版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆山東濰坊高密市文慧學校中考五模數(shù)學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.在平面直角坐標系中,將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標是()A.(2,4) B.(1,5) C.(1,-3) D.(-5,5)2.如圖,在平面直角坐標系中,平行四邊形OABC的頂點A的坐標為(﹣4,0),頂點B在第二象限,∠BAO=60°,BC交y軸于點D,DB:DC=3:1.若函數(shù)y=kx(k>0,x>0)的圖象經(jīng)過點C,則A.33B.32C.23.如圖,點P是∠AOB外的一點,點M,N分別是∠AOB兩邊上的點,點P關于OA的對稱點Q恰好落在線段MN上,點P關于OB的對稱點R落在MN的延長線上,若PM=2.5cm,PN=3cm,MN=4cm,則線段QR的長為()A.4.5cm B.5.5cm C.6.5cm D.7cm4.下列運算正確的是()A.a(chǎn)4+a2=a4 B.(x2y)3=x6y3C.(m﹣n)2=m2﹣n2 D.b6÷b2=b35.如圖:已知AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,則線段AP的長不可能是()A.3 B.3.5 C.4 D.56.我們從不同的方向觀察同一物體時,可能看到不同的圖形,則從正面、左面、上面觀察都不可能看到矩形的是()A. B. C. D.7.在如圖的2016年6月份的日歷表中,任意框出表中豎列上三個相鄰的數(shù),這三個數(shù)的和不可能是()A.27 B.51 C.69 D.728.下列幾何體是棱錐的是()A. B. C. D.9.若正比例函數(shù)y=kx的圖象上一點(除原點外)到x軸的距離與到y(tǒng)軸的距離之比為3,且y值隨著x值的增大而減小,則k的值為()A.﹣ B.﹣3 C. D.310.如圖,在⊙O中,弦AC∥半徑OB,∠BOC=50°,則∠OAB的度數(shù)為()A.25° B.50° C.60° D.30°二、填空題(本大題共6個小題,每小題3分,共18分)11.一次函數(shù)y=kx+b(k≠0)的圖象如圖所示,那么不等式kx+b<0的解集是_____.12.點(-1,a)、(-2,b)是拋物線上的兩個點,那么a和b的大小關系是a_______b(填“>”或“<”或“=”).13.已知,(),請用計算器計算當時,、的若干個值,并由此歸納出當時,、間的大小關系為______.14.不等式組的整數(shù)解是_____.15.廊橋是我國古老的文化遺產(chǎn).如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數(shù)表達式為y=-140x16.如圖,在△ABC中,AB=AC,以點C為圓心,以CB長為半徑作圓弧,交AC的延長線于點D,連結(jié)BD,若∠A=32°,則∠CDB的大小為_____度.三、解答題(共8題,共72分)17.(8分)如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計算結(jié)果精確到0.1m,參考數(shù)據(jù)sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)當?shù)醣鄣撞緼與貨物的水平距離AC為5m時,吊臂AB的長為m.(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略不計)18.(8分)為了解某中學學生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進行調(diào)查統(tǒng)計.現(xiàn)從該校隨機抽取名學生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學生只能選擇其中一項).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:求n的值;若該校學生共有1200人,試估計該校喜愛看電視的學生人數(shù);若調(diào)查到喜愛體育活動的4名學生中有3名男生和1名女生,現(xiàn)從這4名學生中任意抽取2名學生,求恰好抽到2名男生的概率.19.(8分)如圖,在ABCD中,點E是AB邊的中點,DE與CB的延長線交于點F(1)求證:△ADE≌△BFE;(2)若DF平分∠ADC,連接CE,試判斷CE和DF的位置關系,并說明理由.20.(8分)如圖,在矩形ABCD中,AB=3,BC=4,將矩形ABCD繞點C按順時針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',B'C與AD交于點E,AD的延長線與A'D'交于點F.(1)如圖①,當α=60°時,連接DD',求DD'和A'F的長;(2)如圖②,當矩形A'B'CD'的頂點A'落在CD的延長線上時,求EF的長;(3)如圖③,當AE=EF時,連接AC,CF,求AC?CF的值.21.(8分)某市A,B兩個蔬菜基地得知四川C,D兩個災民安置點分別急需蔬菜240t和260t的消息后,決定調(diào)運蔬菜支援災區(qū),已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,現(xiàn)將這些蔬菜全部調(diào)運C,D兩個災區(qū)安置點.從A地運往C,D兩處的費用分別為每噸20元和25元,從B地運往C,D兩處的費用分別為每噸15元和18元.設從B地運往C處的蔬菜為x噸.請?zhí)顚懴卤?,并求兩個蔬菜基地調(diào)運蔬菜的運費相等時x的值;CD總計/tA200Bx300總計/t240260500(2)設A,B兩個蔬菜基地的總運費為w元,求出w與x之間的函數(shù)關系式,并求總運費最小的調(diào)運方案;經(jīng)過搶修,從B地到C處的路況得到進一步改善,縮短了運輸時間,運費每噸減少m元(m>0),其余線路的運費不變,試討論總運費最小的調(diào)動方案.22.(10分)如圖,已知正方形ABCD,E是AB延長線上一點,F(xiàn)是DC延長線上一點,且滿足BF=EF,將線段EF繞點F順時針旋轉(zhuǎn)90°得FG,過點B作FG的平行線,交DA的延長線于點N,連接NG.求證:BE=2CF;試猜想四邊形BFGN是什么特殊的四邊形,并對你的猜想加以證明.23.(12分)如圖,分別以Rt△ABC的直角邊AC及斜邊AB向外作等邊△ACD,等邊△ABE,已知∠BAC=30°,EF⊥AB,垂足為F,連接DF試說明AC=EF;求證:四邊形ADFE是平行四邊形.24.已知圓O的半徑長為2,點A、B、C為圓O上三點,弦BC=AO,點D為BC的中點,(1)如圖,連接AC、OD,設∠OAC=α,請用α表示∠AOD;(2)如圖,當點B為的中點時,求點A、D之間的距離:(3)如果AD的延長線與圓O交于點E,以O為圓心,AD為半徑的圓與以BC為直徑的圓相切,求弦AE的長.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】試題分析:由平移規(guī)律可得將點P(﹣2,1)向右平移3個單位長度,再向上平移4個單位長度得到點P′的坐標是(1,5),故選B.考點:點的平移.2、D【解析】解:∵四邊形ABCD是平行四邊形,點A的坐標為(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=3,∴C(1,3),∴k=3,故選D.點睛:本題考查了平行四邊形的性質(zhì),掌握平行四邊形的性質(zhì)以及反比例函數(shù)圖象上點的坐標特征是解題的關鍵.3、A【解析】試題分析:利用軸對稱圖形的性質(zhì)得出PM=MQ,PN=NR,進而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的長RN+NQ=3+2.5=3.5(cm).故選A.考點:軸對稱圖形的性質(zhì)4、B【解析】分析:根據(jù)合并同類項,積的乘方,完全平方公式,同底數(shù)冪相除的性質(zhì),逐一計算判斷即可.詳解:根據(jù)同類項的定義,可知a4與a2不是同類項,不能計算,故不正確;根據(jù)積的乘方,等于個個因式分別乘方,可得(x2y)3=x6y3,故正確;根據(jù)完全平方公式,可得(m-n)2=m2-2mn+n2,故不正確;根據(jù)同底數(shù)冪的除法,可知b6÷b2=b4,不正確.故選B.點睛:此題主要考查了合并同類項,積的乘方,完全平方公式,同底數(shù)冪相除的性質(zhì),熟記并靈活運用是解題關鍵.5、A【解析】
根據(jù)直線外一點和直線上點的連線中,垂線段最短的性質(zhì),可得答案.【詳解】解:由AB⊥BC,垂足為B,AB=3.5,點P是射線BC上的動點,得AP≥AB,AP≥3.5,故選:A.【點睛】本題考查垂線段最短的性質(zhì),解題關鍵是利用垂線段的性質(zhì).6、C【解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.依此找到從正面、左面、上面觀察都不可能看到矩形的圖形.【詳解】A、主視圖為長方形,左視圖為長方形,俯視圖為圓,故本選項錯誤;B、主視圖為長方形,左視圖為長方形,俯視圖為長方形,故本選項錯誤;C、主視圖為等腰梯形,左視圖為等腰梯形,俯視圖為圓環(huán),從正面、左面、上面觀察都不可能看到長方形,故本選項正確;D、主視圖為三角形,左視圖為三角形,俯視圖為有對角線的矩形,故本選項錯誤.故選C.【點睛】本題重點考查了三視圖的定義考查學生的空間想象能力,關鍵是根據(jù)主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形解答.7、D【解析】設第一個數(shù)為x,則第二個數(shù)為x+7,第三個數(shù)為x+1.列出三個數(shù)的和的方程,再根據(jù)選項解出x,看是否存在.解:設第一個數(shù)為x,則第二個數(shù)為x+7,第三個數(shù)為x+1故三個數(shù)的和為x+x+7+x+1=3x+21當x=16時,3x+21=69;當x=10時,3x+21=51;當x=2時,3x+21=2.故任意圈出一豎列上相鄰的三個數(shù)的和不可能是3.故選D.“點睛“此題主要考查了一元一次方程的應用,解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系列出方程,再求解.8、D【解析】分析:根據(jù)棱錐的概念判斷即可.A是三棱柱,錯誤;B是圓柱,錯誤;C是圓錐,錯誤;D是四棱錐,正確.故選D.點睛:本題考查了立體圖形的識別,關鍵是根據(jù)棱錐的概念判斷.9、B【解析】
設該點的坐標為(a,b),則|b|=1|a|,利用一次函數(shù)圖象上的點的坐標特征可得出k=±1,再利用正比例函數(shù)的性質(zhì)可得出k=-1,此題得解.【詳解】設該點的坐標為(a,b),則|b|=1|a|,∵點(a,b)在正比例函數(shù)y=kx的圖象上,∴k=±1.又∵y值隨著x值的增大而減小,∴k=﹣1.故選:B.【點睛】本題考查了一次函數(shù)圖象上點的坐標特征以及正比例函數(shù)的性質(zhì),利用一次函數(shù)圖象上點的坐標特征,找出k=±1是解題的關鍵.10、A【解析】如圖,∵∠BOC=50°,∴∠BAC=25°,∵AC∥OB,∴∠OBA=∠BAC=25°,∵OA=OB,∴∠OAB=∠OBA=25°.故選A.二、填空題(本大題共6個小題,每小題3分,共18分)11、x>﹣1.【解析】
一次函數(shù)y=kx+b的圖象在x軸下方時,y<0,再根據(jù)圖象寫出解集即可.【詳解】當不等式kx+b<0時,一次函數(shù)y=kx+b的圖象在x軸下方,因此x>﹣1.故答案為:x>﹣1.【點睛】本題考查了一次函數(shù)與一元一次不等式:從函數(shù)的角度看,就是尋求使一次函數(shù)y=kx+b(k≠0)的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b(k≠0)在x軸上(或下)方部分所有的點的橫坐標所構(gòu)成的集合.12、<【解析】把點(-1,a)、(-2,b)分別代入拋物線,則有:a=1-2-3=-4,b=4-4-3=-3,-4<-3,所以a<b,故答案為<.13、【解析】試題分析:當n=3時,A=≈0.3178,B=1,A<B;當n=4時,A=≈0.2679,B=≈0.4142,A<B;當n=5時,A=≈0.2631,B=≈0.3178,A<B;當n=6時,A=≈0.2134,B=≈0.2679,A<B;……以此類推,隨著n的增大,a在不斷變小,而b的變化比a慢兩個數(shù),所以可知當n≥3時,A、B的關系始終是A<B.14、﹣1、0、1【解析】
求出每個不等式的解集,根據(jù)找不等式組解集的規(guī)律找出不等式組的解集,即可得出答案.【詳解】,解不等式得:,解不等式得:,不等式組的解集為,不等式組的整數(shù)解為-1,0,1.故答案為:-1,0,1.【點睛】本題考查的知識點是一元一次不等式組的整數(shù)解,解題關鍵是注意解集范圍從而得出整數(shù)解.15、85【解析】由于兩盞E、F距離水面都是8m,因而兩盞景觀燈之間的水平距離就是直線y=8與拋物線兩交點的橫坐標差的絕對值.故有-1即x2=80,x1所以兩盞警示燈之間的水平距離為:|16、1【解析】
根據(jù)等腰三角形的性質(zhì)以及三角形內(nèi)角和定理在△ABC中可求得∠ACB=∠ABC=74°,根據(jù)等腰三角形的性質(zhì)以及三角形外角的性質(zhì)在△BCD中可求得∠CDB=∠CBD=∠ACB=1°.【詳解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∴∠CDB=∠CBD=∠ACB=1°,故答案為1.【點睛】本題主要考查等腰三角形的性質(zhì),三角形外角的性質(zhì),掌握等邊對等角是解題的關鍵,注意三角形內(nèi)角和定理的應用.三、解答題(共8題,共72分)17、(1)11.4;(2)19.5m.【解析】
(1)根據(jù)直角三角形的性質(zhì)和三角函數(shù)解答即可;
(2)過點D作DH⊥地面于H,利用直角三角形的性質(zhì)和三角函數(shù)解答即可.【詳解】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=ACcos64°故答案為:11.4;(2)過點D作DH⊥地面于H,交水平線于點E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是19.5m.【點睛】本題考查解直角三角形、銳角三角函數(shù)等知識,解題的關鍵是添加輔助線,構(gòu)造直角三角形.18、(1)50;(2)240;(3).【解析】
用喜愛社會實踐的人數(shù)除以它所占的百分比得到n的值;先計算出樣本中喜愛看電視的人數(shù),然后用1200乘以樣本中喜愛看電視人數(shù)所占的百分比,即可估計該校喜愛看電視的學生人數(shù);畫樹狀圖展示12種等可能的結(jié)果數(shù),再找出恰好抽到2名男生的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:(1);(2)樣本中喜愛看電視的人數(shù)為(人,,所以估計該校喜愛看電視的學生人數(shù)為240人;(3)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中恰好抽到2名男生的結(jié)果數(shù)為6,所以恰好抽到2名男生的概率.【點睛】本題考查了列表法與樹狀圖法;利用列表法或樹狀圖法展示所有等可能的結(jié)果n,再從中選出符合事件A或B的結(jié)果數(shù)目m,然后利用概率公式計算事件A或事件B的概率,也考查了統(tǒng)計圖.19、(1)見解析;(1)見解析.【解析】
(1)由全等三角形的判定定理AAS證得結(jié)論.(1)由(1)中全等三角形的對應邊相等推知點E是邊DF的中點,∠1=∠1;根據(jù)角平分線的性質(zhì)、等量代換以及等角對等邊證得DC=FC,則由等腰三角形的“三合一”的性質(zhì)推知CE⊥DF.【詳解】解:(1)證明:如圖,∵四邊形ABCD是平行四邊形,∴AD∥BC.又∵點F在CB的延長線上,∴AD∥CF.∴∠1=∠1.∵點E是AB邊的中點,∴AE=BE,∵在△ADE與△BFE中,,∴△ADE≌△BFE(AAS).(1)CE⊥DF.理由如下:如圖,連接CE,由(1)知,△ADE≌△BFE,∴DE=FE,即點E是DF的中點,∠1=∠1.∵DF平分∠ADC,∴∠1=∠2.∴∠2=∠1.∴CD=CF.∴CE⊥DF.20、(1)DD′=1,A′F=4﹣;(2);(1).【解析】
(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',只要證明△CDD′是等邊三角形即可解決問題;②如圖①中,連接CF,在Rt△CD′F中,求出FD′即可解決問題;(2)由△A′DF∽△A′D′C,可推出DF的長,同理可得△CDE∽△CB′A′,可求出DE的長,即可解決問題;(1)如圖③中,作FG⊥CB′于G,由S△ACF=?AC?CF=?AF?CD,把問題轉(zhuǎn)化為求AF?CD,只要證明∠ACF=90°,證明△CAD∽△FAC,即可解決問題;【詳解】解:(1)①如圖①中,∵矩形ABCD繞點C按順時針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',∴A′D′=AD=B′C=BC=4,CD′=CD=A′B′=AB=1∠A′D′C=∠ADC=90°.∵α=60°,∴∠DCD′=60°,∴△CDD′是等邊三角形,∴DD′=CD=1.②如圖①中,連接CF.∵CD=CD′,CF=CF,∠CDF=∠CD′F=90°,∴△CDF≌△CD′F,∴∠DCF=∠D′CF=∠DCD′=10°.在Rt△CD′F中,∵tan∠D′CF=,∴D′F=,∴A′F=A′D′﹣D′F=4﹣.(2)如圖②中,在Rt△A′CD′中,∵∠D′=90°,∴A′C2=A′D′2+CD′2,∴A′C=5,A′D=2.∵∠DA′F=∠CA′D′,∠A′DF=∠D′=90°,∴△A′DF∽△A′D′C,∴,∴,∴DF=.同理可得△CDE∽△CB′A′,∴,∴,∴ED=,∴EF=ED+DF=.(1)如圖③中,作FG⊥CB′于G.∵四邊形A′B′CD′是矩形,∴GF=CD′=CD=1.∵S△CEF=?EF?DC=?CE?FG,∴CE=EF,∵AE=EF,∴AE=EF=CE,∴∠ACF=90°.∵∠ADC=∠ACF,∠CAD=∠FAC,∴△CAD∽△FAC,∴,∴AC2=AD?AF,∴AF=.∵S△ACF=?AC?CF=?AF?CD,∴AC?CF=AF?CD=.21、(1)見解析;(2)w=2x+9200,方案見解析;(3)0<m<2時,(2)中調(diào)運方案總運費最?。籱=2時,在40?x?240的前提下調(diào)運方案的總運費不變;2<m<15時,x=240總運費最小.【解析】
(1)根據(jù)題意可得解.(2)w與x之間的函數(shù)關系式為:w=20(240?x)+25(x?40)+15x+18(300?x);列不等式組解出40≤x≤240,可由w隨x的增大而增大,得出總運費最小的調(diào)運方案.(3)根據(jù)題意得出w與x之間的函數(shù)關系式,然后根據(jù)m的取值范圍不同分別分析得出總運費最小的調(diào)運方案.【詳解】解:(1)填表:依題意得:20(240?x)+25(x?40)=15x+18(300?x).解得:x=200.(2)w與x之間的函數(shù)關系為:w=20(240?x)+25(x?40)+15x+18(300?x)=2x+9200.依題意得:∴40?x?240在w=2x+9200中,∵2>0,∴w隨x的增大而增大,故當x=40時,總運費最小,此時調(diào)運方案為如表.(3)由題意知w=20(240?x)+25(x?40)+(15-m)x+18(300?x)=(2?m)x+9200∴0<m<2時,(2)中調(diào)運方案總運費最小;m=2時,在40?x?240的前提下調(diào)運方案的總運費不變;2<m<15時,x=240總運費最小,其調(diào)運方案如表二.【點睛】此題考查一次函數(shù)的應用,解題關鍵在于根據(jù)題意列出w與x之間的函數(shù)關系式,并注意分類討論思想的應用.22、(1)見解析;(2)四邊形BFGN是菱形,理由見解析.【解析】
(1)過F作FH⊥BE于點H,可證明四邊形BCFH為矩形,可得到BH=CF,且H為BE中點,可得BE=2CF;(2)由條件可證明△ABN≌△HFE,可得BN=EF,可得到BN=GF,且BN∥FG,可證得四邊形BFGN為菱形.【詳解】(1)證明:過F作FH⊥BE于H點,在四邊形BHFC中,∠BHF=∠CBH=∠BCF=90°,所以四邊形BHFC為矩形,∴CF=BH,∵BF=EF,F(xiàn)H⊥BE,∴H為BE中點,∴BE=2BH,∴BE=2CF;(2)四邊形BFGN是菱形.證明:∵將線段EF繞點F順時針旋轉(zhuǎn)90°得FG,∴EF=GF,∠GFE=90°,∴∠EFH+∠BFH+∠GFB=90°∵BN∥FG,∴∠NBF+∠GFB=180°,∴∠NBA+∠ABC+∠CBF+∠GFB=180°,∵∠ABC=90°,∴∠NBA+∠CBF+∠GFB=180°?90°=90°,由BHFC是矩形可得BC∥HF,∴∠BFH=∠CBF,∴∠EFH=90°?∠GFB?∠BFH=90°?∠GFB?∠CBF=∠NBA,由BHFC是矩形可得HF=BC,∵BC=AB,∴HF=AB,在△ABN和△HFE中,,∴△ABN≌△HFE,∴NB=EF,∵EF=GF,∴NB=GF,又∵NB∥GF,∴NBFG是平行四邊形,∵EF=BF,∴NB=BF,∴平行四邊NBFG是菱形.點睛:本題主要考查正方形的性質(zhì)及全等三角形的判定和性質(zhì),矩形的判定與性質(zhì),菱形的判定等,作出輔助線是解決(1)的關鍵.在(2)中證得△ABN≌△HFE是解題的關鍵.23、證明見解析.【解析】
(1)一方面Rt△ABC中,由∠BAC=30°可以得到AB=2BC,另一方面△ABE是等邊三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,從而可證明△AFE≌△BCA,再根據(jù)全等三角形的性質(zhì)即可證明AC=EF.(2)根據(jù)(1)知道EF=AC,而△ACD是等邊三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根據(jù)平行四邊形的判定定理即可證明四邊形ADFE是平行四邊形.【詳解】證明:(1)∵Rt△ABC中,∠BAC=30°,∴AB=2BC.又∵△ABE是等邊三角形
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版不銹鋼宣傳欄安裝工程合同變更合同2篇
- 2025年消防器材采購與倉儲配送合同協(xié)議3篇
- 2025年旋挖鉆機購銷及智能化升級改造合同3篇
- 2025年無財產(chǎn)債務家庭子女生活費用及教育補貼協(xié)議3篇
- 二零二五版采砂船運輸安全責任合同范本3篇
- 2025年汽車改裝合同范本3篇
- 基于物聯(lián)網(wǎng)的2025年度物業(yè)管理信息系統(tǒng)構(gòu)建合同3篇
- 2025年蝦池承包養(yǎng)殖項目合作協(xié)議3篇
- 2025年私人房產(chǎn)轉(zhuǎn)讓協(xié)議書(含家具家電+車位+智能家居+物業(yè)管理+裝修+家具包年+車位包年+物業(yè)管理費)3篇
- 二零二五年度房屋買賣居間服務合同違約責任合同3篇
- 稽核管理培訓
- 電梯曳引機生銹處理方案
- 電力電纜故障分析報告
- 中國電信網(wǎng)絡資源管理系統(tǒng)介紹
- 2024年浙江首考高考選考技術試卷試題真題(答案詳解)
- 《品牌形象設計》課件
- 倉庫管理基礎知識培訓課件1
- 藥品的收貨與驗收培訓課件
- GH-T 1388-2022 脫水大蒜標準規(guī)范
- 高中英語人教版必修第一二冊語境記單詞清單
- 政府機關保潔服務投標方案(技術方案)
評論
0/150
提交評論