2024屆貴州安龍縣市級名校中考數(shù)學(xué)全真模擬試卷含解析_第1頁
2024屆貴州安龍縣市級名校中考數(shù)學(xué)全真模擬試卷含解析_第2頁
2024屆貴州安龍縣市級名校中考數(shù)學(xué)全真模擬試卷含解析_第3頁
2024屆貴州安龍縣市級名校中考數(shù)學(xué)全真模擬試卷含解析_第4頁
2024屆貴州安龍縣市級名校中考數(shù)學(xué)全真模擬試卷含解析_第5頁
已閱讀5頁,還剩23頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆貴州安龍縣市級名校中考數(shù)學(xué)全真模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(diǎn)A,B,C.現(xiàn)有下面四個推斷:①拋物線開口向下;②當(dāng)x=-2時,y取最大值;③當(dāng)m<4時,關(guān)于x的一元二次方程ax2+bx+c=m必有兩個不相等的實(shí)數(shù)根;④直線y=kx+c(k≠0)經(jīng)過點(diǎn)A,C,當(dāng)kx+c>ax2+bx+c時,x的取值范圍是-4<x<0;其中推斷正確的是()A.①② B.①③ C.①③④ D.②③④2.如圖,在△ABC中,AB=5,AC=4,∠A=60°,若邊AC的垂直平分線DE交AB于點(diǎn)D,連接CD,則△BDC的周長為()A.8 B.9 C.5+ D.5+3.某種微生物半徑約為0.00000637米,該數(shù)字用科學(xué)記數(shù)法可表示為()A.0.637×10﹣5B.6.37×10﹣6C.63.7×10﹣7D.6.37×10﹣74.下列命題中,真命題是()A.對角線互相垂直且相等的四邊形是正方形B.等腰梯形既是軸對稱圖形又是中心對稱圖形C.圓的切線垂直于經(jīng)過切點(diǎn)的半徑D.垂直于同一直線的兩條直線互相垂直5.如圖,點(diǎn)A、B、C在⊙O上,∠OAB=25°,則∠ACB的度數(shù)是()A.135° B.115° C.65° D.50°6.如圖是一個由正方體和一個正四棱錐組成的立體圖形,它的主視圖是()A. B. C. D.7.下列所給函數(shù)中,y隨x的增大而減小的是()A.y=﹣x﹣1 B.y=2x2(x≥0)C. D.y=x+18.一個關(guān)于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是()A.x>1 B.x≥1 C.x>3 D.x≥39.如圖所示幾何體的主視圖是()A. B. C. D.10.在Rt△ABC中,∠C=90°,如果sinA=,那么sinB的值是()A. B. C. D.11.下列各式中,正確的是()A.﹣(x﹣y)=﹣x﹣y B.﹣(﹣2)﹣1= C.﹣ D.12.如圖,在ABCD中,E為CD上一點(diǎn),連接AE、BD,且AE、BD交于點(diǎn)F,DE:EC=2:3,則S△DEF:S△ABF=()A.2:3 B.4:9 C.2:5 D.4:25二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,已知在平行四邊形ABCD中,E是邊AB的中點(diǎn),F(xiàn)在邊AD上,且AF:FD=2:1,如果=,=,那么=_____.14.如圖,在四邊形ABCD中,AD∥BC,AB=CD且AB與CD不平行,AD=2,∠BCD=60°,對角線CA平分∠BCD,E,F(xiàn)分別是底邊AD,BC的中點(diǎn),連接EF,點(diǎn)P是EF上的任意一點(diǎn),連接PA,PB,則PA+PB的最小值為__.15.不等式5x﹣3<3x+5的非負(fù)整數(shù)解是_____.16.如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時,水面寬4m.水面下降2.5m,水面寬度增加_____m.17.如圖,在平面直角坐標(biāo)系xOy中,A(-2,0),B(0,2),⊙O的半徑為1,點(diǎn)C為⊙O上一動點(diǎn),過點(diǎn)B作BP⊥直線AC,垂足為點(diǎn)P,則P點(diǎn)縱坐標(biāo)的最大值為cm.18.已知三角形兩邊的長分別為1、5,第三邊長為整數(shù),則第三邊的長為_____.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)如圖,已知⊙O經(jīng)過△ABC的頂點(diǎn)A、B,交邊BC于點(diǎn)D,點(diǎn)A恰為的中點(diǎn),且BD=8,AC=9,sinC=,求⊙O的半徑.20.(6分)“綠水青山就是金山銀山”,北京市民積極參與義務(wù)植樹活動.小武同學(xué)為了了解自己小區(qū)300戶家庭在2018年4月份義務(wù)植樹的數(shù)量,進(jìn)行了抽樣調(diào)查,隨即抽取了其中30戶家庭,收集的數(shù)據(jù)如下(單位:棵):112323233433433534344545343456(1)對以上數(shù)據(jù)進(jìn)行整理、描述和分析:①繪制如下的統(tǒng)計圖,請補(bǔ)充完整;②這30戶家庭2018年4月份義務(wù)植樹數(shù)量的平均數(shù)是______,眾數(shù)是______;(2)“互聯(lián)網(wǎng)+全民義務(wù)植樹”是新時代首都全民義務(wù)植樹組織形式和盡責(zé)方式的一大創(chuàng)新,2018年首次推出義務(wù)植樹網(wǎng)上預(yù)約服務(wù),小武同學(xué)所調(diào)查的這30戶家庭中有7戶家庭采用了網(wǎng)上預(yù)約義務(wù)植樹這種方式,由此可以估計該小區(qū)采用這種形式的家庭有______戶.21.(6分)如圖,在四邊形ABCD中,AD∥BC,∠B=90°,BC=6,AD=3,AB=,點(diǎn)E,F(xiàn)同時從B點(diǎn)出發(fā),沿射線BC向右勻速移動,已知點(diǎn)F的移動速度是點(diǎn)E移動速度的2倍,以EF為一邊在CB的上方作等邊△EFG,設(shè)E點(diǎn)移動距離為x(0<x<6).(1)∠DCB=度,當(dāng)點(diǎn)G在四邊形ABCD的邊上時,x=;(2)在點(diǎn)E,F(xiàn)的移動過程中,點(diǎn)G始終在BD或BD的延長線上運(yùn)動,求點(diǎn)G在線段BD的中點(diǎn)時x的值;(3)當(dāng)2<x<6時,求△EFG與四邊形ABCD重疊部分面積y與x之間的函數(shù)關(guān)系式,當(dāng)x取何值時,y有最大值?并求出y的最大值.22.(8分)如圖,在矩形ABCD中,對角線AC的垂直平分線EF分別交AD、AC、BC于點(diǎn)E、O、F,連接CE和AF.(1)求證:四邊形AECF為菱形;(2)若AB=4,BC=8,求菱形AECF的周長.23.(8分)如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過A作BC的平行線交CE的延長線與F,且AF=BD,連接BF。求證:D是BC的中點(diǎn);如果AB=AC,試判斷四邊形AFBD的形狀,并證明你的結(jié)論。24.(10分)為了獎勵優(yōu)秀班集體,學(xué)校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116元,購買3幅乒乓球拍和2幅羽毛球拍共需204元.每副乒乓球拍和羽毛球拍的單價各是多少元?若學(xué)校購買5副乒乓球拍和3副羽毛球拍,一共應(yīng)支出多少元?25.(10分)問題提出(1)如圖1,正方形ABCD的對角線交于點(diǎn)O,△CDE是邊長為6的等邊三角形,則O、E之間的距離為;問題探究(2)如圖2,在邊長為6的正方形ABCD中,以CD為直徑作半圓O,點(diǎn)P為弧CD上一動點(diǎn),求A、P之間的最大距離;問題解決(3)窯洞是我省陜北農(nóng)村的主要建筑,窯洞賓館更是一道靚麗的風(fēng)景線,是因?yàn)楦G洞除了它的堅固性及特有的外在美之外,還具有冬暖夏涼的天然優(yōu)點(diǎn)家住延安農(nóng)村的一對即將參加中考的雙胞胎小寶和小貝兩兄弟,發(fā)現(xiàn)自家的窯洞(如圖3所示)的門窗是由矩形ABCD及弓形AMD組成,AB=2m,BC=3.2m,弓高M(jìn)N=1.2m(N為AD的中點(diǎn),MN⊥AD),小寶說,門角B到門窗弓形弧AD的最大距離是B、M之間的距離.小貝說這不是最大的距離,你認(rèn)為誰的說法正確?請通過計算求出門角B到門窗弓形弧AD的最大距離.26.(12分)數(shù)學(xué)不僅是一門學(xué)科,也是一種文化,即數(shù)學(xué)文化.數(shù)學(xué)文化包括數(shù)學(xué)史、數(shù)學(xué)美和數(shù)學(xué)應(yīng)用等多方面.古時候,在某個王國里有一位聰明的大臣,他發(fā)明了國際象棋,獻(xiàn)給了國王,國王從此迷上了下棋,為了對聰明的大臣表示感謝,國王答應(yīng)滿足這位大臣的一個要求.大臣說:“就在這個棋盤上放一些米粒吧.第格放粒米,第格放粒米,第格放粒米,然后是粒、粒、粒······一只到第格.”“你真傻!就要這么一點(diǎn)米粒?”國王哈哈大笑.大臣說:“就怕您的國庫里沒有這么多米!”國王的國庫里真沒有這么多米嗎?題中問題就是求是多少?請同學(xué)們閱讀以下解答過程就知道答案了.設(shè),則即:事實(shí)上,按照這位大臣的要求,放滿一個棋盤上的個格子需要粒米.那么到底多大呢?借助計算機(jī)中的計算器進(jìn)行計算,可知答案是一個位數(shù):,這是一個非常大的數(shù),所以國王是不能滿足大臣的要求.請用你學(xué)到的方法解決以下問題:我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠(yuǎn)望巍巍塔七層,紅光點(diǎn)點(diǎn)倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座層塔共掛了盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的倍,則塔的頂層共有多少盞燈?計算:某中學(xué)“數(shù)學(xué)社團(tuán)”開發(fā)了一款應(yīng)用軟件,推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學(xué)問題的答案:已知一列數(shù):,其中第一項是,接下來的兩項是,再接下來的三項是,以此類推,求滿足如下條件的所有正整數(shù),且這一數(shù)列前項和為的正整數(shù)冪.請直接寫出所有滿足條件的軟件激活碼正整數(shù)的值.27.(12分)如圖,在平面直角坐標(biāo)系中,點(diǎn)A和點(diǎn)C分別在x軸和y軸的正半軸上,OA=6,OC=4,以O(shè)A,OC為鄰邊作矩形OABC,動點(diǎn)M,N以每秒1個單位長度的速度分別從點(diǎn)A、C同時出發(fā),其中點(diǎn)M沿AO向終點(diǎn)O運(yùn)動,點(diǎn)N沿CB向終點(diǎn)B運(yùn)動,當(dāng)兩個動點(diǎn)運(yùn)動了t秒時,過點(diǎn)N作NP⊥BC,交OB于點(diǎn)P,連接MP.(1)直接寫出點(diǎn)B的坐標(biāo)為,直線OB的函數(shù)表達(dá)式為;(2)記△OMP的面積為S,求S與t的函數(shù)關(guān)系式;并求t為何值時,S有最大值,并求出最大值.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

結(jié)合函數(shù)圖象,利用二次函數(shù)的對稱性,恰當(dāng)使用排除法,以及根據(jù)函數(shù)圖象與不等式的關(guān)系可以得出正確答案.【詳解】解:①由圖象可知,拋物線開口向下,所以①正確;

②若當(dāng)x=-2時,y取最大值,則由于點(diǎn)A和點(diǎn)B到x=-2的距離相等,這兩點(diǎn)的縱坐標(biāo)應(yīng)該相等,但是圖中點(diǎn)A和點(diǎn)B的縱坐標(biāo)顯然不相等,所以②錯誤,從而排除掉A和D;

剩下的選項中都有③,所以③是正確的;

易知直線y=kx+c(k≠0)經(jīng)過點(diǎn)A,C,當(dāng)kx+c>ax2+bx+c時,x的取值范圍是x<-4或x>0,從而④錯誤.故選:B.【點(diǎn)睛】本題考查二次函數(shù)的圖象,二次函數(shù)的對稱性,以及二次函數(shù)與一元二次方程,二次函數(shù)與不等式的關(guān)系,屬于較復(fù)雜的二次函數(shù)綜合選擇題.2、C【解析】

過點(diǎn)C作CM⊥AB,垂足為M,根據(jù)勾股定理求出BC的長,再根據(jù)DE是線段AC的垂直平分線可得△ADC等邊三角形,則CD=AD=AC=4,代入數(shù)值計算即可.【詳解】過點(diǎn)C作CM⊥AB,垂足為M,在Rt△AMC中,∵∠A=60°,AC=4,∴AM=2,MC=2,∴BM=AB-AM=3,在Rt△BMC中,BC===,∵DE是線段AC的垂直平分線,∴AD=DC,∵∠A=60°,∴△ADC等邊三角形,∴CD=AD=AC=4,∴△BDC的周長=DB+DC+BC=AD+DB+BC=AB+BC=5+.故答案選C.【點(diǎn)睛】本題考查了勾股定理,解題的關(guān)鍵是熟練的掌握勾股定理的運(yùn)算.3、B【解析】

科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點(diǎn)移動了多少位,n的絕對值與小數(shù)點(diǎn)移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).【詳解】0.00000637的小數(shù)點(diǎn)向右移動6位得到6.37所以0.00000637用科學(xué)記數(shù)法表示為6.37×10﹣6,故選B.【點(diǎn)睛】本題考查科學(xué)記數(shù)法的表示方法.科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.4、C【解析】分析是否為真命題,需要分別分析各題設(shè)是否能推出結(jié)論,從而利用排除法得出答案.解答:解:A、錯誤,例如對角線互相垂直的等腰梯形;B、錯誤,等腰梯形是軸對稱圖形不是中心對稱圖形;C、正確,符合切線的性質(zhì);D、錯誤,垂直于同一直線的兩條直線平行.故選C.5、B【解析】

由OA=OB得∠OAB=∠OBA=25°,根據(jù)三角形內(nèi)角和定理計算出∠AOB=130°,則根據(jù)圓周角定理得∠P=

∠AOB,然后根據(jù)圓內(nèi)接四邊形的性質(zhì)求解.【詳解】解:在圓上取點(diǎn)

P

,連接

PA

、

PB.∵OA=OB

,∴∠OAB=∠OBA=25°

,∴∠AOB=180°?2×25°=130°

,∴∠P=∠AOB=65°,∴∠ACB=180°?∠P=115°.故選B.【點(diǎn)睛】本題考查的是圓,熟練掌握圓周角定理是解題的關(guān)鍵.6、A【解析】

對一個物體,在正面進(jìn)行正投影得到的由前向后觀察物體的視圖,叫做主視圖.【詳解】解:由主視圖的定義可知A選項中的圖形為該立體圖形的主視圖,故選擇A.【點(diǎn)睛】本題考查了三視圖的概念.7、A【解析】

根據(jù)二次函數(shù)的性質(zhì)、一次函數(shù)的性質(zhì)及反比例函數(shù)的性質(zhì)判斷出函數(shù)符合y隨x的增大而減小的選項.【詳解】解:A.此函數(shù)為一次函數(shù),y隨x的增大而減小,正確;B.此函數(shù)為二次函數(shù),當(dāng)x<0時,y隨x的增大而減小,錯誤;C.此函數(shù)為反比例函數(shù),在每個象限,y隨x的增大而減小,錯誤;D.此函數(shù)為一次函數(shù),y隨x的增大而增大,錯誤.故選A.【點(diǎn)睛】本題考查了二次函數(shù)、一次函數(shù)、反比例函數(shù)的性質(zhì),掌握函數(shù)的增減性是解決問題的關(guān)鍵.8、C【解析】試題解析:一個關(guān)于x的一元一次不等式組的解集在數(shù)軸上的表示如圖,則該不等式組的解集是x>1.故選C.考點(diǎn):在數(shù)軸上表示不等式的解集.9、C【解析】

從正面看幾何體,確定出主視圖即可.【詳解】解:幾何體的主視圖為故選C.【點(diǎn)睛】本題考查了簡單組合體的三視圖,主視圖即為從正面看幾何體得到的視圖.10、A【解析】

∵Rt△ABC中,∠C=90°,sinA=,∴cosA=,∴∠A+∠B=90°,∴sinB=cosA=.故選A.11、B【解析】

A.括號前是負(fù)號去括號都變號;B負(fù)次方就是該數(shù)次方后的倒數(shù),再根據(jù)前面兩個負(fù)號為正;C.兩個負(fù)號為正;D.三次根號和二次根號的算法.【詳解】A選項,﹣(x﹣y)=﹣x+y,故A錯誤;B選項,﹣(﹣2)﹣1=,故B正確;C選項,﹣,故C錯誤;D選項,22,故D錯誤.【點(diǎn)睛】本題考查去括號法則的應(yīng)用,分式的性質(zhì),二次根式的算法,熟記知識點(diǎn)是解題的關(guān)鍵.12、D【解析】試題分析:先根據(jù)平行四邊形的性質(zhì)及相似三角形的判定定理得出△DEF∽△BAF,從而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25試題解析:∵四邊形ABCD是平行四邊形,∴AB∥CD,BA=DC∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∴DE:AB=DE:DC=2:5,∴S△DEF:S△ABF=4:25,考點(diǎn):1.相似三角形的判定與性質(zhì);2.三角形的面積;3.平行四邊形的性質(zhì).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】

根據(jù),只要求出、即可解決問題;【詳解】∵四邊形是平行四邊形,,,,,,,,.故答案為.【點(diǎn)睛】本題考查的知識點(diǎn)是平面向量,平行四邊形的性質(zhì),解題關(guān)鍵是表達(dá)出、.14、2【解析】

將PA+PB轉(zhuǎn)化為PA+PC的值即可求出最小值.【詳解】解:E,F分別是底邊AD,BC的中點(diǎn),四邊形ABCD是等腰梯形,B點(diǎn)關(guān)于EF的對稱點(diǎn)C點(diǎn),AC即為PA+PB的最小值,∠BCD=,對角線AC平分∠BCD,∠ABC=,ZBCA=,∠BAC=,AD=2,PA+PB的最小值=.故答案為:.【點(diǎn)睛】求PA+PB的最小值,PA+PB不能直接求,可考慮轉(zhuǎn)化PA+PC的值,從而找出其最小值求解.15、0,1,2,1【解析】5x﹣1<1x+5,移項得,5x﹣1x<5+1,合并同類項得,2x<8,系數(shù)化為1得,x<4所以不等式的非負(fù)整數(shù)解為0,1,2,1;故答案為0,1,2,1.【點(diǎn)睛】根據(jù)不等式的基本性質(zhì)正確解不等式,求出解集是解答本題的關(guān)鍵.16、1.【解析】

根據(jù)已知建立平面直角坐標(biāo)系,進(jìn)而求出二次函數(shù)解析式,再通過把y=-1.5代入拋物線解析式得出水面寬度,即可得出答案【詳解】解:建立平面直角坐標(biāo)系,設(shè)橫軸x通過AB,縱軸y通過AB中點(diǎn)O且通過C點(diǎn),則通過畫圖可得知O為原點(diǎn),

拋物線以y軸為對稱軸,且經(jīng)過A,B兩點(diǎn),OA和OB可求出為AB的一半1米,拋物線頂點(diǎn)C坐標(biāo)為(0,1),

設(shè)頂點(diǎn)式y(tǒng)=ax1+1,把A點(diǎn)坐標(biāo)(-1,0)代入得a=-0.5,

∴拋物線解析式為y=-0.5x1+1,

當(dāng)水面下降1.5米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:

當(dāng)y=-1.5時,對應(yīng)的拋物線上兩點(diǎn)之間的距離,也就是直線y=-1與拋物線相交的兩點(diǎn)之間的距離,

可以通過把y=-1.5代入拋物線解析式得出:

-1.5=-0.5x1+1,

解得:x=±3,

1×3-4=1,

所以水面下降1.5m,水面寬度增加1米.

故答案為1.【點(diǎn)睛】本題考查了二次函數(shù)的應(yīng)用,根據(jù)已知建立坐標(biāo)系從而得出二次函數(shù)解析式是解決問題的關(guān)鍵,學(xué)會把實(shí)際問題轉(zhuǎn)化為二次函數(shù),利用二次函數(shù)的性質(zhì)解決問題,屬于中考??碱}型.17、【解析】

當(dāng)AC與⊙O相切于點(diǎn)C時,P點(diǎn)縱坐標(biāo)的最大值,如圖,直線AC交y軸于點(diǎn)D,連結(jié)OC,作CH⊥x軸于H,PM⊥x軸于M,DN⊥PM于N,∵AC為切線,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=OA=,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=BD=(2-)=1-,在Rt△DPN中,∵∠PDN=30°,∴PN=DP=-,而MN=OD=,∴PM=PN+MN=1-+=,即P點(diǎn)縱坐標(biāo)的最大值為.【點(diǎn)睛】本題是圓的綜合題,先求出OD的長度,最后根據(jù)兩點(diǎn)之間線段最短求出PN+MN的值.18、2【解析】分析:根據(jù)三角形的三邊關(guān)系“任意兩邊之和>第三邊,任意兩邊之差<第三邊”,求得第三邊的取值范圍,再進(jìn)一步根據(jù)第三邊是整數(shù)求解.詳解:根據(jù)三角形的三邊關(guān)系,得第三邊>4,而<1.又第三條邊長為整數(shù),則第三邊是2.點(diǎn)睛:此題主要是考查了三角形的三邊關(guān)系,同時注意整數(shù)這一條件.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、⊙O的半徑為.【解析】

如圖,連接OA.交BC于H.首先證明OA⊥BC,在Rt△ACH中,求出AH,設(shè)⊙O的半徑為r,在Rt△BOH中,根據(jù)BH2+OH2=OB2,構(gòu)建方程即可解決問題?!驹斀狻拷猓喝鐖D,連接OA.交BC于H.∵點(diǎn)A為的中點(diǎn),∴OA⊥BD,BH=DH=4,∴∠AHC=∠BHO=90°,∵,AC=9,∴AH=3,設(shè)⊙O的半徑為r,在Rt△BOH中,∵BH2+OH2=OB2,∴42+(r﹣3)2=r2,∴r=,∴⊙O的半徑為.【點(diǎn)睛】本題考查圓心角、弧、弦的關(guān)系、垂徑定理、勾股定理、銳角三角函數(shù)等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造直角三角形解決問題.20、(1)3.4棵、3棵;(2)1.【解析】

(1)①由已知數(shù)據(jù)知3棵的有12人、4棵的有8人,據(jù)此補(bǔ)全圖形可得;②根據(jù)平均數(shù)和眾數(shù)的定義求解可得;(2)用總戶數(shù)乘以樣本中采用了網(wǎng)上預(yù)約義務(wù)植樹這種方式的戶數(shù)所占比例可得.【詳解】解:(1)①由已知數(shù)據(jù)知3棵的有12人、4棵的有8人,補(bǔ)全圖形如下:②這30戶家庭2018年4月份義務(wù)植樹數(shù)量的平均數(shù)是(棵),眾數(shù)為3棵,故答案為:3.4棵、3棵;(2)估計該小區(qū)采用這種形式的家庭有戶,故答案為:1.【點(diǎn)睛】此題考查條形統(tǒng)計圖,加權(quán)平均數(shù),眾數(shù),解題關(guān)鍵在于利用樣本估計總體.21、(1)30;2;(2)x=1;(3)當(dāng)x=時,y最大=;【解析】

(1)如圖1中,作DH⊥BC于H,則四邊形ABHD是矩形.AD=BH=3,BC=6,CH=BC﹣BH=3,當(dāng)?shù)冗吶切巍鱁GF的高=時,點(diǎn)G在AD上,此時x=2;(2)根據(jù)勾股定理求出的長度,根據(jù)三角函數(shù),求出∠ADB=30°,根據(jù)中點(diǎn)的定義得出根據(jù)等邊三角形的性質(zhì)得到,即可求出x的值;

(3)圖2,圖3三種情形解決問題.①當(dāng)2<x<3時,如圖2中,點(diǎn)E、F在線段BC上,△EFG與四邊形ABCD重疊部分為四邊形EFNM;②當(dāng)3≤x<6時,如圖3中,點(diǎn)E在線段BC上,點(diǎn)F在射線BC上,重疊部分是△ECP;【詳解】(1)作DH⊥BC于H,則四邊形ABHD是矩形.∵AD=BH=3,BC=6,∴CH=BC﹣BH=3,在Rt△DHC中,CH=3,∴當(dāng)?shù)冗吶切巍鱁GF的高等于時,點(diǎn)G在AD上,此時x=2,∠DCB=30°,故答案為30,2,(2)如圖∵AD∥BC∴∠A=180°﹣∠ABC=180°﹣90°=90°在Rt△ABD中,∴∠ADB=30°∵G是BD的中點(diǎn)∴∵AD∥BC∴∠ADB=∠DBC=30°∵△GEF是等邊三角形,∴∠GFE=60°∴∠BGF=90°在Rt△BGF中,∴2x=2即x=1;(3)分兩種情況:當(dāng)2<x<3,如圖2點(diǎn)E、點(diǎn)F在線段BC上△GEF與四邊形ABCD重疊部分為四邊形EFNM∵∠FNC=∠GFE﹣∠DCB=60°﹣30°=30°∴∠FNC=∠DCB∴FN=FC=6﹣2x∴GN=x﹣(6﹣2x)=3x﹣6∵∠FNC=∠GNM=30°,∠G=60°∴∠GMN=90°在Rt△GNM中,∴∴當(dāng)時,最大當(dāng)3≤x<6時,如圖3,點(diǎn)E在線段BC上,點(diǎn)F在線段BC的延長線上,△GEF與四邊形ABCD重疊部分為△ECP∵∠PCE=30°,∠PEC=60°∴∠EPC=90°在Rt△EPC中EC=6﹣x,對稱軸為當(dāng)x<6時,y隨x的增大而減小∴當(dāng)x=3時,最大綜上所述:當(dāng)時,最大【點(diǎn)睛】屬于四邊形的綜合題,考查動點(diǎn)問題,等邊三角形的性質(zhì),三角函數(shù),二次函數(shù)的最值等,綜合性比較強(qiáng),難度較大.22、(1)見解析;(2)1【解析】

(1)根據(jù)ASA推出:△AEO≌△CFO;根據(jù)全等得出OE=OF,推出四邊形是平行四邊形,再根據(jù)EF⊥AC即可推出四邊形是菱形;(2)根據(jù)線段垂直平分線性質(zhì)得出AF=CF,設(shè)AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到結(jié)論.【詳解】(1)∵EF是AC的垂直平分線,∴AO=OC,∠AOE=∠COF=90°.∵四邊形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.又∵OA=OC,∴四邊形AECF是平行四邊形.又∵EF⊥AC,∴平行四邊形AECF是菱形;(2)設(shè)AF=x.∵EF是AC的垂直平分線,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周長為1.【點(diǎn)睛】本題考查了勾股定理,矩形性質(zhì),平行四邊形的判定,菱形的判定,全等三角形的性質(zhì)和判定,平行線的性質(zhì)等知識點(diǎn)的綜合運(yùn)用,用了方程思想.23、(1)詳見解析;(2)詳見解析【解析】

(1)根據(jù)兩直線平行,內(nèi)錯角相等求出∠AFE=∠DCE,然后利用“角角邊”證明△AEF和△DEC全等,再根據(jù)全等三角形的性質(zhì)和等量關(guān)系即可求解;(2)由(1)知AF平行等于BD,易證四邊形AFBD是平行四邊形,而AB=AC,AD是中線,利用等腰三角形三線合一定理,可證AD⊥BC,即∠ADB=90°,那么可證四邊形AFBD是矩形.【詳解】(1)證明:∵AF∥BC,∴∠AFE=∠DCE,∵點(diǎn)E為AD的中點(diǎn),∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴CD=BD,∴D是BC的中點(diǎn);(2)若AB=AC,則四邊形AFBD是矩形.理由如下:∵△AEF≌△DEC,∴AF=CD,∵AF=BD,∴CD=BD;∵AF∥BD,AF=BD,∴四邊形AFBD是平行四邊形,∵AB=AC,BD=CD,∴∠ADB=90°,∴平行四邊形AFBD是矩形.【點(diǎn)睛】本題考查了矩形的判定,全等三角形的判定與性質(zhì),平行四邊形的判定,是基礎(chǔ)題,明確有一個角是直角的平行四邊形是矩形是解本題的關(guān)鍵.24、(1)一副乒乓球拍28元,一副羽毛球拍60元(2)共320元.【解析】整體分析:(1)設(shè)購買一副乒乓球拍x元,一副羽毛球拍y元,根據(jù)“購買2副乒乓球拍和1副羽毛球拍共需116元,購買3幅乒乓球拍和2幅羽毛球拍共需204元”列方程組求解;(2)由(1)中求出的乒乓球拍和羽毛球拍的單價求解.解:(1)設(shè)購買一副乒乓球拍x元,一副羽毛球拍y元,由題意得,,解得:答:購買一副乒乓球拍28元,一副羽毛球拍60元.(2)5×28+3×60=320元答:購買5副乒乓球拍和3副羽毛球拍共320元.25、(1);(2);(2)小貝的說法正確,理由見解析,.【解析】

(1)連接AC,BD,由OE垂直平分DC可得DH長,易知OH、HE長,相加即可;(2)補(bǔ)全⊙O,連接AO并延長交⊙O右半側(cè)于點(diǎn)P,則此時A、P之間的距離最大,在Rt△AOD中,由勾股定理可得AO長,易求AP長;(1)小貝的說法正確,補(bǔ)全弓形弧AD所在的⊙O,連接ON,OA,OD,過點(diǎn)O作OE⊥AB于點(diǎn)E,連接BO并延長交⊙O上端于點(diǎn)P,則此時B、P之間的距離即為門角B到門窗弓形弧AD的最大距離,在Rt△ANO中,設(shè)AO=r,由勾股定理可求出r,在Rt△OEB中,由勾股定理可得BO長,易知BP長.【詳解】解:(1)如圖1,連接AC,BD,對角線交點(diǎn)為O,連接OE交CD于H,則OD=OC.∵△DCE為等邊三角形,∴ED=EC,∵OD=OC∴OE垂直平分DC,∴DHDC=1.∵四邊形ABCD為正方形,∴△OHD為等腰直角三角形,∴OH=DH=1,在Rt△DHE中,HEDH=1,∴OE=HE+OH=11;(2)如圖2,補(bǔ)全⊙O,連接AO并

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論