




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆浙江省寧波北侖區(qū)市級名校中考數學考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列計算正確的是()A.a2?a3=a6 B.(a2)3=a6 C.a6﹣a2=a4 D.a5+a5=a102.如圖,釣魚竿AC長6m,露在水面上的魚線BC長m,某釣者想看看魚釣上的情況,把魚竿AC轉動到AC'的位置,此時露在水面上的魚線B′C′為m,則魚竿轉過的角度是()A.60° B.45° C.15° D.90°3.一次函數滿足,且隨的增大而減小,則此函數的圖象不經過()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如圖,函數y1=x3與y2=在同一坐標系中的圖象如圖所示,則當y1<y2時()A.﹣1<x<l B.0<x<1或x<﹣1C.﹣1<x<I且x≠0 D.﹣1<x<0或x>15.如圖,△ABC中AB兩個頂點在x軸的上方,點C的坐標是(﹣1,0),以點C為位似中心,在x軸的下方作△ABC的位似圖形△A′B′C′,且△A′B′C′與△ABC的位似比為2:1.設點B的對應點B′的橫坐標是a,則點B的橫坐標是()A. B. C. D.6.在下列交通標志中,是中心對稱圖形的是()A. B.C. D.7.下列命題中,真命題是()A.對角線互相垂直且相等的四邊形是正方形B.等腰梯形既是軸對稱圖形又是中心對稱圖形C.圓的切線垂直于經過切點的半徑D.垂直于同一直線的兩條直線互相垂直8.已知⊙O及⊙O外一點P,過點P作出⊙O的一條切線(只有圓規(guī)和三角板這兩種工具),以下是甲、乙兩同學的作業(yè):甲:①連接OP,作OP的垂直平分線l,交OP于點A;②以點A為圓心、OA為半徑畫弧、交⊙O于點M;③作直線PM,則直線PM即為所求(如圖1).乙:①讓直角三角板的一條直角邊始終經過點P;②調整直角三角板的位置,讓它的另一條直角邊過圓心O,直角頂點落在⊙O上,記這時直角頂點的位置為點M;③作直線PM,則直線PM即為所求(如圖2).對于兩人的作業(yè),下列說法正確的是()A.甲乙都對 B.甲乙都不對C.甲對,乙不對 D.甲不對,已對9.若一個正比例函數的圖象經過A(3,﹣6),B(m,﹣4)兩點,則m的值為()A.2 B.8 C.﹣2 D.﹣810.五個新籃球的質量(單位:克)分別是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正數表示超過標準質量的克數,負數表示不足標準質量的克數.僅從輕重的角度看,最接近標準的籃球的質量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+511.如圖,已知直線l1:y=﹣2x+4與直線l2:y=kx+b(k≠0)在第一象限交于點M.若直線l2與x軸的交點為A(﹣2,0),則k的取值范圍是()A.﹣2<k<2 B.﹣2<k<0 C.0<k<4 D.0<k<212.從1、2、3、4、5、6這六個數中隨機取出一個數,取出的數是3的倍數的概率是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,點A,B是反比例函數y=(x>0)圖象上的兩點,過點A,B分別作AC⊥x軸于點C,BD⊥x軸于點D,連接OA,BC,已知點C(2,0),BD=2,S△BCD=3,則S△AOC=__.14.月球的半徑約為1738000米,1738000這個數用科學記數法表示為___________.15.如圖,A、B、C是⊙O上的三點,若∠C=30°,OA=3,則弧AB的長為______.(結果保留π)16.在?ABCD中,AB=3,BC=4,當?ABCD的面積最大時,下列結論:①AC=5;②∠A+∠C=180o;③AC⊥BD;④AC=BD.其中正確的有_________.(填序號)17.圓錐的底面半徑為4cm,高為5cm,則它的表面積為______cm1.18.一個多邊形,除了一個內角外,其余各角的和為2750°,則這一內角為_____度.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)2019年我市在“展銷會”期間,對周邊道路進行限速行駛.道路AB段為監(jiān)測區(qū),C、D為監(jiān)測點(如圖).已知C、D、B在同一條直線上,且,CD=400米,,.求道路AB段的長;(精確到1米)如果AB段限速為60千米/時,一輛車通過AB段的時間為90秒,請判斷該車是否超速,并說明理由.(參考數據:,,)20.(6分)一天晚上,李明和張龍利用燈光下的影子長來測量一路燈D的高度.如圖,當李明走到點A處時,張龍測得李明直立身高AM與其影子長AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點B處時,李明直立時身高BN的影子恰好是線段AB,并測得AB=1.25m,已知李明直立時的身高為1.75m,求路燈的高CD的長.(結果精確到0.1m)21.(6分)如圖,在大樓AB正前方有一斜坡CD,坡角∠DCE=30°,樓高AB=60米,在斜坡下的點C處測得樓頂B的仰角為60°,在斜坡上的D處測得樓頂B的仰角為45°,其中點A,C,E在同一直線上.求坡底C點到大樓距離AC的值;求斜坡CD的長度.22.(8分)如圖,矩形ABCD中,點E為BC上一點,DF⊥AE于點F,求證:∠AEB=∠CDF.23.(8分)如圖,小明今年國慶節(jié)到青城山游玩,乘坐纜車,當登山纜車的吊箱經過點A到達點B時,它經過了200m,纜車行駛的路線與水平夾角∠α=16°,當纜車繼續(xù)由點B到達點D時,它又走過了200m,纜車由點B到點D的行駛路線與水平面夾角∠β=42°,求纜車從點A到點D垂直上升的距離.(結果保留整數)(參考數據:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)24.(10分)新定義:如圖1(圖2,圖3),在△ABC中,把AB邊繞點A順時針旋轉,把AC邊繞點A逆時針旋轉,得到△AB′C′,若∠BAC+∠B′AC′=180°,我們稱△ABC是△AB′C′的“旋補三角形”,△AB'C′的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”(特例感知)(1)①若△ABC是等邊三角形(如圖2),BC=1,則AD=;②若∠BAC=90°(如圖3),BC=6,AD=;(猜想論證)(2)在圖1中,當△ABC是任意三角形時,猜想AD與BC的數量關系,并證明你的猜想;(拓展應用)(3)如圖1.點A,B,C,D都在半徑為5的圓上,且AB與CD不平行,AD=6,點P是四邊形ABCD內一點,且△APD是△BPC的“旋補三角形”,點P是“旋補中心”,請確定點P的位置(要求尺規(guī)作圖,不寫作法,保留作圖痕跡),并求BC的長.25.(10分)如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,∠DOE=90°.寫出圖中小于平角的角.求出∠BOD的度數.小明發(fā)現OE平分∠BOC,請你通過計算說明道理.26.(12分)某手機店銷售部型和部型手機的利潤為元,銷售部型和部型手機的利潤為元.(1)求每部型手機和型手機的銷售利潤;(2)該手機店計劃一次購進,兩種型號的手機共部,其中型手機的進貨量不超過型手機的倍,設購進型手機部,這部手機的銷售總利潤為元.①求關于的函數關系式;②該手機店購進型、型手機各多少部,才能使銷售總利潤最大?(3)在(2)的條件下,該手機店實際進貨時,廠家對型手機出廠價下調元,且限定手機店最多購進型手機部,若手機店保持同種手機的售價不變,設計出使這部手機銷售總利潤最大的進貨方案.27.(12分)已知拋物線y=x2﹣6x+9與直線y=x+3交于A,B兩點(點A在點B的左側),拋物線的頂點為C,直線y=x+3與x軸交于點D.(1)求拋物線的頂點C的坐標及A,B兩點的坐標;(2)將拋物線y=x2﹣6x+9向上平移1個單位長度,再向左平移t(t>0)個單位長度得到新拋物線,若新拋物線的頂點E在△DAC內,求t的取值范圍;(3)點P(m,n)(﹣3<m<1)是拋物線y=x2﹣6x+9上一點,當△PAB的面積是△ABC面積的2倍時,求m,n的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據同底數冪乘法、冪的乘方的運算性質計算后利用排除法求解.【詳解】A、a2?a3=a5,錯誤;B、(a2)3=a6,正確;C、不是同類項,不能合并,錯誤;D、a5+a5=2a5,錯誤;故選B.【點睛】本題綜合考查了整式運算的多個考點,包括同底數冪的乘法、冪的乘方、合并同類項,需熟練掌握且區(qū)分清楚,才不容易出錯.2、C【解析】試題解析:∵sin∠CAB=∴∠CAB=45°.∵,∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,魚竿轉過的角度是15°.故選C.考點:解直角三角形的應用.3、A【解析】試題分析:根據y隨x的增大而減小得:k<0,又kb>0,則b<0,故此函數的圖象經過第二、三、四象限,即不經過第一象限.故選A.考點:一次函數圖象與系數的關系.4、B【解析】
根據圖象知,兩個函數的圖象的交點是(1,1),(-1,-1).由圖象可以直接寫出當y1<y2時所對應的x的取值范圍.【詳解】根據圖象知,一次函數y1=x3與反比例函數y2=的交點是(1,1),(-1,?1),∴當y1<y2時,,0<x<1或x<-1;故答案選:B.【點睛】本題考查了反比例函數與冪函數,解題的關鍵是熟練的掌握反比例函數與冪函數的圖象根據圖象找出答案.5、D【解析】
設點B的橫坐標為x,然后表示出BC、B′C的橫坐標的距離,再根據位似變換的概念列式計算.【詳解】設點B的橫坐標為x,則B、C間的橫坐標的長度為﹣1﹣x,B′、C間的橫坐標的長度為a+1,∵△ABC放大到原來的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣(a+3),故選:D.【點睛】本題考查了位似變換,坐標與圖形的性質,根據位似變換的定義,利用兩點間的橫坐標的距離等于對應邊的比列出方程是解題的關鍵.6、C【解析】
解:A圖形不是中心對稱圖形;B不是中心對稱圖形;C是中心對稱圖形,也是軸對稱圖形;D是軸對稱圖形;不是中心對稱圖形故選C7、C【解析】分析是否為真命題,需要分別分析各題設是否能推出結論,從而利用排除法得出答案.解答:解:A、錯誤,例如對角線互相垂直的等腰梯形;B、錯誤,等腰梯形是軸對稱圖形不是中心對稱圖形;C、正確,符合切線的性質;D、錯誤,垂直于同一直線的兩條直線平行.故選C.8、A【解析】
(1)連接OM,OA,連接OP,作OP的垂直平分線l可得OA=MA=AP,進而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切線,(1)直角三角板的一條直角邊始終經過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切線.【詳解】證明:(1)如圖1,連接OM,OA.∵連接OP,作OP的垂直平分線l,交OP于點A,∴OA=AP.∵以點A為圓心、OA為半徑畫弧、交⊙O于點M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切線;(1)如圖1.∵直角三角板的一條直角邊始終經過點P,它的另一條直角邊過圓心O,直角頂點落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切線.故兩位同學的作法都正確.故選A.【點睛】本題考查了復雜的作圖,重點是運用切線的判定來說明作法的正確性.9、A【解析】試題分析:設正比例函數解析式為:y=kx,將點A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函數解析式為:y=﹣2x,將B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故選A.考點:一次函數圖象上點的坐標特征.10、B【解析】
求它們的絕對值,比較大小,絕對值小的最接近標準的籃球的質量.【詳解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近標準的籃球的質量是-0.6,故選B.【點睛】本題考查了正數和負數,掌握正數和負數的定義以及意義是解題的關鍵.11、D【解析】
解:∵直線l1與x軸的交點為A(﹣1,0),∴﹣1k+b=0,∴,解得:.∵直線l1:y=﹣1x+4與直線l1:y=kx+b(k≠0)的交點在第一象限,∴,解得0<k<1.故選D.【點睛】兩條直線相交或平行問題;一次函數圖象上點的坐標特征.12、B【解析】考點:概率公式.專題:計算題.分析:根據概率的求法,找準兩點:①全部情況的總數;②符合條件的情況數目;二者的比值就是其發(fā)生的概率.解答:解:從1、2、3、4、5、6這六個數中隨機取出一個數,共有6種情況,取出的數是3的倍數的可能有3和6兩種,故概率為2/6="1/"3.故選B.點評:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)="m"/n.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】
由三角形BCD為直角三角形,根據已知面積與BD的長求出CD的長,由OC+CD求出OD的長,確定出B的坐標,代入反比例解析式求出k的值,利用反比例函數k的幾何意義求出三角形AOC面積即可.【詳解】∵BD⊥CD,BD=2,∴S△BCD=BD?CD=2,即CD=2.∵C(2,0),即OC=2,∴OD=OC+CD=2+2=1,∴B(1,2),代入反比例解析式得:k=10,即y=,則S△AOC=1.故答案為1.【點睛】本題考查了反比例函數系數k的幾何意義,以及反比例函數圖象上點的坐標特征,熟練掌握反比例函數k的幾何意義是解答本題的關鍵.14、1.738×1【解析】
解:將1738000用科學記數法表示為1.738×1.故答案為1.738×1.【點睛】本題考查科學記數法—表示較大的數,掌握科學計數法的計數形式,難度不大.15、π【解析】∵∠C=30°,∴∠AOB=60°,∴.即的長為.16、①②④【解析】
由當?ABCD的面積最大時,AB⊥BC,可判定?ABCD是矩形,由矩形的性質,可得②④正確,③錯誤,又由勾股定理求得AC=1.【詳解】∵當?ABCD的面積最大時,AB⊥BC,∴?ABCD是矩形,
∴∠A=∠C=90°,AC=BD,故③錯誤,④正確;∴∠A+∠C=180°;故②正確;∴AC=AB故答案為:①②④.【點睛】此題考查了平行四邊形的性質、矩形的判定與性質以及勾股定理.注意證得?ABCD是矩形是解此題的關鍵.17、【解析】
利用勾股定理求得圓錐的母線長,則圓錐表面積=底面積+側面積=π×底面半徑的平方+底面周長×母線長÷1.【詳解】底面半徑為4cm,則底面周長=8πcm,底面面積=16πcm1;由勾股定理得,母線長=,圓錐的側面面積,∴它的表面積=(16π+4)cm1=cm1,故答案為:.【點睛】本題考查了有關扇形和圓錐的相關計算.解題思路:解決此類問題時要緊緊抓住兩者之間的兩個對應關系:(1)圓錐的母線長等于側面展開圖的扇形半徑;(1)圓錐的底面周長等于側面展開圖的扇形弧長.正確對這兩個關系的記憶是解題的關鍵.18、130【解析】分析:n邊形的內角和是因而內角和一定是180度的倍數.而多邊形的內角一定大于0,并且小于180度,因而內角和除去一個內角的值,這個值除以180度,所得數值比邊數要小,小的值小于1.詳解:設多邊形的邊數為x,由題意有解得因而多邊形的邊數是18,則這一內角為故答案為點睛:考查多邊形的內角和公式,熟記多邊形的內角和公式是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)AB≈1395米;(2)沒有超速.【解析】
(1)先根據tan∠ADC=2求出AC,再根據∠ABC=35°結合正弦值求解即可(2)根據速度的計算公式求解即可.【詳解】解:(1)∵AC⊥BC,∴∠C=90°,∵tan∠ADC==2,∵CD=400,∴AC=800,在Rt△ABC中,∵∠ABC=35°,AC=800,∴AB==≈1395米;(2)∵AB=1395,∴該車的速度==55.8km/h<60千米/時,故沒有超速.【點睛】此題重點考察學生對三角函數值的實際應用,熟練掌握三角函數值的實際應用是解題的關鍵.20、路燈的高CD的長約為6.1m.【解析】設路燈的高CD為xm,∵CD⊥EC,BN⊥EC,∴CD∥BN,∴△ABN∽△ACD,∴,同理,△EAM∽△ECD,又∵EA=MA,∵EC=DC=xm,∴,解得x=6.125≈6.1.∴路燈的高CD約為6.1m.21、(1)坡底C點到大樓距離AC的值為20米;(2)斜坡CD的長度為80-120米.【解析】分析:(1)在直角三角形ABC中,利用銳角三角函數定義求出AC的長即可;(2)過點D作DF⊥AB于點F,則四邊形AEDF為矩形,得AF=DE,DF=AE.利用DF=AE=AC+CE求解即可.詳解:(1)在直角△ABC中,∠BAC=90°,∠BCA=60°,AB=60米,則AC=(米)答:坡底C點到大樓距離AC的值是20米.(2)過點D作DF⊥AB于點F,則四邊形AEDF為矩形,∴AF=DE,DF=AE.設CD=x米,在Rt△CDE中,DE=x米,CE=x米在Rt△BDF中,∠BDF=45°,∴BF=DF=AB-AF=60-x(米)∵DF=AE=AC+CE,∴20+x=60-x解得:x=80-120(米)故斜坡CD的長度為(80-120)米.點睛:此題考查了解直角三角形-仰角俯角問題,坡度坡角問題,熟練掌握勾股定理是解本題的關鍵.22、見解析.【解析】
利用矩形的性質結合平行線的性質得出∠CDF+∠ADF=90°,進而得出∠CDF=∠DAF,由AD∥BC,得出答案.【詳解】∵四邊形ABCD是矩形,∴∠ADC=90°,AD∥BC,∴∠CDF+∠ADF=90°,∵DF⊥AE于點F,∴∠DAF+∠ADF=90°,∴∠CDF=∠DAF.∵AD∥BC,∴∠DAF=∠AEB,∴∠AEB=∠CDF.【點睛】此題主要考查了矩形的性質以及平行線的性質,正確得出∠CDF=∠DAF是解題關鍵.23、纜車垂直上升了186m.【解析】
在Rt中,米,在Rt中,即可求出纜車從點A到點D垂直上升的距離.【詳解】解:在Rt中,斜邊AB=200米,∠α=16°,(m),在Rt中,斜邊BD=200米,∠β=42°,因此纜車垂直上升的距離應該是BC+DF=186(米).答:纜車垂直上升了186米.【點睛】本題考查了解直角三角形的應用-坡度坡角問題,銳角三角函數的定義,結合圖形理解題意是解決問題的關鍵.24、(1)①2;②3;(2)AD=12【解析】
(1)①根據等邊三角形的性質可得出AB=AC=1、∠BAC=60,結合“旋補三角形”的定義可得出AB′=AC′=1、∠B′AC′=120°,利用等腰三角形的三線合一可得出∠ADC′=90°,通過解直角三角形可求出AD的長度;
②由“旋補三角形”的定義可得出∠B′AC′=90°=∠BAC、AB=AB′、AC=AC′,進而可得出△ABC≌△AB′C′(SAS),根據全等三角形的性質可得出B′C′=BC=6,再利用直角三角形斜邊上的中線等于斜邊的一半即可求出AD的長度;(2)AD=12BC,過點B′作B′E∥AC′,且B′E=AC′,連接C′E、DE,則四邊形ACC′B′為平行四邊形,根據平行四邊形的性質結合“旋補三角形”的定義可得出∠BAC=∠AB′E、BA=AB′、CA=EB′,進而可證出△BAC≌△AB′E(SAS),根據全等三角形的性質可得出BC=AE,由平行四邊形的對角線互相平分即可證出AD=1【詳解】(1)①∵△ABC是等邊三角形,BC=1,∴AB=AC=1,∠BAC=60,∴AB′=AC′=1,∠B′AC′=120°.∵AD為等腰△AB′C′的中線,∴AD⊥B′C′,∠C′=30°,∴∠ADC′=90°.在Rt△ADC′中,∠ADC′=90°,AC′=1,∠C′=30°,∴AD=12②∵∠BAC=90°,∴∠B′AC′=90°.在△ABC和△AB′C′中,AB=AB∴△ABC≌△AB′C′(SAS),∴B′C′=BC=6,∴AD=12故答案為:①2;②3.(2)AD=12證明:在圖1中,過點B′作B′E∥AC′,且B′E=AC′,連接C′E、DE,則四邊形ACC′B′為平行四邊形.∵∠BAC+∠B′AC′=140°,∠B′AC′+∠AB′E=140°,∴∠BAC=∠AB′E.在△BAC和△AB′E中,BA=AB∴△BAC≌△AB′E(SAS),∴BC=AE.∵AD=12∴AD=12(3)在圖1中,作AB、CD的垂直平分線,交于點P,則點P為四邊形ABCD的外接圓圓心,過點P作PF⊥BC于點F.∵PB=PC,PF⊥BC,∴PF為△PBC的中位線,∴PF=12在Rt△BPF中,∠BFP=90°,PB=5,PF=3,∴BF=PB∴BC=2BF=4.【點睛】本題考查了等邊三角形的性質、等腰三角形的判定與性質、平行四邊形的性質、解直角三角形、勾股定理以及全等三角形的判定與性質,解題的關鍵是:(1)①利用解含30°角的直角三角形求出AD=12AC′;②牢記直角三角形斜邊上的中線等于斜邊的一半;(2)構造平行四邊形,利用平行四邊形對角線互相平分找出AD=12AE=25、(1)答案見解析(2)155°(3)答案見解析【解析】
(1)根據角的定義即可解決;(2)根據∠BOD=∠DOC+∠BOC,首先利用角平分線的定義和鄰補角的定義求得∠DOC和∠BOC即可;(3)根據∠COE=∠DOE﹣∠DOC和∠BOE=∠BOD﹣∠DOE分別求得∠COE與∠BOE的度數即可說明.【詳解】(1)圖中小于平角的角∠AOD,∠AOC,∠AOE,∠DOC,∠DOE,∠DOB,∠COE,∠COB,∠EOB.(2)因為∠AOC=50°,OD平分∠AOC,所以∠DOC=25°,∠BOC=180°﹣∠AOC=180°﹣50°=130°,所以∠BOD=∠DOC+∠BOC=155°.(3)因為∠DOE=90°,∠DOC=25°,所以∠COE=∠DOE﹣∠DOC=90°﹣25°=65°.又因為∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,所以∠COE=∠BOE,所以OE平分∠BOC.【點睛】本題考查了角的度數的計算,正確理解角平分線的定義,以及鄰補角的定義是解題的關鍵.26、(1)每部型手機的銷售利潤為元,每部型手機的銷售利潤為元;(2)①;②手機店購進部型手機和部型手機的銷售利潤最大;(3)手機店購進部型手機和部型手機的銷售利潤最大.【解析】
(1)設每部型手機的銷售利潤為元,每部型手機的銷售利潤為元,根據題意列出方程組求解即可;(2)①根據總利潤=銷售A型手機的利潤+銷售B型手機的利潤即可列出函數關系式;②根據題意,得,解得,根據一次函數的增減性可得當當時,取最大值;(3)根據題意,,,然后分①當時,②當時,③當時,三種情況進行討論求解即可.【詳解】解:(1)設每部型手機的銷售利潤為元,每部型手機的銷售利潤為元.根據題意,得,解得答:每部型手機的銷售利潤為元,每部型手機的銷售利潤為元.(2)①根據題意,得,即.②根據題意,得,解得.,,隨的增大而減小.為正整數,當時,取最大值,.即手機店購進部型手機和部型手機的銷售利潤最大.(3)根據題意,得.即,.①當時,隨的增大而減小,當時,取最大值,即手機店購進部型手機和部型手機的銷售利潤最大;②當時,,,即手機店購進型手機的數量為滿足的整數時,獲得利潤相同;③當時,,隨的增大而增大,當時,取得最大值,即手機店購進部型手機和部型手機的銷售利潤最大.【點睛】本題主要考查一次函數的應用,二元一次方程組的應用,解此題的關鍵在于熟練掌握一次函數的增減性.27、(1)C(2,0),A(1,4),B(1,9);(2)<t<5;(2)m=,∴n=.【解析】分析:(Ⅰ)將拋物線的一般式配方為頂點式即可求出點C的坐標,聯立拋物線與直線的解析式即可求出A、B的坐標.(Ⅱ)由題意可知:新拋物線的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 腦出血焦慮的護理措施
- 短視頻平臺融資居間合同
- 礦石運輸專項保險承包合同
- 2025年度安全設備租賃人工費用定期檢查協議
- 2024浙江省青田縣船寮高級中學工作人員招聘考試及答案
- 2024瀘州市納溪區(qū)江南職業(yè)中學工作人員招聘考試及答案
- 藥品日常監(jiān)管培訓
- 生豬購銷合同
- 度建筑工地施工安全責任合同
- 肺葉切除術后的護理措施
- 安徽省合肥市2025屆高三下學期3月二模試題 語文 含解析
- 命案防控講座課件內容
- 2024年廣西職業(yè)院校技能大賽中職組《大數據應用與服務》賽項競賽樣題
- 2025年鄭州黃河護理職業(yè)學院單招職業(yè)適應性考試題庫帶答案
- 9.1日益完善和法律體系課件-2024-2025學年統(tǒng)編版道德與法治七年級下冊
- 授權獨家代理商合作協議2025年
- PE特種設備焊工理論復習題庫(帶解析)
- 精準醫(yī)療復合手術室
- 2024年全國統(tǒng)一高考英語試卷(新課標Ⅰ卷)含答案
- 快板?繞口令?《玲瓏塔》
- 臺灣民法典目錄
評論
0/150
提交評論