




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省梅州市大都中學(xué)高二數(shù)學(xué)文上學(xué)期摸底試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個選項(xiàng)中,只有是一個符合題目要求的1.設(shè),,若,則的最小值為(
)A.4 B. C.5 D.參考答案:B由均值不等式結(jié)論:,當(dāng)且僅當(dāng)時等號成立.本題選擇B選項(xiàng).點(diǎn)睛:在應(yīng)用基本不等式求最值時,要把握不等式成立的三個條件,就是“一正——各項(xiàng)均為正;二定——積或和為定值;三相等——等號能否取得”,若忽略了某個條件,就會出現(xiàn)錯誤.2.已知直線,且于,為坐標(biāo)原點(diǎn),則點(diǎn)的軌跡方程為(
)A. B. C. D.參考答案:A略3.若函數(shù)沒有零點(diǎn),則實(shí)數(shù)的取值范圍為(
)
A、
B、
C、
D、參考答案:C略4.已知斜率為1的直線與曲線相切于點(diǎn),則點(diǎn)的坐標(biāo)是(
)A.
B.
C.或
D.參考答案:C略5.若,則等于
(
)A.
B.
C.3
D.2參考答案:B6.為虛數(shù)單位,復(fù)數(shù)的實(shí)部和虛部之和為(A)0
(B)1
(C)2
(D)3參考答案:B7.已知X是離散型隨機(jī)變量,P(X=1)=,P(X=a)=,E(X)=,則D(2X﹣1)等于()A.B.﹣C.D.參考答案:A考點(diǎn):離散型隨機(jī)變量及其分布列.
專題:概率與統(tǒng)計.分析:由已知條件利用離散型隨機(jī)變量的數(shù)學(xué)期望計算公式求出a,進(jìn)而求出D(X),由此能求出D(2X﹣1).解答:解:∵X是離散型隨機(jī)變量,P(X=1)=,P(X=a)=,E(X)=,∴由已知得,解得a=2,∴D(X)=(1﹣)2×+(2﹣)2×=,∴D(2x﹣1)=22D(X)=4×=.故選:A.點(diǎn)評:本題考查離散型隨機(jī)變量的方差的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意離散型隨機(jī)變量的數(shù)學(xué)期望和方差計算公式的合理運(yùn)用.8.橢圓的離心率為,并且經(jīng)過點(diǎn),此橢圓的標(biāo)準(zhǔn)方程可能是(A)
(B)(C)
(D)參考答案:A9.已知復(fù)數(shù)z滿足條件:(1+2i)z=1,則z對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限參考答案:D【考點(diǎn)】復(fù)數(shù)代數(shù)形式的乘除運(yùn)算.【分析】利用復(fù)數(shù)的運(yùn)算法則和幾何意義即可得出.【解答】解:∵(1+2i)z=1,∴(1﹣2i)(1+2i)z=1﹣2i,∴5z=1﹣2i,∴z=.∴復(fù)數(shù)z對應(yīng)點(diǎn)坐標(biāo)為位于第四象限.故選:D.10.已知復(fù)數(shù)z滿足,則z=(
)A.-3+4i
B.-3-4i
C.3+4i
D.3-4i參考答案:C∵,∴.故選C.
二、填空題:本大題共7小題,每小題4分,共28分11.在平面直角坐標(biāo)系xOy中,橢圓C的中心為原點(diǎn),焦點(diǎn)在x軸上,離心率為,過的直線交橢圓C于A,B兩點(diǎn),且的周長為16,那么橢圓C的方程為____________.參考答案:12.
已知△ABC的頂點(diǎn)B、C在橢圓上,頂點(diǎn)A是橢圓的一個焦點(diǎn),且橢圓的另外一個焦點(diǎn)在BC邊上,則△ABC的周長是____▲____.參考答案:略13.如圖,在△ABC中,,,,則
。參考答案:14.已知向量a=(4,-2,-4),b=(6,-3,2),則(a+b)·(a-b)的值為______.參考答案:-13
略15.設(shè)函數(shù)f(x)=2x+﹣(x<0),則f(x)的最大值為
. 參考答案:【考點(diǎn)】基本不等式. 【專題】不等式的解法及應(yīng)用. 【分析】本題首先將函數(shù)f(x)中的小于零的x轉(zhuǎn)化為大于零的﹣x,再使用基本不等式求其最值即可,要注意等號成立的條件. 【解答】解:∵x<0,∴﹣x>0, 又∵函數(shù)f(x)=2x+﹣,∴≥=,當(dāng)且僅當(dāng)﹣2x=,(x<0)即x=時取“=”號. ∴f(x). ∴f(x)的最大值為. 故答案為. 【點(diǎn)評】本題考查了基本不等式,使用時要注意“一正,二定,三相等”. 16.一個總體分為A,B兩層,其個體數(shù)之比為4:1,用分層抽樣方法從總體中抽取一個容量為10的樣本,已知B層中甲、乙都被抽到的概率為,則總體中的個數(shù)為
.參考答案:40略17.給出以下四個命題:①.命題“若,則”的逆否命題是:“若,則”②.若且為假命題,則、均為假命題③.“”是“”的充分不必要條件④.經(jīng)過點(diǎn)的直線一定可以用方程表示其中真命題的序號是
▲
參考答案:①③三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.已知函數(shù)f(x)=x2﹣2lnx,h(x)=x2﹣x+a.(1)其求函數(shù)f(x)的極值;(2)設(shè)函數(shù)k(x)=f(x)﹣h(x),若函數(shù)k(x)在[1,3]上恰有兩個不同零點(diǎn)求實(shí)數(shù)a的取值范圍.參考答案:【考點(diǎn)】利用導(dǎo)數(shù)研究函數(shù)的極值;利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.【分析】(I)先在定義域內(nèi)求出f′(x)=0的值,再討論滿足f′(x)=0的點(diǎn)附近的導(dǎo)數(shù)的符號的變化情況,來確定極值;(II)先求出函數(shù)k(x)的解析式,然后研究函數(shù)k(x)在[1,3]上的單調(diào)性,根據(jù)函數(shù)k(x)在[1,3]上恰有兩個不同零點(diǎn),建立不等關(guān)系,最后解之即可.【解答】解:(Ⅰ)∵f′(x)=2x﹣,令f′(x)=0,∵x>0,∴x=1,所以f(x)的極小值為1,無極大值.(Ⅱ)∵x
(0,1)1(1,+∞)f′(x)_0+f(x)減1增又∵k(x)=f(x)﹣g(x)=﹣2lnx+x﹣a,∴k′(x)=﹣+1,若k′(x)=0,則x=2當(dāng)x∈[1,2)時,f′(x)<0;當(dāng)x∈(2,3]時,f′(x)>0.故k(x)在x∈[1,2)上遞減,在x∈(2,3]上遞增.∴,∴,∴2﹣2ln2<a≤3﹣2ln3.所以實(shí)數(shù)a的取值范圍是:(2﹣2ln2,3﹣2ln3]19.(本小題滿分14分)
某慈善機(jī)構(gòu)舉辦一次募捐演出,有一萬人參加,每人一張門票,每張100元,在演出過程中穿插抽獎活動,第一輪抽獎從這一萬張票根中隨機(jī)抽取10張,其持有者獲得價值1000元的獎品,并參加第二輪抽獎活動,第二輪抽獎由第一輪獲獎?wù)擢?dú)立操作按鈕,電腦隨機(jī)產(chǎn)生兩個數(shù),如果則電腦顯示“中獎”,抽獎?wù)攉@得9000元獎金;否則若電腦顯示“謝謝”,則不中獎。
(I)已知小曹在第一輪抽獎中被抽中,求小曹在第二輪抽獎中獲獎的概率;
(II)若小葉參加了此次活動,求小葉參加此次活動收益的期望;
(III)若此次募捐除獎品和獎金外,不計其它支出,該機(jī)構(gòu)想獲得96萬元的慈善款,問該慈善機(jī)構(gòu)此次募捐是否能達(dá)到預(yù)期目標(biāo)。參考答案:共9個,…………2分設(shè)“小曹在第二輪抽獎中獲獎”為事件,且事件所包含的基本事件有共2個,∴.
……5分(Ⅱ)設(shè)小葉參加此次活動的收益為,的可能取值為.
………6分,,.
…………9分∴的分布列為9009900………10分∴.
…………11分(Ⅲ)由(Ⅱ)可知,購票者每人收益期望為.∵有一萬人購票,除獎金和獎品外,不計其它支出,∴該機(jī)構(gòu)此次收益期望為元=萬∴該慈善機(jī)構(gòu)此次募捐能達(dá)到預(yù)期目標(biāo)………………14分略20.(本小題滿分12分)直線是△ABC中∠C的平分線所在的直線,若A、B的坐標(biāo)分別為,求點(diǎn)C的坐標(biāo),并判斷△ABC形狀.參考答案:解:點(diǎn)A關(guān)于直線對稱點(diǎn)在BC所在直線上令
∴∴BC:………7分由點(diǎn)又∵
∴△ABC為直角三角線或
∴∴△ABC為直角三角形
………12分
21.(10分)個排成一排,在下列情況下,各有多少種不同排法?(1)甲排頭,(2)甲不排頭,也不排尾,(3)甲、乙、丙三人必須在一起,(4)甲、乙、丙三人互不相鄰,參考答案:略22.(本小題滿分10分)如圖,在四棱錐中,底面ABCD是正方形,底面ABCD,M、N分別為PA、BC的中點(diǎn),且,CD=1
(1)求證:平面PCD;(2)求證:平面平面PBD;(3)求三棱錐P-ABC的體積。參考答案:(1)證明:取AD中點(diǎn)E,連接ME,NE,由已知M,N分別是PA,BC的中點(diǎn),所以,,又ME,平面MNE,,所以,平面平面PCD,又因?yàn)槠矫鍹NE,所以,MN//平面PCD。
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年竹醋潤膚皂項(xiàng)目投資價值分析報告
- 2025至2030年焊割槍管子項(xiàng)目投資價值分析報告
- 2025至2030年汽車保養(yǎng)化學(xué)品項(xiàng)目投資價值分析報告
- 電介質(zhì)絕緣特性(高電壓技術(shù)課件)
- 交、直流耐壓試驗(yàn)-交流耐壓試驗(yàn)接線及試驗(yàn)步驟(高電壓技術(shù))
- 2025至2030年全脂乳粉行業(yè)深度研究報告
- 2025至2030年中國成衣輔料項(xiàng)目投資可行性研究報告
- 2025至2030年中國寬框玻移門柜項(xiàng)目投資可行性研究報告
- 2025至2030年P(guān)E印刷袋項(xiàng)目投資價值分析報告
- 2025年美式單筒夜視鏡項(xiàng)目可行性研究報告
- 2024年高等教育自學(xué)考試自考《英語二》試卷及解答參考
- 高低壓配電安全規(guī)程
- 李白《南陵別兒童入京》課件
- 量子神經(jīng)網(wǎng)絡(luò)算法
- 2024智聯(lián)招聘行測題庫
- 三級人工智能訓(xùn)練師(高級)職業(yè)技能等級認(rèn)定考試題庫-上(單選題部分)
- 癥狀護(hù)理-疼痛課件
- DL∕T 1056-2019 發(fā)電廠熱工儀表及控制系統(tǒng)技術(shù)監(jiān)督導(dǎo)則
- 店鋪(初級)營銷師認(rèn)證考試題庫附有答案
- 《建筑深基坑工程施工安全技術(shù)規(guī)范》(JGJ311-2013)
- 消防責(zé)任劃分協(xié)議書
評論
0/150
提交評論