山東省青島市滄口2中學2023-2024學年中考數(shù)學押題試卷含解析_第1頁
山東省青島市滄口2中學2023-2024學年中考數(shù)學押題試卷含解析_第2頁
山東省青島市滄口2中學2023-2024學年中考數(shù)學押題試卷含解析_第3頁
山東省青島市滄口2中學2023-2024學年中考數(shù)學押題試卷含解析_第4頁
山東省青島市滄口2中學2023-2024學年中考數(shù)學押題試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省青島市滄口2中學2023-2024學年中考數(shù)學押題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.已知m=,n=,則代數(shù)式的值為()A.3 B.3 C.5 D.92.二次函數(shù)y=3(x﹣1)2+2,下列說法正確的是()A.圖象的開口向下B.圖象的頂點坐標是(1,2)C.當x>1時,y隨x的增大而減小D.圖象與y軸的交點坐標為(0,2)3.明明和亮亮都在同一直道A、B兩地間做勻速往返走鍛煉明明的速度小于亮亮的速度忽略掉頭等時間明明從A地出發(fā),同時亮亮從B地出發(fā)圖中的折線段表示從開始到第二次相遇止,兩人之間的距離米與行走時間分的函數(shù)關系的圖象,則A.明明的速度是80米分 B.第二次相遇時距離B地800米C.出發(fā)25分時兩人第一次相遇 D.出發(fā)35分時兩人相距2000米4.拋物線y=–x2+bx+c上部分點的橫坐標x、縱坐標y的對應值如下表所示:x…–2–1012…y…04664…從上表可知,下列說法錯誤的是A.拋物線與x軸的一個交點坐標為(–2,0) B.拋物線與y軸的交點坐標為(0,6)C.拋物線的對稱軸是直線x=0 D.拋物線在對稱軸左側(cè)部分是上升的5.在平面直角坐標系中,已知點A(﹣4,2),B(﹣6,﹣4),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應點A′的坐標是()A.(﹣2,1) B.(﹣8,4)C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)6.若,,則的值是()A.2 B.﹣2 C.4 D.﹣47.我們從不同的方向觀察同一物體時,可能看到不同的圖形,則從正面、左面、上面觀察都不可能看到矩形的是()A. B. C. D.8.某市2010年元旦這天的最高氣溫是8℃,最低氣溫是﹣2℃,則這天的最高氣溫比最低氣溫高()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃9.長城、故宮等是我國第一批成功入選世界遺產(chǎn)的文化古跡,長城總長約6700000米,將6700000用科學記數(shù)法表示應為()A.6.7×106B.6.7×10﹣6C.6.7×105D.0.67×10710.-的絕對值是()A.-4 B. C.4 D.0.411.如圖,在正方形ABCD中,G為CD邊中點,連接AG并延長,分別交對角線BD于點F,交BC邊延長線于點E.若FG=2,則AE的長度為()A.6 B.8C.10 D.1212.如圖所示的四張撲克牌背面完全相同,洗勻后背面朝上,則從中任意翻開一張,牌面數(shù)字是3的倍數(shù)的概率為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.中國古代的數(shù)學專著《九章算術》有方程組問題“五只雀,六只燕,共重1斤(等于16兩),雀重燕輕.互換其中一只,恰好一樣重.”設每只雀、燕的重量各為x兩,y兩,則根據(jù)題意,可得方程組為___.14.如圖,身高是1.6m的某同學直立于旗桿影子的頂端處,測得同一時刻該同學和旗桿的影子長分別為1.2m和9m.則旗桿的高度為________m.15.如圖,在矩形ABCD中,AD=4,點P是直線AD上一動點,若滿足△PBC是等腰三角形的點P有且只有3個,則AB的長為.16.如圖,點E在正方形ABCD的外部,∠DCE=∠DEC,連接AE交CD于點F,∠CDE的平分線交EF于點G,AE=2DG.若BC=8,則AF=_____.17.如圖,在正方形ABCD外取一點E,連接AE、BE、DE.過點A作AE的垂線交DE于點P.若AE=AP=1,PB=.下列結論:①△APD≌△AEB;②點B到直線AE的距離為;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正確結論的序號是.18.分解因式:=.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,在△ABC中,AD=15,AC=12,DC=9,點B是CD延長線上一點,連接AB,若AB=1.求:△ABD的面積.20.(6分)計算:2-1+20160-3tan30°+|-|21.(6分)先化簡,再求值:,再從的范圍內(nèi)選取一個你最喜歡的值代入,求值.22.(8分)某小學為每個班級配備了一種可以加熱的飲水機,該飲水機的工作程序是:放滿水后,接通電源,則自動開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機自動停止加熱,水溫開始下降,水溫y(℃)和通電時間x(min)成反比例關系,直至水溫降至室溫,飲水機再次自動加熱,重復上述過程.設某天水溫和室溫為20℃,接通電源后,水溫和時間的關系如下圖所示,回答下列問題:(1)分別求出當0≤x≤8和8<x≤a時,y和x之間的關系式;(2)求出圖中a的值;(3)李老師這天早上7:30將飲水機電源打開,若他想再8:10上課前能喝到不超過40℃的開水,問他需要在什么時間段內(nèi)接水.23.(8分)我們知道,平面內(nèi)互相垂直且有公共原點的兩條數(shù)軸構成平面直角坐標系,如果兩條數(shù)軸不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么這兩條數(shù)軸構成的是平面斜坐標系,兩條數(shù)軸稱為斜坐標系的坐標軸,公共原點稱為斜坐標系的原點,如圖1,經(jīng)過平面內(nèi)一點P作坐標軸的平行線PM和PN,分別交x軸和y軸于點M,N.點M、N在x軸和y軸上所對應的數(shù)分別叫做P點的x坐標和y坐標,有序?qū)崝?shù)對(x,y)稱為點P的斜坐標,記為P(x,y).(1)如圖2,ω=45°,矩形OABC中的一邊OA在x軸上,BC與y軸交于點D,OA=2,OC=l.①點A、B、C在此斜坐標系內(nèi)的坐標分別為A,B,C.②設點P(x,y)在經(jīng)過O、B兩點的直線上,則y與x之間滿足的關系為.③設點Q(x,y)在經(jīng)過A、D兩點的直線上,則y與x之間滿足的關系為.(2)若ω=120°,O為坐標原點.①如圖3,圓M與y軸相切原點O,被x軸截得的弦長OA=4,求圓M的半徑及圓心M的斜坐標.②如圖4,圓M的圓心斜坐標為M(2,2),若圓上恰有兩個點到y(tǒng)軸的距離為1,則圓M的半徑r的取值范圍是.24.(10分)關于x的一元二次方程x2﹣(2m﹣3)x+m2+1=1.(1)若m是方程的一個實數(shù)根,求m的值;(2)若m為負數(shù),判斷方程根的情況.25.(10分)如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D為AB邊上的一點,(1)求證:△ACE≌△BCD;(2)若DE=13,BD=12,求線段AB的長.26.(12分)已知P是⊙O外一點,PO交⊙O于點C,OC=CP=2,弦AB⊥OC,∠AOC的度數(shù)為60°,連接PB.求BC的長;求證:PB是⊙O的切線.27.(12分)某船的載重為260噸,容積為1000m1.現(xiàn)有甲、乙兩種貨物要運,其中甲種貨物每噸體積為8m1,乙種貨物每噸體積為2m1,若要充分利用這艘船的載重與容積,求甲、乙兩種貨物應各裝的噸數(shù)(設裝運貨物時無任何空隙).

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

由已知可得:,=.【詳解】由已知可得:,原式=故選:B【點睛】考核知識點:二次根式運算.配方是關鍵.2、B【解析】

由拋物線解析式可求得其開口方向、頂點坐標、最值及增減性,則可判斷四個選項,可求得答案.【詳解】解:A、因為a=3>0,所以開口向上,錯誤;B、頂點坐標是(1,2),正確;C、當x>1時,y隨x增大而增大,錯誤;D、圖象與y軸的交點坐標為(0,5),錯誤;故選:B.【點睛】考查二次函數(shù)的性質(zhì),掌握二次函數(shù)的頂點式是解題的關鍵,即在y=a(x﹣h)2+k中,對稱軸為x=h,頂點坐標為(h,k).3、B【解析】

C、由二者第二次相遇的時間結合兩次相遇分別走過的路程,即可得出第一次相遇的時間,進而得出C選項錯誤;A、當時,出現(xiàn)拐點,顯然此時亮亮到達A地,利用速度路程時間可求出亮亮的速度及兩人的速度和,二者做差后可得出明明的速度,進而得出A選項錯誤;B、根據(jù)第二次相遇時距離B地的距離明明的速度第二次相遇的時間、B兩地間的距離,即可求出第二次相遇時距離B地800米,B選項正確;D、觀察函數(shù)圖象,可知:出發(fā)35分鐘時亮亮到達A地,根據(jù)出發(fā)35分鐘時兩人間的距離明明的速度出發(fā)時間,即可求出出發(fā)35分鐘時兩人間的距離為2100米,D選項錯誤.【詳解】解:第一次相遇兩人共走了2800米,第二次相遇兩人共走了米,且二者速度不變,

出發(fā)20分時兩人第一次相遇,C選項錯誤;

亮亮的速度為米分,

兩人的速度和為米分,

明明的速度為米分,A選項錯誤;

第二次相遇時距離B地距離為米,B選項正確;

出發(fā)35分鐘時兩人間的距離為米,D選項錯誤.

故選:B.【點睛】本題考查了一次函數(shù)的應用,觀察函數(shù)圖象,逐一分析四個選項的正誤是解題的關鍵.4、C【解析】當x=-2時,y=0,

∴拋物線過(-2,0),

∴拋物線與x軸的一個交點坐標為(-2,0),故A正確;

當x=0時,y=6,

∴拋物線與y軸的交點坐標為(0,6),故B正確;

當x=0和x=1時,y=6,

∴對稱軸為x=,故C錯誤;

當x<時,y隨x的增大而增大,

∴拋物線在對稱軸左側(cè)部分是上升的,故D正確;

故選C.5、D【解析】

根據(jù)在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標的比等于k或-k,即可求得答案.【詳解】∵點A(-4,2),B(-6,-4),以原點O為位似中心,相似比為,把△ABO縮小,∴點A的對應點A′的坐標是:(-2,1)或(2,-1).故選D.【點睛】此題考查了位似圖形與坐標的關系.此題比較簡單,注意在平面直角坐標系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應點的坐標比等于±k.6、D【解析】因為,所以,因為,故選D.7、C【解析】

主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.依此找到從正面、左面、上面觀察都不可能看到矩形的圖形.【詳解】A、主視圖為長方形,左視圖為長方形,俯視圖為圓,故本選項錯誤;B、主視圖為長方形,左視圖為長方形,俯視圖為長方形,故本選項錯誤;C、主視圖為等腰梯形,左視圖為等腰梯形,俯視圖為圓環(huán),從正面、左面、上面觀察都不可能看到長方形,故本選項正確;D、主視圖為三角形,左視圖為三角形,俯視圖為有對角線的矩形,故本選項錯誤.故選C.【點睛】本題重點考查了三視圖的定義考查學生的空間想象能力,關鍵是根據(jù)主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形解答.8、A【解析】

用最高氣溫減去最低氣溫,再根據(jù)有理數(shù)的減法運算法則“減去一個數(shù)等于加上這個數(shù)的相反數(shù)”即可求得答案.【詳解】8-(-2)=8+2=10℃.即這天的最高氣溫比最低氣溫高10℃.故選A.9、A【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】解:6700000=6.7×106,故選:A【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.10、B【解析】

直接用絕對值的意義求解.【詳解】?的絕對值是.故選B.【點睛】此題是絕對值題,掌握絕對值的意義是解本題的關鍵.11、D【解析】

根據(jù)正方形的性質(zhì)可得出AB∥CD,進而可得出△ABF∽△GDF,根據(jù)相似三角形的性質(zhì)可得出=2,結合FG=2可求出AF、AG的長度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【詳解】解:∵四邊形ABCD為正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴=1,∴AG=GE∴AE=2AG=1.故選:D.【點睛】本題考查了相似三角形的判定與性質(zhì)、正方形的性質(zhì),利用相似三角形的性質(zhì)求出AF的長度是解題的關鍵.12、C【解析】

根據(jù)題意確定所有情況的數(shù)目,再確定符合條件的數(shù)目,根據(jù)概率的計算公式即可.【詳解】解:由題意可知,共有4種情況,其中是3的倍數(shù)的有6和9,∴是3的倍數(shù)的概率,故答案為:C.【點睛】本題考查了概率的計算,解題的關鍵是熟知概率的計算公式.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】設每只雀、燕的重量各為x兩,y兩,由題意得:故答案是:或.14、1【解析】試題分析:利用相似三角形的相似比,列出方程,通過解方程求出旗桿的高度即可.解:∵同一時刻物高與影長成正比例.設旗桿的高是xm.∴1.6:1.2=x:9∴x=1.即旗桿的高是1米.故答案為1.考點:相似三角形的應用.15、1.【解析】試題分析:如圖,當AB=AD時,滿足△PBC是等腰三角形的點P有且只有3個,△P1BC,△P2BC是等腰直角三角形,△P3BC是等腰直角三角形(P3B=P3C),則AB=AD=1,故答案為1.考點:矩形的性質(zhì);等腰三角形的性質(zhì);勾股定理;分類討論.16、【解析】

如圖作DH⊥AE于H,連接CG.設DG=x,∵∠DCE=∠DEC,∴DC=DE,∵四邊形ABCD是正方形,∴AD=DC,∠ADF=90°,∴DA=DE,∵DH⊥AE,∴AH=HE=DG,在△GDC與△GDE中,,∴△GDC≌△GDE(SAS),∴GC=GE,∠DEG=∠DCG=∠DAF,∵∠AFD=∠CFG,∴∠ADF=∠CGF=90°,∴2∠GDE+2∠DEG=90°,∴∠GDE+∠DEG=45°,∴∠DGH=45°,在Rt△ADH中,AD=8,AH=x,DH=x,∴82=x2+(x)2,解得:x=,∵△ADH∽△AFD,∴,∴AF==4.故答案為4.17、①③⑤【解析】

①利用同角的余角相等,易得∠EAB=∠PAD,再結合已知條件利用SAS可證兩三角形全等;

②過B作BF⊥AE,交AE的延長線于F,利用③中的∠BEP=90°,利用勾股定理可求BE,結合△AEP是等腰直角三角形,可證△BEF是等腰直角三角形,再利用勾股定理可求EF、BF;

③利用①中的全等,可得∠APD=∠AEB,結合三角形的外角的性質(zhì),易得∠BEP=90°,即可證;

④連接BD,求出△ABD的面積,然后減去△BDP的面積即可;

⑤在Rt△ABF中,利用勾股定理可求AB2,即是正方形的面積.【詳解】①∵∠EAB+∠BAP=90°,∠PAD+∠BAP=90°,

∴∠EAB=∠PAD,

又∵AE=AP,AB=AD,

∵在△APD和△AEB中,

,

∴△APD≌△AEB(SAS);

故此選項成立;

③∵△APD≌△AEB,

∴∠APD=∠AEB,

∵∠AEB=∠AEP+∠BEP,∠APD=∠AEP+∠PAE,

∴∠BEP=∠PAE=90°,

∴EB⊥ED;

故此選項成立;

②過B作BF⊥AE,交AE的延長線于F,

∵AE=AP,∠EAP=90°,

∴∠AEP=∠APE=45°,

又∵③中EB⊥ED,BF⊥AF,

∴∠FEB=∠FBE=45°,

又∵BE=

=

=

∴BF=EF=

,

故此選項不正確;

④如圖,連接BD,在Rt△AEP中,

∵AE=AP=1,

∴EP=

,

又∵PB=

,

∴BE=

∵△APD≌△AEB,

∴PD=BE=

,

∴S

△ABP+S

△ADP=S

△ABD-S

△BDP=

S

正方形ABCD-

×DP×BE=

×(4+

)-

×

×

=

+

故此選項不正確.

⑤∵EF=BF=

,AE=1,

∴在Rt△ABF中,AB

2=(AE+EF)

2+BF

2=4+

,

∴S

正方形ABCD=AB

2=4+

,

故此選項正確.

故答案為①③⑤.【點睛】本題考查了全等三角形的判定和性質(zhì)的運用、正方形的性質(zhì)的運用、正方形和三角形的面積公式的運用、勾股定理的運用等知識.18、a(a+2)(a-2)【解析】

三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、2.【解析】試題分析:由勾股定理的逆定理證明△ADC是直角三角形,∠C=90°,再由勾股定理求出BC,得出BD,即可得出結果.解:在△ADC中,AD=15,AC=12,DC=9,AC2+DC2=122+92=152=AD2,即AC2+DC2=AD2,∴△ADC是直角三角形,∠C=90°,在Rt△ABC中,BC===16,∴BD=BC﹣DC=16﹣9=7,∴△ABD的面積=×7×12=2.20、【解析】

原式第一項利用負指數(shù)冪法則計算,第二項利用零指數(shù)冪法則計算,第三項利用特殊角的三角函數(shù)值化簡,最后一項利用絕對值的代數(shù)意義化簡,即可得到結果;【詳解】原式===.【點睛】此題考查實數(shù)的混合運算.此題難度不大,注意解決此類題目的關鍵是熟練掌握負整數(shù)指數(shù)冪、零指數(shù)冪、特殊角的三角函數(shù)值、絕對值等考點的運算.21、原式=,把x=2代入的原式=1.【解析】試題分析:先對原分式的分子、分母進行因式分解,然后按順序進行乘除法運算、加減法運算,最后選取有意義的數(shù)值代入計算即可.試題解析:原式==當x=2時,原式=122、(1)當0≤x≤8時,y=10x+20;當8<x≤a時,y=;(2)40;(3)要在7:50~8:10時間段內(nèi)接水.【解析】

(1)當0≤x≤8時,設y=k1x+b,將(0,20),(8,100)的坐標分別代入y=k1x+b,即可求得k1、b的值,從而得一次函數(shù)的解析式;當8<x≤a時,設y=,將(8,100)的坐標代入y=,求得k2的值,即可得反比例函數(shù)的解析式;(2)把y=20代入反比例函數(shù)的解析式,即可求得a值;(3)把y=40代入反比例函數(shù)的解析式,求得對應x的值,根據(jù)想喝到不低于40℃的開水,結合函數(shù)圖象求得x的取值范圍,從而求得李老師接水的時間范圍.【詳解】解:(1)當0≤x≤8時,設y=k1x+b,將(0,20),(8,100)的坐標分別代入y=k1x+b,可求得k1=10,b=20∴當0≤x≤8時,y=10x+20.當8<x≤a時,設y=,將(8,100)的坐標代入y=,得k2=800∴當8<x≤a時,y=.綜上,當0≤x≤8時,y=10x+20;當8<x≤a時,y=(2)將y=20代入y=,解得x=40,即a=40.(3)當y=40時,x==20∴要想喝到不低于40℃的開水,x需滿足8≤x≤20,即李老師要在7:38到7:50之間接水.【點睛】本題主要考查了一次函數(shù)及反比例函數(shù)的應用題,是一個分段函數(shù)問題,分段函數(shù)是在不同區(qū)間有不同對應方式的函數(shù),要特別注意自變量取值范圍的劃分,既要科學合理,又要符合實際.23、(1)①(2,0),(1,),(﹣1,);②y=x;③y=x,y=﹣x+;(2)①半徑為4,M(,);②﹣1<r<+1.【解析】

(1)①如圖2-1中,作BE∥OD交OA于E,CF∥OD交x軸于F.求出OE、OF、CF、OD、BE即可解決問題;②如圖2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行線分線段成比例定理即可解決問題;③如圖3-3中,作QM∥OA交OD于M.利用平行線分線段成比例定理即可解決問題;(2)①如圖3中,作MF⊥OA于F,作MN∥y軸交OA于N.解直角三角形即可解決問題;②如圖4中,連接OM,作MK∥x軸交y軸于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1時,⊙M的半徑即可解決問題.【詳解】(1)①如圖2﹣1中,作BE∥OD交OA于E,CF∥OD交x軸于F,由題意OC=CD=1,OA=BC=2,∴BD=OE=1,OD=CF=BE=,∴A(2,0),B(1,),C(﹣1,),故答案為(2,0),(1,),(﹣1,);②如圖2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,∵OD∥BE,OD∥PM,∴BE∥PM,∴=,∴,∴y=x;③如圖2﹣3中,作QM∥OA交OD于M,則有,∴,∴y=﹣x+,故答案為y=x,y=﹣x+;(2)①如圖3中,作MF⊥OA于F,作MN∥y軸交OA于N,∵ω=120°,OM⊥y軸,∴∠MOA=30°,∵MF⊥OA,OA=4,∴OF=FA=2,∴FM=2,OM=2FM=4,∵MN∥y軸,∴MN⊥OM,∴MN=,ON=2MN=,∴M(,);②如圖4中,連接OM,作MK∥x軸交y軸于K,作MN⊥OK于N交⊙M于E、F.∵MK∥x軸,ω=120°,∴∠MKO=60°,∵MK=OK=2,∴△MKO是等邊三角形,∴MN=,當FN=1時,MF=﹣1,當EN=1時,ME=+1,觀察圖象可知當⊙M的半徑r的取值范圍為﹣1<r<+1.故答案為:﹣1<r<+1.【點睛】本題考查圓綜合題、平行線分線段成比例定理、等邊三角形的判定和性質(zhì)、平面直角坐標系等知識,解題的關鍵是學會添加常用輔助線,構造平行線解決問題,屬于中考壓軸題.24、(1);(2)方程有兩個不相等的實根.【解析】分析:(1)由方程根的定義,代入可得到關于m的方程,則可求得m的值;

(2)計算方程根的判別式,判斷判別式的符號即可.詳解:(1)∵m是方程的一個實數(shù)根,

∴m2-(2m-3)m+m2+1=1,

∴m=?;

(2)△=b2-4ac=-12m+5,

∵m<1,

∴-12m>1.

∴△=-12m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論