版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
山東省臨沂市莒南縣筵賓中學高二數(shù)學文模擬試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項中,只有是一個符合題目要求的1.不等式(x+5)(3﹣2x)≤6的解集是()A.{x|x≤﹣1或x} B.{x|﹣1≤x} C.{x|x或x≥﹣1} D.{x|x≤﹣1}參考答案:C【考點】一元二次不等式的解法.【分析】把不等式化為一般形式,根據(jù)解題步驟寫出解集即可.【解答】解:不等式(x+5)(3﹣2x)≤6可化為2x2+7x﹣9≥0,即(x﹣1)(2x+9)≥0,解得x≤﹣或x≥1;∴原不等式的解集是{x|x≤﹣或x≥1}.故選:C.2.在△ABC中,已知a=17,b=24,A=45°,則此三角形()A.無解 B.有兩解C.有一解 D.解的個數(shù)不確定參考答案:B【考點】正弦定理.【分析】由題意求出a邊上的高h,畫出圖象后,結合條件判斷出此三角形解的情況.【解答】解:由題意知,a=17,b=24,A=45°則c邊上的高h=bsinA==12,如右圖所示:因12<a=17<b,所以此三角形有兩解,故選B.【點評】本題考查了三角形解的情況,以及數(shù)形結合思想.3.已知,則不等式等價于
(
)A.
B.C.
D.參考答案:C4.已知
(
)
A.
B.
C.
D.
參考答案:D5.已知x,y滿足,則z=的取值范圍為(
)A.(﹣1,] B.(﹣∞,﹣1)∪[,+∞) C.[﹣,] D.(﹣∞,﹣]∪[,+∞)參考答案:B【考點】簡單線性規(guī)劃.【專題】數(shù)形結合;定義法;不等式的解法及應用.【分析】作出不等式組對應的平面區(qū)域,利用直線斜率的幾何意義,進行求解即可.【解答】解:作出不等式組對應的平面區(qū)域如圖:z=的幾何意義是區(qū)域內(nèi)的點到定點D(0,﹣5)的斜率,由圖象z≥kAD,或k<kBC=﹣1,由得,即A(3,8),此時kAD==,故z≥,或k<﹣1,故選:B【點評】本題主要考查線性規(guī)劃的應用,利用直線的斜率公式結合數(shù)形結合是解決本題的關鍵.6.在中,角所對邊長分別為,若,則的最小值為(
)A.
B.
C.
D.參考答案:C略7.過原點且傾斜角為的直線被圓所截得的弦長為A.
B.2
C.
D.2參考答案:解析:,圓心到直線的距離,由垂徑定理知所求弦長為
故選D.8.下列各組函數(shù)的圖象相同的是(
)A、
B、C、
D、
參考答案:D9.直線的參數(shù)方程是(
)A.(t為參數(shù))
B.(t為參數(shù))C.(t為參數(shù))
D.(t為參數(shù))參考答案:C10.已知,,則的值為A.
B.
C.
D.參考答案:A二、填空題:本大題共7小題,每小題4分,共28分11.動點P到兩個定點A(-3,0)、B(3,0)的距離比為2:1,則P點的軌跡圍成的圖形的面積是__________。參考答案:16
12.已知是(-∞,+∞)上的減函數(shù),那么a的取值范圍是 參考答案:解:由已知是(-∞,+∞)上的減函數(shù),
可得
,求得≤a<,
故答案為:.13.求,則=______________.參考答案:-1略14.若關于的不等式的解集,則的值為
參考答案:-315.已知函數(shù)
參考答案:216.不等式成立,則實數(shù)a的取值范圍________.參考答案:17.若函數(shù)的圖象的相鄰兩條對稱軸的距離是,則的值為
.參考答案:1略三、解答題:本大題共5小題,共72分。解答應寫出文字說明,證明過程或演算步驟18.(本小題滿分16分)電子蛙跳游戲是:青蛙第一步從如圖所示的正方體頂點起跳,每步從一頂點跳到相鄰的頂點.(1)直接寫出跳兩步跳到的概率;(2)求跳三步跳到的概率;(3)青蛙跳五步,用表示跳到過的次數(shù),求隨機變量的概率分布.參考答案:將A標示為0,A1、B、D標示為1,B1、C、D1標示為2,C1標示為3,從A跳到B記為01,從B跳到B1再跳到A1記為121,其余類推.從0到1與從3到2的概率為1,從1到0與從2到3的概率為,從1到2與從2到1的概率為.(1)P=;
………4′(2)P=P(0123)=1=;
………10′(3)X=0,1,2.
P(X=1)=P(010123)+P(012123)+P(012321)=11+1+11=,P(X=2)=P(012323)=11=,P(X=0)=1-P(X=1)-P(X=2)=或P(X=0)=P(010101)+P(010121)+P(012101)+P(012121)
=111+11+11+1=,
X012p
…………16′19.(12分)甲、乙兩人參加某電視臺舉辦的答題闖關游戲,按照規(guī)則:每人從備選的10道題中一次性抽取3道題獨立作答,至少答對2道題即闖關成功.已知10道備選題中,甲只能答對其中的6道題,乙答對每道題的概率都是.(Ⅰ)求甲闖關成功的概率;(Ⅱ)設乙答對題目的個數(shù)為X,求X的分布列及數(shù)學期望.參考答案:(Ⅰ)設“甲闖關成功”為事件;……………4分(Ⅱ)依題意,可能取的值為0,1,2,3……………5分……………9分所以的分布列為X0123P…10分…………………12分(或)20.(本小題共12分)在△ABC中,a,b,c分別是角A,B,C的對邊,cosB=,且=-21.
(1)求△ABC的面積;(2)若a=7,求角C.參考答案:21.詹姆斯·哈登(JamesHarden)是美國NBA當紅球星,自2012年10月加盟休斯頓火箭隊以來,逐漸成長為球隊的領袖.2017-18賽季哈登當選常規(guī)賽MVP(最有價值球員).年份2012-132013-142014-152015-162016-172017-18年份代碼t123456常規(guī)賽場均得分y25.925.427.429.029.130.4
(1)根據(jù)表中數(shù)據(jù),求y關于t的線性回歸方程(,*);(2)根據(jù)線性回歸方程預測哈登在2019-20賽季常規(guī)賽場均得分.【附】對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為:,(參考數(shù)據(jù),計算結果保留小數(shù)點后一位)參考答案:(1).(,)(2)32.4【分析】(1)求得樣本中心點,利用最小二乘法即可求得線性回歸方程;(2)由(1)可知:將代入線性回歸方程,即可預測哈登在2019-20賽季常規(guī)賽場均得分.【詳解】(1)由題意可知:,,,∴,又,∴y關于t的線性回歸方程為.(,)(2)由(1)可得,年份代碼,此時,所以,可預測哈登在2019-20賽季常規(guī)賽場均得分為32.4.【點睛】本題考查利用最小二乘法求線性回歸方程及線性回歸方程的應用,考查轉(zhuǎn)化思想,屬于中檔題.22.某企業(yè)共有3200名職工,其中,中、青、老年職工的比例為5:3:2,從所有職工中抽取一個容量為400的樣本,采用哪種抽樣方法更合理?中、青、老年職工應分別抽取多
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度重型盤扣腳手架定制租賃與安全監(jiān)管服務合同4篇
- 二零二五年度國有企業(yè)員工招聘及培訓服務合同
- 二零二五年度民政局婚姻登記處協(xié)議離婚書模板法律風險提示合同4篇
- 二零二五年度機動車典當質(zhì)押運輸合同3篇
- 二零二五年度公路護欄施工勞務合同2025年版2篇
- 二零二五年度文化旅游景區(qū)農(nóng)民工就業(yè)扶持合同3篇
- 二零二五年度電商企業(yè)綠色包裝供貨合同模板2篇
- 二零二五年度木材進口關稅減免及檢驗檢疫服務合同3篇
- 2025年度家庭娛樂活動策劃與組織服務合同范本4篇
- 2025年林地租賃合同(1500字附森林資源增值服務)2篇
- 課題申報書:GenAI賦能新質(zhì)人才培養(yǎng)的生成式學習設計研究
- 2024年江蘇省中醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 駱駝祥子-(一)-劇本
- 全國醫(yī)院數(shù)量統(tǒng)計
- 《中國香文化》課件
- 2024年醫(yī)美行業(yè)社媒平臺人群趨勢洞察報告-醫(yī)美行業(yè)觀察星秀傳媒
- 第六次全國幽門螺桿菌感染處理共識報告-
- 天津市2023-2024學年七年級上學期期末考試數(shù)學試題(含答案)
- 經(jīng)濟學的思維方式(第13版)
- 盤錦市重點中學2024年中考英語全真模擬試卷含答案
- 提高保險公司客戶投訴處理能力的整改措施
評論
0/150
提交評論