版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領
文檔簡介
寧夏銀川市名校2023-2024學年中考二模數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,若干個全等的正五邊形排成環(huán)狀,圖中所示的是前3個正五邊形,要完成這一圓環(huán)還需正五邊形的個數(shù)為()A.10 B.9 C.8 D.72.如圖,在三角形ABC中,∠ACB=90°,∠B=50°,將此三角形繞點C沿順時針方向旋轉(zhuǎn)后得到三角形A′B′C,若點B′恰好落在線段AB上,AC、A′B′交于點O,則∠COA′的度數(shù)是()A.50° B.60° C.70° D.80°3.在,,,這四個數(shù)中,比小的數(shù)有()個.A. B. C. D.4.下列運算結(jié)果正確的是()A.(x3﹣x2+x)÷x=x2﹣xB.(﹣a2)?a3=a6C.(﹣2x2)3=﹣8x6D.4a2﹣(2a)2=2a25.如圖,數(shù)軸上表示的是下列哪個不等式組的解集()A. B. C. D.6.函數(shù)y=ax2與y=﹣ax+b的圖象可能是()A. B.C. D.7.如圖,在Rt△ABC中,∠ACB=90°,BC=12,AC=5,分別以點A,B為圓心,大于線段AB長度的一半為半徑作弧,相交于點E,F(xiàn),過點E,F(xiàn)作直線EF,交AB于點D,連接CD,則△ACD的周長為()A.13 B.17 C.18 D.258.鄭州地鐵Ⅰ號線火車站站口分布如圖所示,有A,B,C,D,E五個進出口,小明要從這里乘坐地鐵去新鄭機場,回來后仍從這里出站,則他恰好選擇從同一個口進出的概率是()A. B. C. D.9.(2011?黑河)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,現(xiàn)有下列結(jié)論:①b2﹣4ac>0②a>0③b>0④c>0⑤9a+3b+c<0,則其中結(jié)論正確的個數(shù)是() A、2個 B、3個 C、4個 D、5個10.下列計算正確的是()A.2x+3x=5x B.2x?3x=6x C.(x3)2=5 D.x3﹣x2=x二、填空題(共7小題,每小題3分,滿分21分)11.已知,正六邊形的邊長為1cm,分別以它的三個不相鄰的頂點為圓心,1cm長為半徑畫弧(如圖),則所得到的三條弧的長度之和為__________cm(結(jié)果保留π).12.如圖,點、、在直線上,點,,在直線上,以它們?yōu)轫旤c依次構(gòu)造第一個正方形,第二個正方形,若的橫坐標是1,則的坐標是______,第n個正方形的面積是______.13.如圖,AB為⊙O的直徑,弦CD⊥AB于點E,已知CD=6,EB=1,則⊙O的半徑為_____.14.如圖,點G是的重心,AG的延長線交BC于點D,過點G作交AC于點E,如果,那么線段GE的長為______.15.如圖所示,邊長為1的小正方形構(gòu)成的網(wǎng)格中,半徑為1的⊙O的圓心O在格點上,則∠AED的正切值等于__________.16.如圖,?ABCD中,對角線AC,BD相交于點O,且AC⊥BD,請你添加一個適當?shù)臈l件________,使ABCD成為正方形.17.若一個多邊形的內(nèi)角和是900o,則這個多邊形是邊形.三、解答題(共7小題,滿分69分)18.(10分)為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計.現(xiàn)從該校隨機抽取名學生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學生只能選擇其中一項).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:求n的值;若該校學生共有1200人,試估計該校喜愛看電視的學生人數(shù);若調(diào)查到喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.19.(5分)如圖所示,正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).把△ABC沿BA方向平移后,點A移到點A1,在網(wǎng)格中畫出平移后得到的△A1B1C1;把△A1B1C1繞點A1按逆時針方向旋轉(zhuǎn)90°,在網(wǎng)格中畫出旋轉(zhuǎn)后的△A1B2C2;如果網(wǎng)格中小正方形的邊長為1,求點B經(jīng)過(1)、(2)變換的路徑總長.20.(8分)如圖,是的外接圓,是的直徑,過圓心的直線于,交于,是的切線,為切點,連接,.(1)求證:直線為的切線;(2)求證:;(3)若,,求的長.21.(10分)如圖,AB為☉O的直徑,CD與☉O相切于點E,交AB的延長線于點D,連接BE,過點O作OC∥BE,交☉O于點F,交切線于點C,連接AC.(1)求證:AC是☉O的切線;(2)連接EF,當∠D=°時,四邊形FOBE是菱形.22.(10分)計算:sin30°﹣+(π﹣4)0+|﹣|.23.(12分)某船的載重為260噸,容積為1000m1.現(xiàn)有甲、乙兩種貨物要運,其中甲種貨物每噸體積為8m1,乙種貨物每噸體積為2m1,若要充分利用這艘船的載重與容積,求甲、乙兩種貨物應各裝的噸數(shù)(設裝運貨物時無任何空隙).24.(14分)某居民小區(qū)一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.(1)請你用直尺和圓規(guī)作出這個輸水管道的圓形截面的圓心(保留作圖痕跡);(2)若這個輸水管道有水部分的水面寬AB=8cm,水面最深地方的高度為2cm,求這個圓形截面的半徑.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】分析:先根據(jù)多邊形的內(nèi)角和公式(n﹣2)?180°求出正五邊形的每一個內(nèi)角的度數(shù),再延長五邊形的兩邊相交于一點,并根據(jù)四邊形的內(nèi)角和求出這個角的度數(shù),然后根據(jù)周角等于360°求出完成這一圓環(huán)需要的正五邊形的個數(shù),然后減去3即可得解.詳解:∵五邊形的內(nèi)角和為(5﹣2)?180°=540°,∴正五邊形的每一個內(nèi)角為540°÷5=18°,如圖,延長正五邊形的兩邊相交于點O,則∠1=360°﹣18°×3=360°﹣324°=36°,360°÷36°=1.∵已經(jīng)有3個五邊形,∴1﹣3=7,即完成這一圓環(huán)還需7個五邊形.故選D.點睛:本題考查了多邊形的內(nèi)角和公式,延長正五邊形的兩邊相交于一點,并求出這個角的度數(shù)是解題的關鍵,注意需要減去已有的3個正五邊形.2、B【解析】試題分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋轉(zhuǎn)的性質(zhì)可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故選B.考點:旋轉(zhuǎn)的性質(zhì).3、B【解析】
比較這些負數(shù)的絕對值,絕對值大的反而小.【詳解】在﹣4、﹣、﹣1、﹣這四個數(shù)中,比﹣2小的數(shù)是是﹣4和﹣.故選B.【點睛】本題主要考查負數(shù)大小的比較,解題的關鍵時負數(shù)比較大小時,絕對值大的數(shù)反而小.4、C【解析】
根據(jù)多項式除以單項式法則、同底數(shù)冪的乘法、積的乘方與冪的乘方及合并同類項法則計算可得.【詳解】A、(x3-x2+x)÷x=x2-x+1,此選項計算錯誤;B、(-a2)?a3=-a5,此選項計算錯誤;C、(-2x2)3=-8x6,此選項計算正確;D、4a2-(2a)2=4a2-4a2=0,此選項計算錯誤.故選:C.【點睛】本題主要考查整式的運算,解題的關鍵是掌握多項式除以單項式法則、同底數(shù)冪的乘法、積的乘方與冪的乘方及合并同類項法則.5、B【解析】
根據(jù)數(shù)軸上不等式解集的表示方法得出此不等式組的解集,再對各選項進行逐一判斷即可.【詳解】解:由數(shù)軸上不等式解集的表示方法得出此不等式組的解集為:x≥-3,
A、不等式組的解集為x>-3,故A錯誤;B、不等式組的解集為x≥-3,故B正確;C、不等式組的解集為x<-3,故C錯誤;D、不等式組的解集為-3<x<5,故D錯誤.故選B.【點睛】本題考查的是在數(shù)軸上表示一元一次不等式組的解集,根據(jù)題意得出數(shù)軸上不等式組的解集是解答此題的關鍵.6、B【解析】選項中,由圖可知:在,;在,,∴,所以A錯誤;選項中,由圖可知:在,;在,,∴,所以B正確;選項中,由圖可知:在,;在,,∴,所以C錯誤;選項中,由圖可知:在,;在,,∴,所以D錯誤.故選B.點睛:在函數(shù)與中,相同的系數(shù)是“”,因此只需根據(jù)“拋物線”的開口方向和“直線”的變化趨勢確定出兩個解析式中“”的符號,看兩者的符號是否一致即可判斷它們在同一坐標系中的圖象情況,而這與“b”的取值無關.7、C【解析】在Rt△ABC中,∠ACB=90°,BC=12,AC=5,根據(jù)勾股定理求得AB=13.根據(jù)題意可知,EF為線段AB的垂直平分線,在Rt△ABC中,根據(jù)直角三角形斜邊的中線等于斜邊的一半可得CD=AD=AB,所以△ACD的周長為AC+CD+AD=AC+AB=5+13=18.故選C.8、C【解析】
列表得出進出的所有情況,再從中確定出恰好選擇從同一個口進出的結(jié)果數(shù),繼而根據(jù)概率公式計算可得.【詳解】解:列表得:ABCDEAAABACADAEABABBBCBDBEBCACBCCCDCECDADBDCDDDEDEAEBECEDEEE∴一共有25種等可能的情況,恰好選擇從同一個口進出的有5種情況,∴恰好選擇從同一個口進出的概率為=,故選C.【點睛】此題主要考查了列表法求概率,列表法可以不重復不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適用于兩步或兩步以上完成的事件;解題時還要注意是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.9、B【解析】分析:由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據(jù)拋物線與x軸交點及x=1時二次函數(shù)的值的情況進行推理,進而對所得結(jié)論進行判斷.解答:解:①根據(jù)圖示知,二次函數(shù)與x軸有兩個交點,所以△=b2-4ac>0;故①正確;
②根據(jù)圖示知,該函數(shù)圖象的開口向上,
∴a>0;
故②正確;
③又對稱軸x=-=1,
∴<0,
∴b<0;
故本選項錯誤;
④該函數(shù)圖象交于y軸的負半軸,
∴c<0;
故本選項錯誤;
⑤根據(jù)拋物線的對稱軸方程可知:(-1,0)關于對稱軸的對稱點是(3,0);
當x=-1時,y<0,所以當x=3時,也有y<0,即9a+3b+c<0;故⑤正確.
所以①②⑤三項正確.
故選B.10、A【解析】
依據(jù)合并同類項法則、單項式乘單項式法則、積的乘方法則進行判斷即可.【詳解】A、2x+3x=5x,故A正確;B、2x?3x=6x2,故B錯誤;C、(x3)2=x6,故C錯誤;D、x3與x2不是同類項,不能合并,故D錯誤.故選A.【點睛】本題主要考查的是整式的運算,熟練掌握相關法則是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、【解析】考點:弧長的計算;正多邊形和圓.分析:本題主要考查求正多邊形的每一個內(nèi)角,以及弧長計算公式.解:方法一:先求出正六邊形的每一個內(nèi)角==120°,所得到的三條弧的長度之和=3×=2πcm;方法二:先求出正六邊形的每一個外角為60°,得正六邊形的每一個內(nèi)角120°,每條弧的度數(shù)為120°,三條弧可拼成一整圓,其三條弧的長度之和為2πcm.12、(4,2),【解析】
由的橫坐標是1,可得,利用兩個函數(shù)解析式求出點、的坐標,得出的長度以及第1個正方形的面積,求出的坐標;然后再求出的坐標,得出第2個正方形的面積,求出的坐標;再求出、的坐標,得出第3個正方形的面積;從而得出規(guī)律即可得到第n個正方形的面積.【詳解】解:點、、在直線上,的橫坐標是1,
,
點,,在直線上,
,,
,,
第1個正方形的面積為:;
,
,,,
第2個正方形的面積為:;
,
,,
第3個正方形的面積為:;
,
第n個正方形的面積為:.
故答案為,.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征,正方形的性質(zhì)以及規(guī)律型中圖形的變化規(guī)律,解題的關鍵是找出規(guī)律本題難度適中,解決該題型題目時,根據(jù)給定的條件求出第1、2、3個正方形的邊長,根據(jù)數(shù)據(jù)的變化找出變化規(guī)律是關鍵.13、1【解析】
解:連接OC,∵AB為⊙O的直徑,AB⊥CD,∴CE=DE=CD=×6=3,設⊙O的半徑為xcm,則OC=xcm,OE=OB﹣BE=x﹣1,在Rt△OCE中,OC2=OE2+CE2,∴x2=32+(x﹣1)2,解得:x=1,∴⊙O的半徑為1,故答案為1.【點睛】本題利用了垂徑定理和勾股定理求解,熟練掌握并應用定理是解題的關鍵.14、2【解析】分析:由點G是△ABC重心,BC=6,易得CD=3,AG:AD=2:3,又由GE∥BC,可證得△AEG∽△ACD,然后由相似三角形的對應邊成比例,即可求得線段GE的長.詳解:∵點G是△ABC重心,BC=6,∴CD=BC=3,AG:AD=2:3,∵GE∥BC,∴△AEG∽△ADC,∴GE:CD=AG:AD=2:3,∴GE=2.故答案為2.點睛:本題考查了三角形重心的定義和性質(zhì)、相似三角形的判定和性質(zhì).利用三角形重心的性質(zhì)得出AG:AD=2:3是解題的關鍵.15、【解析】
根據(jù)同弧或等弧所對的圓周角相等來求解.【詳解】解:∵∠E=∠ABD,∴tan∠AED=tan∠ABD==.故選D.【點睛】本題利用了圓周角定理(同弧或等弧所對的圓周角相等)和正切的概念求解.16、∠BAD=90°(不唯一)【解析】
根據(jù)正方形的判定定理添加條件即可.【詳解】解:∵平行四邊形ABCD的對角線AC與BD相交于點O,且AC⊥BD,∴四邊形ABCD是菱形,當∠BAD=90°時,四邊形ABCD為正方形.故答案為:∠BAD=90°.【點睛】本題考查了正方形的判定:先判定平行四邊形是菱形,判定這個菱形有一個角為直角.17、七【解析】
根據(jù)多邊形的內(nèi)角和公式,列式求解即可.【詳解】設這個多邊形是邊形,根據(jù)題意得,,解得.故答案為.【點睛】本題主要考查了多邊形的內(nèi)角和公式,熟記公式是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)50;(2)240;(3).【解析】
用喜愛社會實踐的人數(shù)除以它所占的百分比得到n的值;先計算出樣本中喜愛看電視的人數(shù),然后用1200乘以樣本中喜愛看電視人數(shù)所占的百分比,即可估計該校喜愛看電視的學生人數(shù);畫樹狀圖展示12種等可能的結(jié)果數(shù),再找出恰好抽到2名男生的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1);(2)樣本中喜愛看電視的人數(shù)為(人,,所以估計該校喜愛看電視的學生人數(shù)為240人;(3)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中恰好抽到2名男生的結(jié)果數(shù)為6,所以恰好抽到2名男生的概率.【點睛】本題考查了列表法與樹狀圖法;利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率,也考查了統(tǒng)計圖.19、(1)(2)作圖見解析;(3).【解析】
(1)利用平移的性質(zhì)畫圖,即對應點都移動相同的距離.(2)利用旋轉(zhuǎn)的性質(zhì)畫圖,對應點都旋轉(zhuǎn)相同的角度.(3)利用勾股定理和弧長公式求點B經(jīng)過(1)、(2)變換的路徑總長.【詳解】解:(1)如答圖,連接AA1,然后從C點作AA1的平行線且A1C1=AC,同理找到點B1,分別連接三點,△A1B1C1即為所求.(2)如答圖,分別將A1B1,A1C1繞點A1按逆時針方向旋轉(zhuǎn)90°,得到B2,C2,連接B2C2,△A1B2C2即為所求.(3)∵,∴點B所走的路徑總長=.考點:1.網(wǎng)格問題;2.作圖(平移和旋轉(zhuǎn)變換);3.勾股定理;4.弧長的計算.20、(1)證明見解析;(2)證明見解析;(3)1.【解析】
(1)連接OA,由OP垂直于AB,利用垂徑定理得到D為AB的中點,即OP垂直平分AB,可得出AP=BP,再由OA=OB,OP=OP,利用SSS得出三角形AOP與三角形BOP全等,由PA為圓的切線,得到OA垂直于AP,利用全等三角形的對應角相等及垂直的定義得到OB垂直于BP,即PB為圓O的切線;
(2)由一對直角相等,一對公共角,得出三角形AOD與三角形OAP相似,由相似得比例,列出關系式,由OA為EF的一半,等量代換即可得證.【詳解】(1)連接OB,
∵PB是⊙O的切線,
∴∠PBO=90°.
∵OA=OB,BA⊥PO于D,
∴AD=BD,∠POA=∠POB.
又∵PO=PO,
∴△PAO≌△PBO.
∴∠PAO=∠PBO=90°,
∴直線PA為⊙O的切線.(2)由(1)可知,,,,=90,,,,即,是直徑,是半徑,,,整理得;(3)是中點,是中點,是的中位線,,,,是直角三角形,在中,,,,,,則,、是半徑,,在中,,,由勾股定理得:,即,解得:或(舍去),,.【點睛】本題考查了切線的判定與性質(zhì),相似及全等三角形的判定與性質(zhì)以及銳角三角函數(shù)關系等知識,熟練掌握切線的判定與性質(zhì)是解本題的關鍵.21、(1)詳見解析;(2)30.【解析】
(1)利用切線的性質(zhì)得∠CEO=90°,再證明△OCA≌△OCE得到∠CAO=∠CEO=90°,然后根據(jù)切線的判定定理得到結(jié)論;(2)利用四邊形FOBE是菱形得到OF=OB=BF=EF,則可判定△OBE為等邊三角形,所以∠BOE=60°,然后利用互余可確定∠D的度數(shù).【詳解】(1)證明:∵CD與⊙O相切于點E,∴OE⊥CD,∴∠CEO=90°,又∵OC∥BE,∴∠COE=∠OEB,∠OBE=∠COA∵OE=OB,∴∠OEB=∠OBE,∴∠COE=∠COA,又
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年不含汽飲料生產(chǎn)線項目可行性研究報告
- 住宅區(qū)機電安裝工程勞務合同
- 2024至2030年中國純棉防羽布數(shù)據(jù)監(jiān)測研究報告
- 農(nóng)業(yè)銀行企業(yè)購房擔保借款合同
- 福建省百校2025屆高三11月聯(lián)考語文試題及答案
- 水利工程可行性研究合同
- 土地承包經(jīng)營權(quán)轉(zhuǎn)讓合同協(xié)議書
- 金融行業(yè)反洗錢管理制度
- 市政工程頂管施工合同細則
- 三年級英語上冊 【分層訓練】英語課時練習-Unit2Colors第六課時(含答案)(人教PEP)
- 1.1公有制為主體+多種所有制經(jīng)濟共同發(fā)展課件-高中政治統(tǒng)編版必修二經(jīng)濟與社會
- 2024年中國空氣凈化節(jié)能燈市場調(diào)查研究報告
- 2024年有償贈與合同范本
- 2024-2025學年人教版物理九年級上學期期中測試物理模擬試卷
- 某食品有限公司安全生產(chǎn)風險評估分級管控手冊
- (工作計劃)非物質(zhì)文化遺產(chǎn)保護方案
- 下肢深靜脈血栓的預防和護理新進展
- 大學生國家安全教育學習通超星期末考試答案章節(jié)答案2024年
- 學術(shù)論文文獻閱讀與機助漢英翻譯智慧樹知到答案2024年重慶大學
- 2024分布式光伏并網(wǎng)發(fā)電系統(tǒng)設計導則
- 老年心房顫動診治中國專家共識(2024)解讀
評論
0/150
提交評論