




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
|
www.
/usaid-partnership
USAIDGRID-SCALEENERGYSTORAGETECHNOLOGIESPRIMER
USAIDGRID-SCALEENERGYSTORAGETECHNOLOGIESPRIMER
Authors
ThomasBowen,IlyaChernyakhovskiy,KaifengXu,SikaGadzanku,KamyriaConey
NationalRenewableEnergyLaboratory
July2021
Acompanionreporttothe
USAIDEnergyStorageDecisionGuideforPolicymakers
Preparedby
NOTICE
Thisworkwasauthored,inpart,bytheNationalRenewableEnergyLaboratory(NREL),operatedbyAllianceforSustainableEnergy,LLC,fortheU.S.DepartmentofEnergy(DOE)underContractNo.DE-AC36-08GO28308.
FundingprovidedbytheUnitedStatesAgencyforInternationalDevelopment(USAID)underContractNo.IAG-17-2050.TheviewsexpressedinthisreportdonotnecessarilyrepresenttheviewsoftheDOEortheU.S.Government,oranyagencythereof,includingUSAID.
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at
/publications.
U.S.DepartmentofEnergy(DOE)reportsproducedafter1991andagrowingnumberofpre-1991documentsareavailablefreevia
www.OSTI.gov.
Frontcover:photofromiStock506609532;Backcover:photofromiStock506611252
NRELprintsonpaperthatcontainsrecycledcontent.
PAGE\*roman
viii
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at
/publications.
Acknowledgments
Theauthorsaregreatlyindebtedtoseveralindividualsfortheirsupportandguidance.WewishtothankDominiqueBain,MarcusBianchi,NateBlair,AnthonyBurrell,PaulDenholm,GregStark,andKeithWipkeattheNationalRenewableEnergyLaboratory(NREL),andOliverSchmidtatImperialCollegeLondonfortheirreviews.AndwewishtothankIsabelMcCan,ChristopherSchwing,andLizBreazealeforcommunications,design,andeditingsupport.Anyerrorsoromissionsaresolelytheresponsibilityoftheauthors.
ThisworkwasfundedbyUSAID.
ListofAcronyms
A-CAES adiabaticcompressedairenergystorage
CAES compressedairenergystorage
CHP combinedheatandpower
CSP concentratedsolarpower
D-CAES diabaticcompressedairenergystorage
FESS flywheelenergystoragesystems
GES gravityenergystorage
GMP GreenMountainPower
LAES liquidairenergystorage
LADWP LosAngelesDepartmentofWaterandPower
PCM phasechangematerial
PSH pumpedstoragehydropower
R&D researchanddevelopment
RFB redoxflowbattery
SMES superconductingmagneticenergystorage
TES thermalenergystorage
VRE variablerenewableenergy
TableofContents
TOC\o"1-2"\h\z\u
Introduction 1
ElectrochemicalEnergyStorageTechnologies 6
Lithium-ionBatteryEnergyStorage 8
FlowBatteryEnergyStorage 12
Lead-AcidBatteryEnergyStorage 14
Sodium-SulfurBattery 16
MechanicalEnergyStorageTechnologies 18
PumpedStorageHydropower(PSH) 19
FlywheelEnergyStorage 21
CompressedAirEnergyStorage 23
GravityEnergyStorage 26
AdditionalEnergyStorageTechnologies 28
HydrogenEnergyStorageSystems 29
ThermalEnergyStorage(TES) 34
Supercapacitors 36
SuperconductingMagneticEnergyStorage(SMES) 37
Glossary 39
References 40
ListofFigures
Figure1.Ecosystemofenergystoragetechnologiesandservices 2
Figure2.U.S.annualnewinstallationsofelectrochemicalenergystoragebychemistry 8
Figure3:Lithium-ionbatterychemistrymarketshareforecast,2015–2030 10
Figure4.Pathwaysinthehydrogeneconomyfromfeedstocktoendapplication 32
ListofTables
Table1.QualitativeComparisonofEnergyStorageTechnologies 3
Table2.ComparisonofElectrochemicalStorageTechnologies 6
Table3.AdvantagesandDisadvantagesofSelectElectrochemicalBatteryChemistries 7
Table4.OperatingCharacteristicsofSelectLithium-IonChemistries 9
Table5.ComparisonofMechanicalStorageTechnologies 18
Table6.TypicalCharacteristicsofSelectFlywheelTechnologies 21
Table7.MethodsforProducingHydrogen 31
PAGE
1
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at
/publications.
Introduction
Powersystemsworldwideareexperiencinghigherlevelsofvariablerenewableenergy(VRE)aswindandsolarpowerplantsconnecttothegrid.ThistrendisexpectedtocontinueascostsforVREresourcesdeclineandjurisdictionspursuemoreambitiouspowersectortransformationstrategieswithincreasedVREpenetrations.
1
HigherpenetrationsofVREcandriveadditionalneedforpowersystemflexibilityinbothshort-termessentialgridservicesandlonger-termenergyshiftingandpeakingcapacityservices(Chernyakhovskiyetal.2019).Energystorageisoneofseveralsourcesofpowersystemflexibilitythathasgainedtheattentionofpowerutilities,regulators,policymakers,andthemedia.
2
Fallingcostsofstoragetechnologies,particularlylithium-ionbatteryenergystorage,andimprovedperformanceandsafetycharacteristicshavemadeenergystorageacompellingandincreasinglycost-effectivealternativetoconventionalflexibilityoptionssuchasretrofittingthermalpowerplantsortransmissionnetworkupgrades.
Thisprimerisintendedtoprovideregulatorsandpolicymakerswithanoverviewofcurrentandemergingenergystoragetechnologiesforgrid-scaleelectricitysectorapplications.Transportationsectorandotherenergystorageapplications(e.g.,mini-andmicro-grids,electricvehicles,distributionnetworkapplications)arenotcoveredinthisprimer;however,theauthorsdorecognizethatthesesectorsstronglyinteractwithoneanother,influencingthecostsofenergystorageasmanufacturingcapacityscalesupaswellasimpactingelectricitydemand.Thestoragetechnologiescoveredinthisprimerrangefromwell-establishedandcommercializedtechnologiessuchaspumpedstoragehydropower(PSH)andlithium-ionbatteryenergystoragetomorenoveltechnologiesunderresearchanddevelopment(R&D).Thesetechnologiesvaryconsiderablyintheiroperationalcharacteristicsandtechnologymaturity,whichwillhaveanimportantimpactontherolestheyplayinthegrid.Figure1providesanoverviewofenergystoragetechnologiesandtheservicestheycanprovidetothepowersystem.
SeveralkeyoperationalcharacteristicsandadditionaltermsforunderstandingenergystoragetechnologiesandtheirroleonthepowersystemaredefinedintheGlossary.
Table1
providesseveralhigh-levelcomparisonsbetweenthesetechnologies.ManyofthesecharacteristicsareexpectedtochangeasR&Dforthetechnologiesprogresses.Sometechnologycategories,suchaslithium-ionorlead-acidbatteries,comprisemultiplesubtypesthateachfeatureuniqueoperationalcharacteristics;comparisonsofsubtypeswithintechnologiesareconsideredintheirrespectivesections.
Thisreportservesasacompanionpiecetothe
USAIDEnergyStorageDecisionGuideforPolicymakers,
whichoutlinesimportantconsiderationsforpolicymakersandelectricsectorregulatorswhencomparingenergystorageagainstothermeansforpowersystemobjectives.
1Bypowersectortransformation,theauthorsreferto“aprocessofcreatingpolicy,marketandregulatoryenvironments,andestablishingoperationalandplanningpracticesthataccelerateinvestment,innovationandtheuseofsmart,efficient,resilientandenvironmentallysoundtechnologyoptions”(IEA2019).Formoreinformationonsuchpowersectortransformations,seeCoxetal.(2020).
2Powersystemflexibilityisdefinedhereas“theabilityofapowersystemtoreliablyandcost-effectivelymanagethevariabilityanduncertaintyofdemandandsupplyacrossallrelevanttimescales,fromensuringinstantaneousstabilityofthepowersystemtosupportinglong-termsecurityofsupply”(IEA2018).Forinformationonandsourcesofpowersystemflexibility,seeIEA(2018)andIEA(2019).
Figure1.Ecosystemofenergystoragetechnologiesandservices
Table1.QualitativeComparisonofEnergyStorageTechnologies
Source:(Chenetal.2009;Mongirdetal.2019a;Mongirdetal.2020)
Category
Technology
DevelopmentStageforUtility-ScaleGridApplications
CostRange
TypicalDurationofDischargeatMaxPowerCapacity
ReactionTime
Round-TripEfficiency
3
Lifetime
Electro-ChemicalBatteries
Lithium-ion
Widelycommercialized
1,408-1,947
($/kW)
352-487($/kWh)?
Minutestoafewhours
Subsecondtoseconds
86-88%
10years
Flow
Initialcommercialization
1,995-2,438
($/kW)
499-609($/kWh)?
Severalhours
Subsecondtoseconds
65%–70%
15years
Lead-acid
Widelycommercialized
1,520-1,792
($/kW)
380-448($/kWh)?
Minutestoafewhours
Seconds
79-85%
12years
Sodium-sulfur
Initialcommercialization
2,394–5,170
($/kW)
599–1,293
($/kWh)??
Severalhours
Subsecond
77%–83%
15years
Mechanical
PSH
Widelycommercialized
1,504-2,422
($/kW)
150-242
($/kWh)???
Severalhourstodays
SeveralSecondstoMinutes(dependsontechnologychoice)
80+%*
40years
Compressedairenergystorage(CAES)
Initialcommercialization
973-1,259($/kW)
97-126($/kWh)???
Severalhourstodays
SeveralMinutes
52%**
30years
Flywheels
Widelycommercialized
1,080-2,880
($/kW)
4,320-11,520
($/kWh)??
Secondstoafewminutes
Subsecond
86%–96%
20years
Gravity
R&Dstage
Insufficientdata
Severalhours
SeveralMinutes
Insufficientdata
Insufficientdata
Chemical
Hydrogenproductionandfuelcells
Pilotstage
2,793-3,488
($/kW)279-349
($/kWh)????
Severalhourstomonths
Subsecond
35%
30years
Thermal
Thermalenergystorage
Initialcommercialization
1,700-1,800
($/kW)
20-60($/kWh)
Severalhours
SeveralMinutes
90+%
30years
3Assomeenergystoragetechnologiesrelyonconvertingenergyfromelectricityintoanothermedium,suchasheatinthermalenergystoragesystemsorchemicalenergyinhydrogen,weuseefficiencyheretorefertotheround-tripefficiencyofstoringandreleasingelectricity(electrons-to-electrons),asopposedtotheefficiencyofusingelectricitytoproduceheatforheatingneedsorhydrogenfortransportationfuelneeds.
Electrical
Super-capacitors
R&DStage
930($/kW)
74,480($/kWh)??
Secondstoafewminutes
Subsecond
92%
10–15
years
Superconductingmagneticenergystorage(SMES)
Initialcommercialization
200–300($/kW)
1,000–10,000
($/kWh)
Seconds
Subsecond
~97%
20years
*:ThisreferstonewerPSHinstallationsandolderPSHsystemsmayhaveefficienciesclosertothe60-75%range.
**:AsCAESreliesonbothelectricitytocompressairandafuel(typicallynaturalgas)toexpandtheair,itsefficiencycannotbereadilycomparedtootherstoragetechnologies.Thevalueusedinthisreportrepresentstheratiooftheoutputofelectricalenergytothecombinedinputofelectricalenergyforthecompressorandthenaturalgasinputforexpansion,usingtheheatingvalueofnaturalgastoconvertitsenergytohowmuchelectricityitcouldhaveproduced(Mongirdetal.2019).
?Thisrangereferstoa10MW4-hourbatteryin2020costs.Forlithium-ion,thisreferstotheNMCchemistry(seeSection
2.1
foradditionalinformationonlithium-ionchemistries).SeeMongirdet.al.(2020)foradditionalenergystoragesizesanddurationsandestimatesforfutureyears.
??:Thisrangerefersto2018costs.SeeMongirdet.al.(2019)forfutureyears.
???Thisrangerefersto1000MW10-hoursystems.SeeMongirdet.al.(2020)foradditionalenergystoragesizesanddurationsandestimatesforfutureyears.
????Thisrangerefersto100MW10-hoursystems.SeeMongirdet.al.(2020)foradditionalenergystoragesizesanddurationsandestimatesforfutureyears.
|
www.
/usaid-partnership
USAIDGRID-SCALEENERGYSTORAGE
TECHNOLOGIESPRIMER
ElectrochemicalEnergyStorageTechnologies
PAGE
10
ThisreportisavailableatnocostfromtheNationalRenewableEnergyLaboratory(NREL)at
/publications.
ElectrochemicalEnergyStorageTechnologies
Electrochemicalstoragesystemsuseaseriesofreversiblechemicalreactionstostoreelectricityintheformofchemicalenergy.Batteriesarethemostcommonformofelectrochemicalstorageandhavebeendeployedinpowersystemsinbothfront-of-the-meterandbehind-the-meterapplications,aswellasinelectronicsandtransportationapplications.Broadlyspeaking,batteriestendtohavedurationslastinguptoseveralhoursandcanchangeoutputinthesubsecondtoseveralminutesrange.
Table2.ComparisonofElectrochemicalStorageTechnologies
Source:(Fanetal.2020;DNVGL2016;Kintner-Meyeretal.2010;DiazdelaRubiaetal.2015;Mongirdetal.
2020)
Technology
ReactionTime
Round-TripEfficiency
EnergyDensity(Wh/kg)
PowerDensity(W/kg)
OperatingTemperature(°C)
CycleLife(Cycles)**
Lithium-Ion
Subsecondtoseconds
86-88%
210–325*
4,000–
6,500*
-20–65
1,000–2,000*
Flow
Subsecond
65%–70%
10–50
0.5–2
5–45
12,000–14,000
Lead-Acid
Seconds
79-85%%
30–50
30-50
18–45
500–1,000
Sodium-Sulfur
Subsecond
77%–83%
150–240
120–160
300–350
~4,500
*Valuesmayvaryacrossdifferentcelldesigns,chemistries,andpowerelectronicsconfigurations.Foroperationalcharacteristicsbrokendownintocommonlithium-ionchemistries,see
Table5.
**Itshouldbenotedthatcyclelifeisintrinsicallyrelatedtothebehaviorandenvironmentofthestoragesystem(e.g.,someusecasescanleadtolowercyclelifeasitstressesthestoragesystem,andmanyelectrochemicalstoragetechnologiesperformworseorsuffershortercyclelifeoutsidetheirnormaloperatingtemperaturerange).
Table3.AdvantagesandDisadvantagesofSelectElectrochemicalBatteryChemistries
Adaptedfrom(Fanetal.2020)
StorageType
Advantages
Disadvantages
Lithium-Ion
Relativelyhighenergyandpowerdensity
Lowermaintenancecosts
Rapidchargecapability
Manychemistriesofferdesignflexibility
Establishedtechnologywithstrongpotentialforprojectbankability.
Highupfrontcost($/kWh)relativetolead-acid(potentiallyoffsetbylongerlifetimes)
Poorhigh-temperatureperformance
Safetyconsiderations,whichcanincreasecoststomitigate
Currentlycomplextorecycle
Relianceonscarcematerials.
Flow(Vanadium-Redox)
Longcyclelife
Highintrinsicsafety
Capableofdeepdischarges.
Relativelylowenergyandpowerdensity.
Lead-Acid
Lowcost
Manydifferentavailablesizesanddesigns
Highrecyclability.
Limitedenergydensity
Relativelyshortcyclelife
Cannotbekeptinadischargedstateforlongwithoutpermanentimpactonperformance
Deepcyclingcanimpactcyclelife
Poorperformanceinhightemperatureenvironments.
Toxicityofcomponents
Sodium-Sulfur
Relativelyhighenergydensity
Relativelylongcyclelife
Lowself-discharge.
Highoperatingtemperaturenecessary
Highcosts.
Lithium-ionBatteryEnergyStorage
TechnologySummaryforPolicymakers
Lithium-ionisamatureenergystoragetechnologywithestablishedglobalmanufacturingcapacitydriveninpartbyitsuseinelectricvehicleapplications.Theoverlapbetweenthetransportationandpowersystemsectorshaveenabledsteeppricedeclinesintechnologycostsforlithium-ionbatteries,drivinghigherdeployments.Inutility-scalepowersectorapplications,lithium-ionhasbeenusedpredominantlyforshort-duration,high-cyclingservicessuchasfrequencyregulation,althoughitisincreasinglyusedtoprovidepeakingcapacityandenergyarbitrageservicesincertainjurisdictions.Lithium-ionhasatypicaldurationinthe2-to4-hourrange,withpricecompetitivenessdecreasingatlongerdurations.Onemajortechnicalissuewithlithium-ionisfiresafety,asthechemistrycansufferthermalrunawayleadingtofireconcerns.Recentbatterypacktechnologyandsoftwareinnovationsareaddressingsafetyconcernsrelatedtothermalrunaway.
Lithium-ionbatterystoragecurrentlydominatesthelandscapefornew,utility-scaleinstallationsforelectrochemicalstationarystorageapplicationsandisonlysurpassedbypumpedhydrostorageforcumulativecapacity.Since2010intheUnitedStates,over90%ofannualadditionsofutility-scalestationarybatterystorageinthepowersectorhasbeenlithium-ion(
Figure2
).Thistrendisdrivenbyseveralfactors,includingrobustmanufacturingcapabilities,well-developedsupplychains,increasingdemandinthetransportationsector,andaprecipitousdropinlithium-ionbatterypackpricesoverthepastseveralyears:lithium-ionbatterypackpricesdeclined89%from2010to2020(Frith2020).
4
Figure2.U.S.annualnewinstallationsofelectrochemicalenergystoragebychemistry
Source:(EIA2019)
Aswithallbatteryenergystoragetechnologies,lithium-ionbatteriesconvertchemicalenergycontainedinitsactivematerialsdirectlyintoelectricalenergythroughanelectrochemicaloxidation-reductionreaction(Warner2015).Lithium-ionbatteries,however,havesignificantlyhigherenergydensitiesrelativetootherelectrochemicalstoragetechnologiessuchaslead-acidandflowbatteries,whichallows
4Notethatthispricedeclinerefersonlytobatterypackprices,whichreflectlithium-ionbatterypackhardwarecostsanddonotincludeadditionalhardwarecomponentsorsoftcoststhatwouldaccumulatewhenconstructingaproject.
thesameenergyneedstobemetwithsmallerandlighterbatteries.Lithium-ionbatteriesarealsoabletochargeanddischargethousandsoftimesbeforereachingtheendofthebatterypacklife.
Theprimarysafetyconcernsurroundinglithium-ionbatteriesisfire-riskscausedby“thermalrunaway.”Thermalrunawayreferstoapointatwhichthetemperatureinsidethebatterycellsbecomeshotenoughtocauseself-sustainingheatgeneration,whichcanquicklyleadtobatteryfailureorevenfires(Warner2015).Eventhoughthermalrunawayisnotuniquetolithium-ion,lithiumtendstohavealowerrunawaytemperature,whichmeansthermalmanagementandfiresuppressionareimportantfactorstoconsiderwhenoperatinglithium-ionbatteries,eventhoughtheymayincreaseoverallprojectcosts.
5
Lithium-ionbatteriescanconsistofvariouschemistryconfigurationsandeachchemistryexhibitsslightlydifferentoperatingparameters.
Table4
comparesthekeyoperatingmetricsforafewofthecommonlithium-ionchemistries(Warner2015).AlthoughLithiumNickelManganeseCobalt(NMC)iscurrentlythedominatechemistry,competingchemistriesLithiumNickelCobaltAluminum(NCA)andLithiumIronPhosphate(LFP)areexpectedtogrowinpopularityoverthenextseveraldecades(
Figure3
).
Table4.OperatingCharacteristicsofSelectLithium-IonChemistries
Source:(Warner2019;DNVGL2016;Mongirdetal.2020)
Technology
EnergyDensity(Wh/L)
PowerDensity(W/L)
OperatingTemperature(°C)
CycleLife
Self-Discharge(%/month)
LithiumIronPhosphate
220–250
4,500
-20to+60
~2,000
<1%
LithiumNickelCobaltAluminum
210–600
4,000–
5,000
-20to+60
>1,000
2%–10%
LithiumNickelManganeseCobalt
325
6,500
-20to+55
~1,200
1%
5Batterycelldegradationthatcanleadtothermalrunawaycanbeginattemperaturesaslowas80°C.At80°C,lithiumionsbegintoreactwithchemicalsintheelectrolyte,decomposinglayersaroundtheanodeinaheat-generatingreaction(exothermic)(Warner2019).
Figure3:Lithium-ionbatterychemistrymarketshareforecast,2015–2030
Source:(WoodMackenzie2020)
CurrentApplications
Inadditiontowidespreadelectricmobilityapplicationsandconsumerelectronics,lithium-ionbatterystorageisincreasinglyusedforstationaryenergystorageapplications,bothinutility-scaleandbehind-the-meterapplications.Lithium-ion’squickresponsetime,longcyclelife,andlimiteddurationlenditselfwelltoshorter-termapplicationsthatmayrequirefrequentanddeepcycling.
6
Currently,lithium-ionisusedinfrequencyresponseandotheressentialgridreliabilityservicesthathelpsystemoperatorsmaintainbalancebetweenloadanddemandatshorttimescales(uptoafewhours)(Bowenetal.2019).Lithium-ionbatterieshavealsoseendeploymentforprovidingpeakingcapacity,chargingduringtimesofenergysurplus,anddischargingduringtimesofhigherdemandtohelputilitiesmeetpeakdemand.Duetoitslimitedduration,lithium-ion’scontributiontosystempeakdemandstronglydependsontheshapeofthedemandcurve(DenholmandMargolis2018).Similarly,lithium-ioncanalsobeusedtoreducegridcongestionanddefertransmissionanddistributionsystemupgradesbystoringenergyduringtimesofexcessgenerationandmeetingloadlocallyduringtimesofhighdemand.
EmergingApplicationsandR&DEfforts
Futureimprovementsinlithium-ionbatteriesareprimarilyfocusedonincreasingenergydensity,increasingthepoweroutputoflithium-ioncells,makingthebatteriessafertooperate,reducingoverallcosts,andreducingrelianceonscarceminerals.Twonovelconfigurationscurrentlybeingexploredare
6“Deep”and“shallow”cyclingareusedtoqualitativelyrefertothedepthofdischargeanenergystoragesystemexperiencesduringoperation.Thedepthofdischargereferstotheshareofthestoragesystem’scapacitythathasbeendischargedandisinverselyrelatedtoitsstateofcharge.Althoughthereisnosetdefinition,deepcyclingmayrefertooperationswhenthestoragesystemdischargesthemajorityofitsstoredenergy(suchaswhileprovidingprolongedpeakingcapacity)whereasshallowcyclingreferstooperationswhenthestoragesystemalternatesbetweencharginganddischargingsuchthatitsstateofchargeremainsrelativelyhigh(suchasprovidingfrequencyregulation).Thedepthofdischargecanhavesignificanteffectsonthelifetimeofthestoragesystem,andtechnologiesvaryintheirsensitivitytothedepthofdischargetheyexperience.
solid-statelithium-ionbatteries,whichusesolidelectrolytesandhaveimprovedenergydensitiesandlowersafetyriskscomparedtoliquid-electrolytelithium-ionbatteries,andlithium-airbatteries,whichhaveimprovedenergydensitiesandhavethepotentialtobeverylowcostandcouldreducerelianceonscarceminerals(Warner2019).
ExampleDeployment
Lithium-ionhasseenextensiveglobaldeploymentintheenergysector.OneprominentexistingprojectistheHornsdalePowerReserve,a100-MW/129-MWhlithium-ionbatteryinSouthAustraliacompletedin2017forfrequencyregulationandtransmissioncongestionrelief.TheSouthAustraliapowersystemisrelativelyisolatedandcandisconnectfromthelargerAustralianpowersystemifthepointofinterconnectionisoverloaded.Oneofthebattery’sadditionalfunctionsistoprovideinjectionsofpowertopreventtheinterconnectionfromdisconnecting.Onatleasttwooccasions,duringeventswhenlargecoalplantstrippedoffline,theHornsdalePowerReserverespondedwithinmillisecondstoimmediatelyinjectlargeamountsofpowerintothegridoverafewminutestosupportthegridfrequencyuntilotherpowerplantscouldincreasetheiroutput,arrestingthefallinfrequencyandpotentiallyavoidingpowerreliabilityissuesanddisconnectionfromthelargergrid(AEMO2018).
In2018,theelectriccooperative,UnitedPower,completedtheinstallationofa4-MW/16-MWh(4-hourduration)lithium-ionbatteryinFirestone,Colorado.Thecooperativeaimstostoreexcessenergyovernightwhendemandislowanduseittomeetpeakdemandduringtheday,reducingoperatingcostsfortheutility.Thelocalutilityexpectstobeabletosave$1millionperyearinavoidedwholesalecapacitycharges(UnitedPower2018).
FlowBatteryEnergyStorage
TechnologySummaryforPolicymakers
Flowbatteriesareintheinitialstagesofcommercialization.Thetechnologyismarkedbylongdurations,theabilitytodeeplydischargeitsstoredenergywithoutdamagingthestoragesystem,andexceedinglylonglifecycles.Flowbatteriesmaybeuniquelysituatedforlongerdurationservicessuchasloadfollowingorpeakingcapacity.Whileflowbatterieshavehigherupfrontcoststhanlithium-ion,theirlongerlifecyclecanleadtosignificantlylowerlifetimecosts.Flowbatteriesarealsotypicallysaferandarelessreliantonrarematerials,dependingonthespecificchemistry.Givenflowbatteries’lowenergyandpowerdensity,thesesystemstendtobelargerthanotherequivalentstoragetechnologies.
Flowbatteryenergystorageisaformofelectrochemicalenergystoragethatconvertsthechemicalenergyinelectro-activematerials,typicallystoredinliquid-basedelectrolytesolutions,directlyintoelectricalenergy(NguyenandSavinell2010).Therearevariousformsofestablishedflowbatteryenergystoragetechnologies,includingredoxflowbatteries(RFBs)andhybridflowbatteries.RFBs,whichincludevanadiumredoxflowandpolysulphidebromideflowbatteries,havetheelectro-activematerialdissolvedinaliquidelectrolytethatisstoredexternaltothebattery.Thebatterychargesanddischargesbasedonredoxreactions,whicharechemicalreactionsbetweentwoelectrolytesolutionsatdifferentoxidationstates.Theelectrolytesaretypicallyliquid-based,separatedbyamembrane,andstoredinlargetanks.
Hybridflowbatteries,whichincludezinc-bromineandzinc-ceriumflowbatteries,haveoneoftheirelectro-activecomponentsdepositedonasolidsurface,asopposedtobeingdissolvedinaliquidelectrolyte(Alotto,Guarnieri,andMoro2014;NguyenandSavinell2010).
TheglobalflowbatterymarketisdominatedbyvanadiumRFBs,whichisthemoststudiedandcommercializedflowbatterytype(MinkeandTurek2018;Weberetal.2018).Zinc-bromine(Zn-Br)andpolysulphidebromideflowbatterieshavealsobeenwidelystudiedwithsomeinitialcommercializationbutfacetechnicalandeconomicbarriersthathavestalledtheircommercialization.Zn-Brbatteriesarerelativelylowcostandexhibithighenergydensity,highdesignflexibility,rapidcharge,andhighdepthofdischargecapabilities,butsufferfromlowcycle-life,lowenergyefficiency,anddendriteformation,whichimpactsperformance.
7
Polysulphidebromideshaverapidresponsesbutsufferfromexpensivematerialrequirements,limitedenergydensity,relativelylowefficiencies(~60%–75%),andcross-contaminationconcernsduringlong-termbatteryoperation.ThesechallengescurrentlymakeZinc-bromineandpolysulphidebromidemoreexpensiveandinefficientthanthemoreestablishedvanadiumRFBs(Fanetal.2020).
Inprinciple,flowbatterieshaveseveraladvantagesoverotherelectrochemicalstoragetechnologies.Astheactiveelectrolyticmaterialisseparatedfromthe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 介入器材批發(fā)企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 組合音響設(shè)備批發(fā)企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 甘草金橘企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 工作績效考核協(xié)議
- 建筑物外墻維修合同
- 內(nèi)部審計培訓(xùn)協(xié)議
- 二零二五年度短視頻品牌代言合作協(xié)議
- 二零二五年度高空作業(yè)安全協(xié)議合同書(高空作業(yè)風(fēng)險評估與控制協(xié)議)
- 2025年度股權(quán)投資合作框架協(xié)議范本:教育產(chǎn)業(yè)投資合作框架協(xié)議
- 湖南省橋梁伸縮縫安裝及新型結(jié)構(gòu)設(shè)計合同(2025年度)
- 全國職業(yè)院校技能大賽高職組(法律實務(wù)賽項)考試題及答案
- 幼兒園中班社會禮儀《讓一讓》課件
- 壓力與焦慮高中生心理健康教案
- 小學(xué)生衛(wèi)生知識健康教育精課件
- 完整廣東梅大高速路面塌方災(zāi)害學(xué)習(xí)課件
- 超豎井施工安全技術(shù)規(guī)范
- DL∕T 2609-2023 主動干預(yù)型消弧裝置驗收運維規(guī)范
- 【正版授權(quán)】 ISO 724:2023 EN ISO general purpose metric screw threads - Basic dimensions
- 2024年河南省鄭州市中原區(qū)小升初數(shù)學(xué)試卷
- 基于街區(qū)尺度的精細(xì)化大氣污染溯源模型建設(shè)需求
- DZ∕T 0211-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 重晶石、毒重石、螢石、硼(正式版)
評論
0/150
提交評論