內蒙古自治區(qū)通遼市2024屆中考二模數(shù)學試題含解析_第1頁
內蒙古自治區(qū)通遼市2024屆中考二模數(shù)學試題含解析_第2頁
內蒙古自治區(qū)通遼市2024屆中考二模數(shù)學試題含解析_第3頁
內蒙古自治區(qū)通遼市2024屆中考二模數(shù)學試題含解析_第4頁
內蒙古自治區(qū)通遼市2024屆中考二模數(shù)學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

內蒙古自治區(qū)通遼市2024屆中考二模數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,已知直線PQ⊥MN于點O,點A,B分別在MN,PQ上,OA=1,OB=2,在直線MN或直線PQ上找一點C,使△ABC是等腰三角形,則這樣的C點有()A.3個B.4個C.7個D.8個2.弘揚社會主義核心價值觀,推動文明城市建設.根據(jù)“文明創(chuàng)建工作評分細則”,l0名評審團成員對我市2016年度文明刨建工作進行認真評分,結果如下表:人數(shù)2341分數(shù)80859095則得分的眾數(shù)和中位數(shù)分別是()A.90和87.5 B.95和85 C.90和85 D.85和87.53.一次函數(shù)y=ax+b與反比例函數(shù)y=在同一平面直角坐標系中的圖象如左圖所示,則二次函數(shù)y=ax2+bx+c的圖象可能是()A. B. C. D.4.在娛樂節(jié)目“墻來了!”中,參賽選手背靠水池,迎面沖來一堵泡沫墻,墻上有人物造型的空洞.選手需要按墻上的造型擺出相同的姿勢,才能穿墻而過,否則會被墻推入水池.類似地,有一塊幾何體恰好能以右圖中兩個不同形狀的“姿勢”分別穿過這兩個空洞,則該幾何體為()A. B. C. D.5.如圖,△ABC中,BC=4,⊙P與△ABC的邊或邊的延長線相切.若⊙P半徑為2,△ABC的面積為5,則△ABC的周長為()A.8 B.10 C.13 D.146.若關于x的一元二次方程x(x+2)=m總有兩個不相等的實數(shù)根,則()A.m<﹣1 B.m>1 C.m>﹣1 D.m<17.一個不透明的布袋里裝有5個只有顏色不同的球,其中2個紅球、3個白球.從布袋中一次性摸出兩個球,則摸出的兩個球中至少有一個紅球的概率是()A. B. C. D.8.第四屆濟南國際旅游節(jié)期間,全市共接待游客686000人次.將686000用科學記數(shù)法表示為()A.686×104B.68.6×105C.6.86×106D.6.86×1059.解分式方程時,去分母后變形為A. B.C. D.10.近似數(shù)精確到()A.十分位 B.個位 C.十位 D.百位二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=_____.12.若xay與3x2yb是同類項,則ab的值為_____.13.在一個不透明的袋子里裝有一個黑球和兩個白球,它們除顏色外都相同,隨機從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機摸出一個球,兩次都摸到黑球的概率是__________.14.已知點P(3,1)關于y軸的對稱點Q的坐標是(a+b,﹣1﹣b),則ab的值為_____.15.如圖所示,點A1、A2、A3在x軸上,且OA1=A1A2=A2A3,分別過點A1、A2、A3作y軸的平行線,與反比例函數(shù)y=(x>0)的圖象分別交于點B1、B2、B3,分別過點B1、B2、B3作x軸的平行線,分別與y軸交于點C1、C2、C3,連接OB1、OB2、OB3,若圖中三個陰影部分的面積之和為,則k=.16.如圖,BC=6,點A為平面上一動點,且∠BAC=60°,點O為△ABC的外心,分別以AB、AC為腰向形外作等腰直角三角形△ABD與△ACE,連接BE、CD交于點P,則OP的最小值是_____17.一只不透明的袋子中裝有紅球和白球共30個,這些球除了顏色外都相同,校課外學習小組做摸球實驗,將球攪勻后任意摸出一個球,記下顏色后放回,攪勻,通過多次重復試驗,算得摸到紅球的頻率是0.2,則袋中有________個紅球.三、解答題(共7小題,滿分69分)18.(10分)甲、乙兩人分別站在相距6米的A、B兩點練習打羽毛球,已知羽毛球飛行的路線為拋物線的一部分,甲在離地面1米的C處發(fā)出一球,乙在離地面1.5米的D處成功擊球,球飛行過程中的最高點H與甲的水平距離AE為4米,現(xiàn)以A為原點,直線AB為x軸,建立平面直角坐標系(如圖所示).求羽毛球飛行的路線所在的拋物線的表達式及飛行的最高高度.19.(5分)閱讀材料:小胖同學發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.(1)在圖1中證明小胖的發(fā)現(xiàn);借助小胖同學總結規(guī)律,構造“手拉手”圖形來解答下面的問題:(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).20.(8分)為了預防“甲型H1N1”,某學校對教室采用藥薰消毒法進行消毒,已知藥物燃燒時,室內每立方米空氣中的含藥量y(mg)與時間x(min)成正比例,藥物燃燒后,y與x成反比例,如圖所示,現(xiàn)測得藥物8min燃畢,此時室內空氣每立方米的含藥量為6mg,請你根據(jù)題中提供的信息,解答下列問題:藥物燃燒時,求y關于x的函數(shù)關系式?自變量x的取值范圍是什么?藥物燃燒后y與x的函數(shù)關系式呢?研究表明,當空氣中每立方米的含藥量低于1.6mg時,學生方可進教室,那么從消毒開始,至少需要幾分鐘后,學生才能進入教室?研究表明,當空氣中每立方米的含藥量不低于3mg且持續(xù)時間不低于10min時,才能殺滅空氣中的毒,那么這次消毒是否有效?為什么?21.(10分)山地自行車越來越受中學生的喜愛.一網(wǎng)店經(jīng)營的一個型號山地自行車,今年一月份銷售額為30000元,二月份每輛車售價比一月份每輛車售價降價100元,若銷售的數(shù)量與上一月銷售的數(shù)量相同,則銷售額是27000元.求二月份每輛車售價是多少元?為了促銷,三月份每輛車售價比二月份每輛車售價降低了10%銷售,網(wǎng)店仍可獲利35%,求每輛山地自行車的進價是多少元?22.(10分)邊長為6的等邊△ABC中,點D,E分別在AC,BC邊上,DE∥AB,EC=2如圖1,將△DEC沿射線EC方向平移,得到△D′E′C′,邊D′E′與AC的交點為M,邊C′D′與∠ACC′的角平分線交于點N.當CC′多大時,四邊形MCND′為菱形?并說明理由.如圖2,將△DEC繞點C旋轉∠α(0°<α<360°),得到△D′E′C,連接AD′,BE′.邊D′E′的中點為P.①在旋轉過程中,AD′和BE′有怎樣的數(shù)量關系?并說明理由;②連接AP,當AP最大時,求AD′的值.(結果保留根號)23.(12分)如圖所示,一堤壩的坡角,坡面長度米(圖為橫截面),為了使堤壩更加牢固,一施工隊欲改變堤壩的坡面,使得坡面的坡角,則此時應將壩底向外拓寬多少米?(結果保留到米)(參考數(shù)據(jù):,,)24.(14分)某超市對今年“元旦”期間銷售A、B、C三種品牌的綠色雞蛋情況進行了統(tǒng)計,并繪制如圖所示的扇形統(tǒng)計圖和條形統(tǒng)計圖.根據(jù)圖中信息解答下列問題:該超市“元旦”期間共銷售個綠色雞蛋,A品牌綠色雞蛋在扇形統(tǒng)計圖中所對應的扇形圓心角是度;補全條形統(tǒng)計圖;如果該超市的另一分店在“元旦”期間共銷售這三種品牌的綠色雞蛋1500個,請你估計這個分店銷售的B種品牌的綠色雞蛋的個數(shù)?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】試題分析:根據(jù)等腰三角形的判定分類別分別找尋,分AB可能為底,可能是腰進行分析.解:使△ABC是等腰三角形,當AB當?shù)讜r,則作AB的垂直平分線,交PQ,MN的有兩點,即有兩個三角形.當讓AB當腰時,則以點A為圓心,AB為半徑畫圓交PQ,MN有三點,所以有三個.當以點B為圓心,AB為半徑畫圓,交PQ,MN有三點,所以有三個.所以共8個.故選D.點評:本題考查了等腰三角形的判定;解題的關鍵是要分情況而定,所以學生一定要思維嚴密,不可遺漏.2、A【解析】找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一個數(shù)(或兩個數(shù)的平均數(shù))為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),可得答案.解:在這一組數(shù)據(jù)中90是出現(xiàn)次數(shù)最多的,故眾數(shù)是90;排序后處于中間位置的那個數(shù),那么由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是87.5;故選:A.“點睛”本題考查了眾數(shù)、中位數(shù)的知識,掌握各知識點的概念是解答本題的關鍵.注意中位數(shù):將一組數(shù)據(jù)按照從小到大(或從大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)就是這組數(shù)據(jù)的中位數(shù).如果這組數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)就是這組數(shù)據(jù)的中位數(shù).3、B【解析】

根據(jù)題中給出的函數(shù)圖像結合一次函數(shù)性質得出a<0,b>0,再由反比例函數(shù)圖像性質得出c<0,從而可判斷二次函數(shù)圖像開口向下,對稱軸:>0,即在y軸的右邊,與y軸負半軸相交,從而可得答案.【詳解】解:∵一次函數(shù)y=ax+b圖像過一、二、四,∴a<0,b>0,又∵反比例函數(shù)y=圖像經(jīng)過二、四象限,∴c<0,∴二次函數(shù)對稱軸:>0,∴二次函數(shù)y=ax2+bx+c圖像開口向下,對稱軸在y軸的右邊,與y軸負半軸相交,故答案為B.【點睛】本題考查了二次函數(shù)的圖形,一次函數(shù)的圖象,反比例函數(shù)的圖象,熟練掌握二次函數(shù)的有關性質:開口方向、對稱軸、與y軸的交點坐標等確定出a、b、c的情況是解題的關鍵.4、C【解析】試題分析:通過圖示可知,要想通過圓,則可以是圓柱、圓錐、球,而能通過三角形的只能是圓錐,綜合可知只有圓錐符合條件.故選C5、C【解析】

根據(jù)三角形的面積公式以及切線長定理即可求出答案.【詳解】連接PE、PF、PG,AP,由題意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=BC?PE=×4×2=4,∴由切線長定理可知:S△PFC+S△PBG=S△PBC=4,∴S四邊形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切線長定理可知:S△APG=S四邊形AFPG=,∴=×AG?PG,∴AG=,由切線長定理可知:CE=CF,BE=BG,∴△ABC的周長為AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故選C.【點睛】本題考查切線長定理,解題的關鍵是畫出輔助線,熟練運用切線長定理,本題屬于中等題型.6、C【解析】

將關于x的一元二次方程化成標準形式,然后利用Δ>0,即得m的取值范圍.【詳解】因為方程是關于x的一元二次方程方程,所以可得,Δ=4+4m>0,解得m>﹣1,故選D.【點睛】本題熟練掌握一元二次方程的基本概念是本題的解題關鍵.7、D【解析】

畫出樹狀圖得出所有等可能的情況數(shù),找出恰好是兩個紅球的情況數(shù),即可求出所求的概率.【詳解】畫樹狀圖如下:一共有20種情況,其中兩個球中至少有一個紅球的有14種情況,因此兩個球中至少有一個紅球的概率是:.故選:D.【點睛】此題考查了列表法與樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.8、D【解析】根據(jù)科學記數(shù)法的表示形式(a×10n,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù))可得:686000=6.86×105,

故選:D.9、D【解析】試題分析:方程,兩邊都乘以x-1去分母后得:2-(x+2)=3(x-1),故選D.考點:解分式方程的步驟.10、C【解析】

根據(jù)近似數(shù)的精確度:近似數(shù)5.0×102精確到十位.故選C.考點:近似數(shù)和有效數(shù)字二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】

由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行線分線段成比例定理,即可求得答案.【詳解】解:∵DE∥BC,∴∠DEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠DEB,∴BD=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴AD:DB=AE:EC,∴EC=2AE=2×3=1.故答案為:1.【點睛】此題考查了平行線分線段成比例定理以及等腰三角形的判定與性質.注意掌握線段的對應關系是解此題的關鍵.12、2【解析】試題解析:∵xay與3x2yb是同類項,∴a=2,b=1,則ab=2.13、1【解析】

首先根據(jù)題意列表,由列表求得所有等可能的結果與兩次都摸到黑球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【詳解】列表得:第一次第二次黑白白黑黑,黑白,黑白,黑白黑,白白,白白,白白黑,白白,白白,白∵共有9種等可能的結果,兩次都摸到黑球的只有1種情況,∴兩次都摸到黑球的概率是19故答案為:19【點睛】考查概率的計算,掌握概率等于所求情況數(shù)與總情況數(shù)之比是解題的關鍵.14、2【解析】

根據(jù)“關于y軸對稱的點,縱坐標相同,橫坐標互為相反數(shù)”求出ab的值即可.【詳解】∵點P(3,1)關于y軸的對稱點Q的坐標是(a+b,﹣1﹣b),∴a+b=-3,-1-b=1;解得a=-1,b=-2,∴ab=2.故答案為2.【點睛】本題考查了關于x軸,y軸對稱的點的坐標,解題的關鍵是熟練的掌握關于y軸對稱的點的坐標的性質.15、1.【解析】

先根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義得到,再根據(jù)相似三角形的面積比等于相似比的平方,得到用含k的代數(shù)式表示3個陰影部分的面積之和,然后根據(jù)三個陰影部分的面積之和為,列出方程,解方程即可求出k的值.【詳解】解:根據(jù)題意可知,軸,設圖中陰影部分的面積從左向右依次為,則,,解得:k=2.故答案為1.考點:反比例函數(shù)綜合題.16、【解析】試題分析:如圖,∵∠BAD=∠CAE=90°,∴∠DAC=∠BAE,在△DAC和△BAE中,∵AD=AB,∠DAC=∠BAE,AC=AE,∴△DAC≌△BAE(SAS),∴∠ADC=∠ABE,∴∠PDB+∠PBD=90°,∴∠DPB=90°,∴點P在以BC為直徑的圓上,∵外心為O,∠BAC=60°,∴∠BOC=120°,又BC=6,∴OH=,所以OP的最小值是.故答案為.考點:1.三角形的外接圓與外心;2.全等三角形的判定與性質.17、1【解析】

在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,設袋中有x個紅球,列出方程=20%,求得x=1.

故答案為1.點睛:此題主要考查了利用頻率估計概率,本題利用了用大量試驗得到的頻率可以估計事件的概率.關鍵是根據(jù)紅球的頻率得到相應的等量關系.三、解答題(共7小題,滿分69分)18、米.【解析】

先求拋物線對稱軸,再根據(jù)待定系數(shù)法求拋物線解析式,再求函數(shù)最大值.【詳解】由題意得:C(0,1),D(6,1.5),拋物線的對稱軸為直線x=4,設拋物線的表達式為:y=ax2+bx+1(a≠0),則據(jù)題意得:,解得:,∴羽毛球飛行的路線所在的拋物線的表達式為:y=﹣x2+x+1,∵y=﹣(x﹣4)2+,∴飛行的最高高度為:米.【點睛】本題考核知識點:二次函數(shù)的應用.解題關鍵點:熟記二次函數(shù)的基本性質.19、(1)證明見解析;(2)證明見解析;(3)∠EAF=m°.【解析】分析:(1)如圖1中,欲證明BD=EC,只要證明△DAB≌△EAC即可;(2)如圖2中,延長DC到E,使得DB=DE.首先證明△BDE是等邊三角形,再證明△ABD≌△CBE即可解決問題;(3)如圖3中,將AE繞點E逆時針旋轉m°得到AG,連接CG、EG、EF、FG,延長ED到M,使得DM=DE,連接FM、CM.想辦法證明△AFE≌△AFG,可得∠EAF=∠FAG=m°.詳(1)證明:如圖1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC,∴BD=EC.(2)證明:如圖2中,延長DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等邊三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)如圖3中,將AE繞點E逆時針旋轉m°得到AG,連接CG、EG、EF、FG,延長ED到M,使得DM=DE,連接FM、CM.由(1)可知△EAB≌△GAC,∴∠1=∠2,BE=CG,∵BD=DC,∠BDE=∠CDM,DE=DM,∴△EDB≌△MDC,∴EM=CM=CG,∠EBC=∠MCD,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=m°.點睛:本題考查幾何變換綜合題、旋轉變換、等腰三角形的性質、全等三角形的判定和性質等知識,解題的關鍵是學會利用“手拉手”圖形中的全等三角形解決問題,學會構造“手拉手”模型,解決實際問題,屬于中考壓軸題.20、(1);(2)至少需要30分鐘后生才能進入教室.(3)這次消毒是有效的.【解析】

(1)藥物燃燒時,設出y與x之間的解析式y(tǒng)=k1x,把點(8,6)代入即可,從圖上讀出x的取值范圍;藥物燃燒后,設出y與x之間的解析式y(tǒng)=,把點(8,6)代入即可;(2)把y=1.6代入反比例函數(shù)解析式,求出相應的x;(3)把y=3代入正比例函數(shù)解析式和反比例函數(shù)解析式,求出相應的x,兩數(shù)之差與10進行比較,大于或等于10就有效.【詳解】解:(1)設藥物燃燒時y關于x的函數(shù)關系式為y=k1x(k1>0)代入(8,6)為6=8k1∴k1=設藥物燃燒后y關于x的函數(shù)關系式為y=(k2>0)代入(8,6)為6=,∴k2=48∴藥物燃燒時y關于x的函數(shù)關系式為(0≤x≤8)藥物燃燒后y關于x的函數(shù)關系式為(x>8)∴(2)結合實際,令中y≤1.6得x≥30即從消毒開始,至少需要30分鐘后生才能進入教室.(3)把y=3代入,得:x=4把y=3代入,得:x=16∵16﹣4=12所以這次消毒是有效的.【點睛】現(xiàn)實生活中存在大量成反比例函數(shù)的兩個變量,解答該類問題的關鍵是確定兩個變量之間的函數(shù)關系,然后利用待定系數(shù)法求出它們的關系式.21、(1)二月份每輛車售價是900元;(2)每輛山地自行車的進價是600元.【解析】

(1)設二月份每輛車售價為x元,則一月份每輛車售價為(x+100)元,根據(jù)數(shù)量=總價÷單價,即可得出關于x的分式方程,解之經(jīng)檢驗后即可得出結論;(2)設每輛山地自行車的進價為y元,根據(jù)利潤=售價﹣進價,即可得出關于y的一元一次方程,解之即可得出結論.【詳解】(1)設二月份每輛車售價為x元,則一月份每輛車售價為(x+100)元,根據(jù)題意得:,解得:x=900,經(jīng)檢驗,x=900是原分式方程的解,答:二月份每輛車售價是900元;(2)設每輛山地自行車的進價為y元,根據(jù)題意得:900×(1﹣10%)﹣y=35%y,解得:y=600,答:每輛山地自行車的進價是600元.【點睛】本題考查了分式方程的應用、一元一次方程的應用,弄清題意,找準等量關系列出方程是解題的關鍵.22、(1)當CC'=時,四邊形MCND'是菱形,理由見解析;(2)①AD'=BE',理由見解析;②.【解析】

(1)先判斷出四邊形MCND'為平行四邊形,再由菱形的性質得出CN=CM,即可求出CC';(2)①分兩種情況,利用旋轉的性質,即可判斷出△ACD≌△BCE'即可得出結論;②先判斷出點A,C,P三點共線,先求出CP,AP,最后用勾股定理即可得出結論.【詳解】(1)當CC'=時,四邊形MCND'是菱形.理由:由平移的性質得,CD∥C'D',DE∥D'E',∵△ABC是等邊三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分線,∴∠D'E'C'=∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四邊形MCND'是平行四邊形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等邊三

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論