠APD=60°,∠B=60°,
∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,
∴∠BAP=∠CPD,
∴△ABP∽△PCD,∴,即,∴y=-x2+x.故選C.【點睛】考查了動點問題的函數(shù)圖象、相似三角形的判定與性質(zhì),利用相似三角形的性質(zhì)找出y=-x2+x是解題的關(guān)鍵.3、B【解析】
由二次函數(shù)圖象的開口方向、對稱軸及與y軸的交點可分別判斷出a、b、c的符號,從而可判斷①;由對稱軸=2可知a=,由圖象可知當x=1時,y>0,可判斷②;由OA=OC,且OA<1,可判斷③;把-代入方程整理可得ac2-bc+c=0,結(jié)合③可判斷④;從而可得出答案.【詳解】解:∵圖象開口向下,∴a<0,∵對稱軸為直線x=2,∴>0,∴b>0,∵與y軸的交點在x軸的下方,∴c<0,∴abc>0,故①錯誤.∵對稱軸為直線x=2,∴=2,∴a=,∵由圖象可知當x=1時,y>0,∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,∴3b+4c>0,故②錯誤.∵由圖象可知OA<1,且OA=OC,∴OC<1,即-c<1,∴c>-1,故③正確.∵假設(shè)方程的一個根為x=-,把x=-代入方程可得+c=0,整理可得ac-b+1=0,兩邊同時乘c可得ac2-bc+c=0,∴方程有一個根為x=-c,由③可知-c=OA,而當x=OA是方程的根,∴x=-c是方程的根,即假設(shè)成立,故④正確.綜上可知正確的結(jié)論有三個:③④.故選B.【點睛】本題主要考查二次函數(shù)的圖象和性質(zhì).熟練掌握圖象與系數(shù)的關(guān)系以及二次函數(shù)與方程、不等式的關(guān)系是解題的關(guān)鍵.特別是利用好題目中的OA=OC,是解題的關(guān)鍵.4、A【解析】∵關(guān)于x軸對稱的點,橫坐標相同,縱坐標互為相反數(shù),∴點P的坐標為(3,﹣4).故選A.5、B【解析】
多邊形的外角和是310°,則內(nèi)角和是2×310=720°.設(shè)這個多邊形是n邊形,內(nèi)角和是(n﹣2)?180°,這樣就得到一個關(guān)于n的方程,從而求出邊數(shù)n的值.【詳解】設(shè)這個多邊形是n邊形,根據(jù)題意得:(n﹣2)×180°=2×310°解得:n=1.故選B.【點睛】本題考查了多邊形的內(nèi)角與外角,熟記內(nèi)角和公式和外角和定理并列出方程是解題的關(guān)鍵.根據(jù)多邊形的內(nèi)角和定理,求邊數(shù)的問題就可以轉(zhuǎn)化為解方程的問題來解決.6、C【解析】
試題分析:A、B無法進行因式分解;C正確;D、原式=(1+2x)(1-2x)故選C,考點:因式分解【詳解】請在此輸入詳解!7、C【解析】首先求出二次函數(shù)的圖象的對稱軸x==2,且由a=1>0,可知其開口向上,然后由A(2,)中x=2,知最小,再由B(-3,),C(-1,)都在對稱軸的左側(cè),而在對稱軸的左側(cè),y隨x得增大而減小,所以.總結(jié)可得.故選C.點睛:此題主要考查了二次函數(shù)的圖像與性質(zhì),解答此題的關(guān)鍵是(1)找到二次函數(shù)的對稱軸;(2)掌握二次函數(shù)的圖象性質(zhì).8、B【解析】
0.056用科學記數(shù)法表示為:0.056=,故選B.9、A【解析】
方程變形后,配方得到結(jié)果,即可做出判斷.【詳解】方程,變形得:,配方得:,即故選A.【點睛】本題考查的知識點是了解一元二次方程﹣配方法,解題關(guān)鍵是熟練掌握完全平方公式.10、B【解析】解:作A關(guān)于y軸的對稱點A′,連接A′D交y軸于E,則此時,△ADE的周長最?。咚倪呅蜛BOC是矩形,∴AC∥OB,AC=OB.∵A的坐標為(﹣4,5),∴A′(4,5),B(﹣4,0).∵D是OB的中點,∴D(﹣2,0).設(shè)直線DA′的解析式為y=kx+b,∴,∴,∴直線DA′的解析式為.當x=0時,y=,∴E(0,).故選B.二、填空題(共7小題,每小題3分,滿分21分)11、-23≤y≤2【解析】
先根據(jù)a=-1判斷出拋物線的開口向下,故有最大值,可知對稱軸x=-3,再根據(jù)-4≤x≤2,可知當x=-3時y最大,把x=2時y最小代入即可得出結(jié)論.【詳解】解:∵a=-1,
∴拋物線的開口向下,故有最大值,
∵對稱軸x=-3,
∴當x=-3時y最大為2,
當x=2時y最小為-23,
∴函數(shù)y的取值范圍為-23≤y≤2,故答案為:-23≤y≤2.【點睛】本題考查二次函數(shù)的性質(zhì),掌握拋物線的開口方向、對稱軸以及增減性是解題關(guān)鍵.12、【解析】先根據(jù)二次根式有意義的條件列出關(guān)于x的不等式,求出x的取值范圍即可.解:∵在實數(shù)范圍內(nèi)有意義,∴x-1≥2,解得x≥1.故答案為x≥1.本題考查的是二次根式有意義的條件,即被開方數(shù)大于等于2.13、1或1【解析】
移項后分解因式,即可得出兩個一元一次方程,求出方程的解即可得答案.【詳解】x(x﹣1)=x﹣1,x(x﹣1)﹣(x﹣1)=0,(x﹣1)(x﹣1)=0,x﹣1=0,x﹣1=0,x1=1,x1=1,故答案為:1或1.【點睛】本題考查了解一元二次方程的應用,能把一元二次方程轉(zhuǎn)化成一元一次方程是解此題的關(guān)鍵.14、【解析】∵正六角星形A2F2B2D2C2E2邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A2F2B2D2C2E2面積是正六角星形A1F1B1D1C1E面積的.同理∵正六角星形A4F4B4D4C4E4邊長是正六角星形A1F1B1D1C1E邊長的,∴正六角星形A4F4B4D4C4E4面積是正六角星形A1F1B1D1C1E面積的.15、25°或40°或10°【解析】【分析】分AB=AD或AB=BD或AD=BD三種情況根據(jù)等腰三角形的性質(zhì)求出∠ADB,再求出∠BDC,然后根據(jù)等腰三角形兩底角相等列式計算即可得解.【詳解】由題意知△ABD與△DBC均為等腰三角形,對于△ABD可能有①AB=BD,此時∠ADB=∠A=80°,∴∠BDC=180°-∠ADB=180°-80°=100°,∠C=(180°-100°)=40°,②AB=AD,此時∠ADB=(180°-∠A)=(180°-80°)=50°,∴∠BDC=180°-∠ADB=180°-50°=130°,∠C=(180°-130°)=25°,③AD=BD,此時,∠ADB=180°-2×80°=20°,∴∠BDC=180°-∠ADB=180°-20°=160°,∠C=(180°-160°)=10°,綜上所述,∠C度數(shù)可以為25°或40°或10°故答案為25°或40°或10°【點睛】本題考查了等腰三角形的性質(zhì),難點在于分情況討論.16、1.【解析】
如圖,作BH⊥AC于H.由四邊形ABCD是矩形,推出OA=OC=OD=OB,設(shè)OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由題意:21a×4a=40,求出a即可解決問題.【詳解】如圖,作BH⊥AC于H.∵四邊形ABCD是矩形,∴OA=OC=OD=OB,設(shè)OA=OC=OD=OB=5a.∵tan∠BOH,∴BH=4a,OH=3a,由題意:21a×4a=40,∴a=1,∴AC=1.故答案為:1.【點睛】本題考查了矩形的性質(zhì)、解直角三角形等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造直角三角形解決問題,學會利用參數(shù)構(gòu)建方程解決問題.17、【解析】
根據(jù)點E、F在邊AB、AC上,可知當點E與點B重合時,CP有最小值,當點F與點C重合時CP有最大值,根據(jù)分析畫出符合條件的圖形即可得.【詳解】如圖,當點E與點B重合時,CP的值最小,此時BP=AB=3,所以PC=BC-BP=4-3=1,如圖,當點F與點C重合時,CP的值最大,此時CP=AC,Rt△ABC中,∠ABC=90°,AB=3,BC=4,根據(jù)勾股定理可得AC=5,所以CP的最大值為5,所以線段CP長的取值范圍是1≤CP≤5,故答案為1≤CP≤5.【點睛】本題考查了折疊問題,能根據(jù)點E、F分別在線段AB、AC上,點P在直線BC上確定出點E、F位于什么位置時PC有最大(小)值是解題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)證明見解析;(2)四邊形BDCF是矩形,理由見解析.【解析】(1)證明:∵CF∥AB,∴∠DAE=∠CFE.又∵DE=CE,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF.∵AD=DB,∴DB=CF.(2)四邊形BDCF是矩形.證明:由(1)知DB=CF,又DB∥CF,∴四邊形BDCF為平行四邊形.∵AC=BC,AD=DB,∴CD⊥AB.∴四邊形BDCF是矩形.19、(1)不可能;(2).【解析】
(1)利用確定事件和隨機事件的定義進行判斷;(2)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出其中某顧客該天早餐剛好得到菜包和油條的結(jié)果數(shù),然后根據(jù)概率公式計算.【詳解】(1)某顧客在該天早餐得到兩個雞蛋”是不可能事件;故答案為不可能;(2)畫樹狀圖:共有12種等可能的結(jié)果數(shù),其中某顧客該天早餐剛好得到菜包和油條的結(jié)果數(shù)為2,所以某顧客該天早餐剛好得到菜包和油條的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率.20、(1)40;(2)72;(3)1.【解析】
(1)用最想去A景點的人數(shù)除以它所占的百分比即可得到被調(diào)查的學生總?cè)藬?shù);(2)先計算出最想去D景點的人數(shù),再補全條形統(tǒng)計圖,然后用360°乘以最想去D景點的人數(shù)所占的百分比即可得到扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù);(3)用800乘以樣本中最想去A景點的人數(shù)所占的百分比即可.【詳解】(1)被調(diào)查的學生總?cè)藬?shù)為8÷20%=40(人);(2)最想去D景點的人數(shù)為40﹣8﹣14﹣4﹣6=8(人),補全條形統(tǒng)計圖為:扇形統(tǒng)計圖中表示“最想去景點D”的扇形圓心角的度數(shù)為×360°=72°;(3)800×=1,所以估計“最想去景點B“的學生人數(shù)為1人.21、(1);(2)點P的坐標為;(3).【解析】
(1)利用三角形相似可求AO?OB,再由一元二次方程根與系數(shù)關(guān)系求AO?OB構(gòu)造方程求n;(2)求出B、C坐標,設(shè)出點Q坐標,利用平行四邊形對角線互相平分性質(zhì),分類討論點P坐標,分別代入拋物線解析式,求出Q點坐標;(3)設(shè)出點D坐標(a,b),利用相似表示OA,再由一元二次方程根與系數(shù)關(guān)系表示OB,得到點B坐標,進而找到b與a關(guān)系,代入拋物線求a、n即可.【詳解】(1)若△ABC為直角三角形∴△AOC∽△COB∴OC2=AO?OB當y=0時,0=x2-x-n由一元二次方程根與系數(shù)關(guān)系-OA?OB=OC2n2==?2n解得n=0(舍去)或n=2∴拋物線解析式為y=;(2)由(1)當=0時解得x1=-1,x2=4∴OA=1,OB=4∴B(4,0),C(0,-2)∵拋物線對稱軸為直線x=-=?∴設(shè)點Q坐標為(,b)由平行四邊形性質(zhì)可知當BQ、CP為平行四邊形對角線時,點P坐標為(,b+2)代入y=x2-x-2解得b=,則P點坐標為(,)當CQ、PB為為平行四邊形對角線時,點P坐標為(-,b-2)代入y=x2-x-2解得b=,則P坐標為(-,)綜上點P坐標為(,),(-,);(3)設(shè)點D坐標為(a,b)∵AE:ED=1:4則OE=b,OA=a∵AD∥AB∴△AEO∽△BCO∵OC=n∴∴OB=由一元二次方程根與系數(shù)關(guān)系得,∴b=a2將點A(-a,0),D(a,a2)代入y=x2-x-n解得a=6或a=0(舍去)則n=.【點睛】本題是代數(shù)幾何綜合題,考查了二次函數(shù)圖象性質(zhì)、一元二次方程根與系數(shù)關(guān)系、三角形相似以及平行四邊形的性質(zhì),解答關(guān)鍵是綜合運用數(shù)形結(jié)合分類討論思想.22、-1.【解析】
根據(jù)分式的加法和除法可以化簡題目中的式子,然后在、2、3中選擇一個使得原分式有意義的值代入化簡后的式子即可解答本題.【詳解】,當
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 房屋買賣合同效力認定解析與探討
- 標準合同英文版采購范本
- 宜人貸借款合同范本解讀
- 采購合同范本固定位置
- 設(shè)備維修保養(yǎng)合同范本
- 軍事訂購合同樣本
- 標準翻譯服務合同協(xié)議書格式
- 工程招標文件港口工程
- 泰安房屋買賣合同風險提示
- 租賃合同權(quán)益轉(zhuǎn)讓聲明范例
- GB/T 19964-2024光伏發(fā)電站接入電力系統(tǒng)技術(shù)規(guī)定
- 籃球比賽記錄表
- 2022-2023學年北京市朝陽區(qū)初一(上)期末考試英語試卷(含詳細答案解析)
- 《初中班會課件:如何正確對待網(wǎng)絡暴力》
- 保險金信托培訓課件
- 芒果干行業(yè)標準
- 常用家庭園養(yǎng)植物課件
- 腫瘤科化療患者護理PDCA循環(huán)案例
- 國家學生體質(zhì)健康標準評分表
- 云南大理州諾鄧古村旅游
- 燒傷科普講座課件
評論
0/150
提交評論