版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年湖北利川文斗中考數(shù)學猜題卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.甲骨文是我國的一種古代文字,是漢字的早期形式,下列甲骨文中,不是軸對稱的是()A. B. C. D.2.如圖,已知AB∥CD,DE⊥AC,垂足為E,∠A=120°,則∠D的度數(shù)為()A.30° B.60° C.50° D.40°3.反比例函數(shù)y=1-6txA.t<16B.t>16C.t≤14.如圖,直線a∥b,一塊含60°角的直角三角板ABC(∠A=60°)按如圖所示放置.若∠1=55°,則∠2的度數(shù)為()A.105° B.110° C.115° D.120°5.如圖圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B. C. D.6.若a+|a|=0,則等于()A.2﹣2a B.2a﹣2 C.﹣2 D.27.已知∠BAC=45。,一動點O在射線AB上運動(點O與點A不重合),設OA=x,如果半徑為1的⊙O與射線AC有公共點,那么x的取值范圍是()A.0<x≤1 B.1≤x< C.0<x≤ D.x>8.如圖,在5×5的方格紙中將圖①中的圖形N平移到如圖②所示的位置,那么下列平移正確的是()A.先向下移動1格,再向左移動1格 B.先向下移動1格,再向左移動2格C.先向下移動2格,再向左移動1格 D.先向下移動2格,再向左移動2格9.如圖所示的幾何體,它的左視圖是()A. B. C. D.10.如圖,等腰直角三角形紙片ABC中,∠C=90°,把紙片沿EF對折后,點A恰好落在BC上的點D處,點CE=1,AC=4,則下列結(jié)論一定正確的個數(shù)是()①∠CDE=∠DFB;②BD>CE;③BC=CD;④△DCE與△BDF的周長相等.A.1個 B.2個 C.3個 D.4個二、填空題(本大題共6個小題,每小題3分,共18分)11.在直角坐標系平面內(nèi),拋物線y=3x2+2x在對稱軸的左側(cè)部分是_____的(填“上升”或“下降”)12.一個多邊形的內(nèi)角和比它的外角和的3倍少180°,則這個多邊形的邊數(shù)是______.13.如圖,四邊形ABCD中,∠D=∠B=90°,AB=BC,CD=4,AC=8,設Q、R分別是AB、AD上的動點,則△CQR的周長的最小值為_________.14.有兩個一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四個結(jié)論中正確的是_____(填寫序號).①如果方程M有兩個不相等的實數(shù)根,那么方程N也有兩個不相等的實數(shù)根;②如果方程M有兩根符號相同,那么方程N的兩根符號也相同;③如果方程M和方程N有一個相同的根,那么這個根必是x=1;④如果5是方程M的一個根,那么是方程N的一個根.15.如圖,函數(shù)y=(x<0)的圖像與直線y=-x交于A點,將線段OA繞O點順時針旋轉(zhuǎn)30°,交函數(shù)y=(x<0)的圖像于B點,得到線段OB,若線段AB=3-,則k=_______________________.16.若關于x的一元二次方程x2﹣2x+m=0有實數(shù)根,則m的取值范圍是.三、解答題(共8題,共72分)17.(8分)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=1.(1)求拋物線的解析式及點D的坐標;(2)連接BD,F(xiàn)為拋物線上一動點,當∠FAB=∠EDB時,求點F的坐標;(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當點P在x軸上,且PQ=MN時,求菱形對角線MN的長.18.(8分)P是⊙O內(nèi)一點,過點P作⊙O的任意一條弦AB,我們把PA?PB的值稱為點P關于⊙O的“冪值”(1)⊙O的半徑為6,OP=1.①如圖1,若點P恰為弦AB的中點,則點P關于⊙O的“冪值”為_____;②判斷當弦AB的位置改變時,點P關于⊙O的“冪值”是否為定值,若是定值,證明你的結(jié)論;若不是定值,求點P關于⊙0的“冪值”的取值范圍;(2)若⊙O的半徑為r,OP=d,請參考(1)的思路,用含r、d的式子表示點P關于⊙O的“冪值”或“冪值”的取值范圍_____;(3)在平面直角坐標系xOy中,C(1,0),⊙C的半徑為3,若在直線y=x+b上存在點P,使得點P關于⊙C的“冪值”為6,請直接寫出b的取值范圍_____.19.(8分)九(3)班“2017年新年聯(lián)歡會”中,有一個摸獎游戲,規(guī)則如下:有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉、2張哭臉.現(xiàn)將4張紙牌洗勻后背面朝上擺放到桌上,然后讓同學去翻紙牌.(1)現(xiàn)小芳有一次翻牌機會,若正面是笑臉的就獲獎,正面是哭臉的不獲獎.她從中隨機翻開一張紙牌,求小芳獲獎的概率.(2)如果小芳、小明都有翻兩張牌的機會.小芳先翻一張,放回后再翻一張;小明同時翻開兩張紙牌.他們翻開的兩張紙牌中只要出現(xiàn)一張笑臉就獲獎.他們獲獎的機會相等嗎?通過樹狀圖分析說明理由.20.(8分)(1)計算:3tan30°+|2﹣|+()﹣1﹣(3﹣π)0﹣(﹣1)2018.(2)先化簡,再求值:(x﹣)÷,其中x=,y=﹣1.21.(8分)一天晚上,李明利用燈光下的影子長來測量一路燈D的高度.如圖,當在點A處放置標桿時,李明測得直立的標桿高AM與影子長AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點B處放置同一個標桿,測得直立標桿高BN的影子恰好是線段AB,并測得AB=1.2m,已知標桿直立時的高為1.8m,求路燈的高CD的長.22.(10分)如圖拋物線y=ax2+bx,過點A(4,0)和點B(6,2),四邊形OCBA是平行四邊形,點M(t,0)為x軸正半軸上的點,點N為射線AB上的點,且AN=OM,點D為拋物線的頂點.(1)求拋物線的解析式,并直接寫出點D的坐標;(2)當△AMN的周長最小時,求t的值;(3)如圖②,過點M作ME⊥x軸,交拋物線y=ax2+bx于點E,連接EM,AE,當△AME與△DOC相似時.請直接寫出所有符合條件的點M坐標.23.(12分)如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k≠0)的圖象與x軸、y軸分別交于A、B兩點,且與反比例函數(shù)y=nx(1)求一次函數(shù)與反比例函數(shù)的解析式;(2)記兩函數(shù)圖象的另一個交點為E,求△CDE的面積;(3)直接寫出不等式kx+b≤nx24.如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PA、PB、AB、OP,已知PB是⊙O的切線.(1)求證:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半徑為3,求BC的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】試題分析:A.是軸對稱圖形,故本選項錯誤;B.是軸對稱圖形,故本選項錯誤;C.是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,故本選項正確.故選D.考點:軸對稱圖形.2、A【解析】分析:根據(jù)平行線的性質(zhì)求出∠C,求出∠DEC的度數(shù),根據(jù)三角形內(nèi)角和定理求出∠D的度數(shù)即可.詳解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故選A.點睛:本題考查了平行線的性質(zhì)和三角形內(nèi)角和定理的應用,能根據(jù)平行線的性質(zhì)求出∠C的度數(shù)是解答此題的關鍵.3、B【解析】
將一次函數(shù)解析式代入到反比例函數(shù)解析式中,整理得出x2﹣2x+1﹣6t=0,又因兩函數(shù)圖象有兩個交點,且兩交點橫坐標的積為負數(shù),根據(jù)根的判別式以及根與系數(shù)的關系可求解.【詳解】由題意可得:﹣x+2=1-6tx所以x2﹣2x+1﹣6t=0,∵兩函數(shù)圖象有兩個交點,且兩交點橫坐標的積為負數(shù),∴(-解不等式組,得t>16故選:B.點睛:此題主要考查了反比例函數(shù)與一次函數(shù)的交點問題,關鍵是利用兩個函數(shù)的解析式構(gòu)成方程,再利用一元二次方程的根與系數(shù)的關系求解.4、C【解析】
如圖,首先證明∠AMO=∠2,然后運用對頂角的性質(zhì)求出∠ANM=55°;借助三角形外角的性質(zhì)求出∠AMO即可解決問題.【詳解】如圖,對圖形進行點標注.∵直線a∥b,∴∠AMO=∠2;∵∠ANM=∠1,而∠1=55°,∴∠ANM=55°,∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,故選C.【點睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì),熟練掌握和靈活運用相關知識是解題的關鍵.5、A【解析】A.是軸對稱圖形,是中心對稱圖形,故本選項正確;B.是中心對稱圖,不是軸對稱圖形,故本選項錯誤;C.不是中心對稱圖,是軸對稱圖形,故本選項錯誤;D.不是軸對稱圖形,是中心對稱圖形,故本選項錯誤。故選A.6、A【解析】
直接利用二次根式的性質(zhì)化簡得出答案.【詳解】∵a+|a|=0,∴|a|=-a,則a≤0,故原式=2-a-a=2-2a.故選A.【點睛】此題主要考查了二次根式的性質(zhì)與化簡,正確化簡二次根式是解題關鍵.7、C【解析】如下圖,設⊙O與射線AC相切于點D,連接OD,∴∠ADO=90°,∵∠BAC=45°,∴△ADO是等腰直角三角形,∴AD=DO=1,∴OA=,此時⊙O與射線AC有唯一公共點點D,若⊙O再向右移動,則⊙O與射線AC就沒有公共點了,∴x的取值范圍是.故選C.8、C【解析】
根據(jù)題意,結(jié)合圖形,由平移的概念求解.【詳解】由方格可知,在5×5方格紙中將圖①中的圖形N平移后的位置如圖②所示,那么下面平移中正確的是:先向下移動2格,再向左移動1格,故選C.【點睛】本題考查平移的基本概念及平移規(guī)律,是比較簡單的幾何圖形變換.關鍵是要觀察比較平移前后物體的位置.9、D【解析】分析:根據(jù)從左邊看得到的圖形是左視圖,可得答案.詳解:從左邊看是等長的上下兩個矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,故選D.點睛:本題考查了簡單組合體的三視圖,從左邊看得到的圖形是左視圖.10、D【解析】等腰直角三角形紙片ABC中,∠C=90°,∴∠A=∠B=45°,由折疊可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正確;由折疊可得,DE=AE=3,∴CD=,∴BD=BC﹣DC=4﹣>1,∴BD>CE,故②正確;∵BC=4,CD=4,∴BC=CD,故③正確;∵AC=BC=4,∠C=90°,∴AB=4,∵△DCE的周長=1+3+2=4+2,由折疊可得,DF=AF,∴△BDF的周長=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣2)=4+2,∴△DCE與△BDF的周長相等,故④正確;故選D.點睛:本題主要考查了折疊問題,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.二、填空題(本大題共6個小題,每小題3分,共18分)11、下降【解析】
根據(jù)拋物線y=3x2+2x圖像性質(zhì)可得,在對稱軸的左側(cè)部分是下降的.【詳解】解:∵在中,,∴拋物線開口向上,∴在對稱軸左側(cè)部分y隨x的增大而減小,即圖象是下降的,故答案為下降.【點睛】本題考查二次函數(shù)的圖像及性質(zhì).根據(jù)拋物線開口方向和對稱軸的位置即可得出結(jié)論.12、7【解析】根據(jù)多邊形內(nèi)角和公式得:(n-2).得:13、【解析】
作C關于AB的對稱點G,關于AD的對稱點F,可得三角形CQR的周長=CQ+QR+CR=GQ+QR+RF≥GF.根據(jù)圓周角定理可得∠CDB=∠CAB=45°,∠CBD=∠CAD=30°,由于GF=2BD,在三角形CBD中,作CH⊥BD于H,可求BD的長,從而求出△CQR的周長的最小值.【詳解】解:作C關于AB的對稱點G,關于AD的對稱點F,則三角形CQR的周長=CQ+QR+CR=GQ+QR+RF=GF,在Rt△ADC中,∵sin∠DAC=,∴∠DAC=30°,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCA=45°,∵∠ADC=∠ABC=90°,∴A,B,C,D四點共圓,∴∠CDB=∠CAB=45°,∠CBD=∠CAD=30°在三角形CBD中,作CH⊥BD于H,BD=DH+BH=4×cos45°+×cos30°=,∵CD=DF,CB=BG,∴GF=2BD=,△CQR的周長的最小值為.【點睛】本題考查了軸對稱問題,關鍵是根據(jù)軸對稱的性質(zhì)和兩點之間線段最短解答.14、①②④【解析】試題解析:①在方程ax2+bx+c=0中△=b2-4ac,在方程cx2+bx+a=0中△=b2-4ac,
∴如果方程M有兩個不相等的實數(shù)根,那么方程N也有兩個不相等的實數(shù)根,正確;
②∵和符號相同,和符號也相同,
∴如果方程M有兩根符號相同,那么方程N的兩根符號也相同,正確;
③、M-N得:(a-c)x2+c-a=0,即(a-c)x2=a-c,
∵a≠c,
∴x2=1,解得:x=±1,錯誤;④∵5是方程M的一個根,
∴25a+5b+c=0,
∴a+b+c=0,
∴是方程N的一個根,正確.
故正確的是①②④.15、-3【解析】
作AC⊥x軸于C,BD⊥x軸于D,AE⊥BD于E點,設A點坐標為(3a,-a),則OC=-3a,AC=-a,利用勾股定理計算出OA=-2a,得到∠AOC=30°,再根據(jù)旋轉(zhuǎn)的性質(zhì)得到OA=OB,∠BOD=60°,易證得Rt△OAC≌Rt△BOD,OD=AC=-a,BD=OC=-3a,于是有AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,即AE=BE,則△ABE為等腰直角三角形,利用等腰直角三角形的性質(zhì)得到3-=(-3a+a),求出a=1,確定A點坐標為(3,-),然后把A(3,-)代入函數(shù)y=即可得到k的值.【詳解】作AC⊥x軸與C,BD⊥x軸于D,AE⊥BD于E點,如圖,點A在直線y=-x上,可設A點坐標為(3a,-a),在Rt△OAC中,OC=-3a,AC=-a,∴OA==-2a,∴∠AOC=30°,∵直線OA繞O點順時針旋轉(zhuǎn)30°得到OB,∴OA=OB,∠BOD=60°,∴∠OBD=30°,∴Rt△OAC≌Rt△BOD,∴OD=AC=-a,BD=OC=-3a,∵四邊形ACDE為矩形,∴AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,∴AE=BE,∴△ABE為等腰直角三角形,∴AB=AE,即3-=(-3a+a),解得a=1,∴A點坐標為(3,-),而點A在函數(shù)y=的圖象上,∴k=3×(-)=-3.故答案為-3.【點睛】本題是反比例函數(shù)綜合題:點在反比例函數(shù)圖象上,則點的橫縱坐標滿足其解析式;利用勾股定理、旋轉(zhuǎn)的性質(zhì)以及等腰直角三角形的性質(zhì)進行線段的轉(zhuǎn)換與計算.16、m≤1.【解析】試題分析:由題意知,△=4﹣4m≥0,∴m≤1.故答案為m≤1.考點:根的判別式.三、解答題(共8題,共72分)17、(1),點D的坐標為(2,-8)(2)點F的坐標為(7,)或(5,)(3)菱形對角線MN的長為或.【解析】分析:(1)利用待定系數(shù)法,列方程求二次函數(shù)解析式.(2)利用解析法,∠FAB=∠EDB,tan∠FAG=tan∠BDE,求出F點坐標.(3)分類討論,當MN在x軸上方時,在x軸下方時分別計算MN.詳解:(1)∵OB=OC=1,∴B(1,0),C(0,-1).∴,解得,∴拋物線的解析式為.∵=,∴點D的坐標為(2,-8).(2)如圖,當點F在x軸上方時,設點F的坐標為(x,).過點F作FG⊥x軸于點G,易求得OA=2,則AG=x+2,F(xiàn)G=.∵∠FAB=∠EDB,∴tan∠FAG=tan∠BDE,即,解得,(舍去).當x=7時,y=,∴點F的坐標為(7,).當點F在x軸下方時,設同理求得點F的坐標為(5,).綜上所述,點F的坐標為(7,)或(5,).(3)∵點P在x軸上,∴根據(jù)菱形的對稱性可知點P的坐標為(2,0).如圖,當MN在x軸上方時,設T為菱形對角線的交點.∵PQ=MN,∴MT=2PT.設TP=n,則MT=2n.∴M(2+2n,n).∵點M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.當MN在x軸下方時,設TP=n,得M(2+2n,-n).∵點M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.綜上所述,菱形對角線MN的長為或.點睛:1.求二次函數(shù)的解析式(1)已知二次函數(shù)過三個點,利用一般式,y=ax2+bx+c().列方程組求二次函數(shù)解析式.(2)已知二次函數(shù)與x軸的兩個交點(,利用雙根式,y=()求二次函數(shù)解析式,而且此時對稱軸方程過交點的中點,.2.處理直角坐標系下,二次函數(shù)與幾何圖形問題:第一步要寫出每個點的坐標(不能寫出來的,可以用字母表示),寫已知點坐標的過程中,經(jīng)常要做坐標軸的垂線,第二步,利用特殊圖形的性質(zhì)和函數(shù)的性質(zhì),往往是解決問題的鑰匙.18、(1)①20;②當弦AB的位置改變時,點P關于⊙O的“冪值”為定值,證明見解析;(2)點P關于⊙O的“冪值”為r2﹣d2;(3)﹣3≤b≤.【解析】【詳解】(1)①如圖1所示:連接OA、OB、OP.由等腰三角形的三線合一的性質(zhì)得到△PBO為直角三角形,然后依據(jù)勾股定理可求得PB的長,然后依據(jù)冪值的定義求解即可;②過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′.先證明△APA′∽△B′PB,依據(jù)相似三角形的性質(zhì)得到PA?PB=PA′?PB′從而得出結(jié)論;(2)連接OP、過點P作AB⊥OP,交圓O與A、B兩點.由等腰三角形三線合一的性質(zhì)可知AP=PB,然后在Rt△APO中,依據(jù)勾股定理可知AP2=OA2-OP2,然后將d、r代入可得到問題的答案;(3)過點C作CP⊥AB,先求得OP的解析式,然后由直線AB和OP的解析式,得到點P的坐標,然后由題意圓的冪值為6,半徑為1可求得d的值,再結(jié)合兩點間的距離公式可得到關于b的方程,從而可求得b的極值,據(jù)此即可確定出b的取值范圍.【詳解】(1)①如圖1所示:連接OA、OB、OP,∵OA=OB,P為AB的中點,∴OP⊥AB,∵在△PBO中,由勾股定理得:PB==2,∴PA=PB=2,∴⊙O的“冪值”=2×2=20,故答案為:20;②當弦AB的位置改變時,點P關于⊙O的“冪值”為定值,證明如下:如圖,AB為⊙O中過點P的任意一條弦,且不與OP垂直,過點P作⊙O的弦A′B′⊥OP,連接AA′、BB′,∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,∴△APA′∽△B′PB,∴,∴PA?PB=PA′?PB′=20,∴當弦AB的位置改變時,點P關于⊙O的“冪值”為定值;(2)如圖3所示;連接OP、過點P作AB⊥OP,交圓O與A、B兩點,∵AO=OB,PO⊥AB,∴AP=PB,∴點P關于⊙O的“冪值”=AP?PB=PA2,在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,∴關于⊙O的“冪值”=r2﹣d2,故答案為:點P關于⊙O的“冪值”為r2﹣d2;(3)如圖1所示:過點C作CP⊥AB,,∵CP⊥AB,AB的解析式為y=x+b,∴直線CP的解析式為y=﹣x+.聯(lián)立AB與CP,得,∴點P的坐標為(﹣﹣b,+b),∵點P關于⊙C的“冪值”為6,∴r2﹣d2=6,∴d2=3,即(﹣﹣b)2+(+b)2=3,整理得:b2+2b﹣9=0,解得b=﹣3或b=,∴b的取值范圍是﹣3≤b≤,故答案為:﹣3≤b≤.【點睛】本題綜合性質(zhì)較強,考查了新定義題,解答過程中涉及到了冪值的定義、勾股定理、等腰三角形的性質(zhì)、相似三角形的性質(zhì)和判定、一次函數(shù)的交點問題、兩點間的距離公式等,依據(jù)兩點間的距離公式列出關于b的方程,從而求得b的極值是解題的關鍵.19、(1);(2)他們獲獎機會不相等,理由見解析.【解析】
(1)根據(jù)正面有2張笑臉、2張哭臉,直接利用概率公式求解即可求得答案;(2)根據(jù)題意分別列出表格,然后由表格即可求得所有等可能的結(jié)果與獲獎的情況,再利用概率公式求解即可求得他們獲獎的概率.【詳解】(1)∵有4張紙牌,背面都是喜羊羊頭像,正面有2張笑臉、2張哭臉,翻一次牌正面是笑臉的就獲獎,正面是哭臉的不獲獎,∴獲獎的概率是;故答案為;(2)他們獲獎機會不相等,理由如下:小芳:笑1笑2哭1哭2笑1笑1,笑1笑2,笑1哭1,笑1哭2,笑1笑2笑1,笑2笑2,笑2哭1,笑2哭2,笑2哭1笑1,哭1笑2,哭1哭1,哭1哭2,哭1哭2笑1,哭2笑2,哭2哭1,哭2哭2,哭2∵共有16種等可能的結(jié)果,翻開的兩張紙牌中只要出現(xiàn)笑臉的有12種情況,∴P(小芳獲獎)=;小明:笑1笑2哭1哭2笑1笑2,笑1哭1,笑1哭2,笑1笑2笑1,笑2哭1,笑2哭2,笑2哭1笑1,哭1笑2,哭1哭2,哭1哭2笑1,哭2笑2,哭2哭1,哭2∵共有12種等可能的結(jié)果,翻開的兩張紙牌中只要出現(xiàn)笑臉的有10種情況,∴P(小明獲獎)=,∵P(小芳獲獎)≠P(小明獲獎),∴他們獲獎的機會不相等.【點睛】本題考查了列表法或樹狀圖法求概率,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)3;(2)x﹣y,1.【解析】
(1)根據(jù)特殊角的三角函數(shù)值、絕對值、負整數(shù)指數(shù)冪、零指數(shù)冪可以解答本題;(2)根據(jù)分式的減法和除法可以化簡題目中的式子,然后將x、y的值代入化簡后的式子即可解答本題.【詳解】(1)3tan30°+|2-|+()-1-(3-π)0-(-1)2018=3×+2-+3-1-1,=+2?+3-1-1,=3;(2)(x﹣)÷,=,==x-y,當x=,y=-1時,原式=?+1=1.【點睛】本題考查特殊角的三角函數(shù)值、絕對值、負整數(shù)指數(shù)冪、零指數(shù)冪、分式的化簡求值,解答本題的關鍵是明確它們各自的計算方法.21、路燈高CD為5.1米.【解析】
根據(jù)AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,從而得到△ABN∽△ACD,利用相似三角形對應邊的比相等列出比例式求解即可.【詳解】設CD長為x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x米,∴△ABN∽△ACD,∴=,即,解得:x=5.1.經(jīng)檢驗,x=5.1是原方程的解,∴路燈高CD為5.1米.【點睛】本題考查了相似三角形的應用,解題的關鍵是根據(jù)已知條件得到平行線,從而證得相似三角形.22、(1)y=x2﹣x,點D的坐標為(2,﹣);(2)t=2;(3)M點的坐標為(2,0)或(6,0).【解析】
(1)利用待定系數(shù)法求拋物線解析式;利用配方法把一般式化為頂點式得到點D的坐標;(2)連接AC,如圖①,先計算出AB=4,則判斷平行四邊形OCBA為菱形,再證明△AOC和△ACB都是等邊三角形,接著證明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,則判斷△CMN為等邊三角形得到MN=CM,于是△AMN的周長=OA+CM,由于CM⊥OA時,CM的值最小,△AMN的周長最小,從而得到t的值;(3)先利用勾股定理的逆定理證明△OCD為直角三角形,∠COD=90°,設M(t,0),則E(t,t2-t),根據(jù)相似三角形的判定方法,當時,△AME∽△COD,即|t-4|:4=|t2-t|:,當時,△AME∽△DOC,即|t-4|:=|t2-t|:4,然后分別解絕對值方程可得到對應的M點的坐標.【詳解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,∴拋物線解析式為y=x2-x;∵y=x2-x=-2)2-;∴點D的坐標為(2,-);(2)連接AC,如圖①,AB==4,而OA=4,∴平行四邊形OCBA為菱形,∴OC=BC=4,∴C(2,2),∴AC==4,∴OC=OA=AC=AB=BC,∴△AOC和△ACB都是等邊三角形,∴∠AOC=∠COB=∠OCA=60°,而OC=AC,OM=AN,∴△OCM≌△ACN,∴CM=CN,∠OCM=∠ACN,∵∠OCM+∠ACM=60°,∴∠ACN+∠ACM=60°,∴△CMN為等邊三角形,∴MN=CM,∴△AMN的周長=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,當CM⊥OA時,CM的值最小,△AMN的周長最小,此時OM=2,∴t=2;(3)∵C(2,2),D(2,-),∴CD=,∵OD=,OC=4,∴OD2+OC2=CD2,∴△OCD為直角三角形,∠COD=90°,設M(t,0),則E(t,t2-t),∵∠AME=∠COD,∴當時,△AME∽△COD,即|t-4|:4=|t2-t|:,整理得|t2-t|=|t-4|,解方程t2-t=(t-4)得t1=4(舍去),t2=2,此時M點坐標為(2,0);解方程t2-t
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年PU聚酯封閉底漆行業(yè)深度研究分析報告
- 2025年直身鉆咀行業(yè)深度研究分析報告
- 2025年度荒山荒坡土地承包經(jīng)營權林業(yè)資源保護合同范本2篇
- 2025年高新技術產(chǎn)業(yè)投資風險評估合同書正規(guī)范本3篇
- 2025年度安全監(jiān)控錄像系統(tǒng)升級改造合同2篇
- 二零二五年度新材料技術研發(fā)出資人股權轉(zhuǎn)讓合同模板4篇
- 二零二五年度觸控一體機智能校園管理系統(tǒng)供銷合同4篇
- 2024-2025年中國債券型基金行業(yè)市場運行態(tài)勢與投資戰(zhàn)略咨詢報告
- 2025年中國煤炭安全設備行業(yè)全景評估及投資規(guī)劃建議報告
- 二零二五年度冷鮮肉冷鏈配送物流優(yōu)化合作協(xié)議2篇
- 《中華民族多元一體格局》
- 2023年四川省綿陽市中考數(shù)學試卷
- 南安市第三次全國文物普查不可移動文物-各鄉(xiāng)鎮(zhèn)、街道分布情況登記清單(表五)
- 選煤廠安全知識培訓課件
- 項目前期選址分析報告
- 急性肺栓塞搶救流程
- 《形象價值百萬》課件
- 紅色文化教育國內(nèi)外研究現(xiàn)狀范文十
- 中醫(yī)基礎理論-肝
- 小學外來人員出入校門登記表
- 《土地利用規(guī)劃學》完整課件
評論
0/150
提交評論