版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2023-2024學年安徽省亳州市利辛縣闞疃金石中學高三第三次測評數(shù)學試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件2.如圖是甲、乙兩位同學在六次數(shù)學小測試(滿分100分)中得分情況的莖葉圖,則下列說法錯誤的是()A.甲得分的平均數(shù)比乙大 B.甲得分的極差比乙大C.甲得分的方差比乙小 D.甲得分的中位數(shù)和乙相等3.已知集合A,B=,則A∩B=A. B. C. D.4.如圖,圓錐底面半徑為,體積為,、是底面圓的兩條互相垂直的直徑,是母線的中點,已知過與的平面與圓錐側(cè)面的交線是以為頂點的拋物線的一部分,則該拋物線的焦點到圓錐頂點的距離等于()A. B.1 C. D.5.函數(shù)的大致圖象為A. B.C. D.6.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度7.已知是圓心為坐標原點,半徑為1的圓上的任意一點,將射線繞點逆時針旋轉(zhuǎn)到交圓于點,則的最大值為()A.3 B.2 C. D.8.“紋樣”是中國藝術(shù)寶庫的瑰寶,“火紋”是常見的一種傳統(tǒng)紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內(nèi),并向該正方形內(nèi)隨機投擲200個點,己知恰有80個點落在陰影部分據(jù)此可估計陰影部分的面積是()A. B. C.10 D.9.已知復數(shù)滿足,則=()A. B.C. D.10.設(shè)全集,集合,則=()A. B. C. D.11.下列函數(shù)中,圖象關(guān)于軸對稱的為()A. B.,C. D.12.a(chǎn)為正實數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.(5分)在平面直角坐標系中,過點作傾斜角為的直線,已知直線與圓相交于兩點,則弦的長等于____________.14.已知函數(shù)對于都有,且周期為2,當時,,則________________________.15.某中學高一年級有學生1200人,高二年級有學生900人,高三年級有學生1500人,現(xiàn)按年級用分層抽樣的方法從這三個年級的學生中抽取一個容量為720的樣本進行某項研究,則應(yīng)從高三年級學生中抽取_____人.16.已知雙曲線的一條漸近線為,則焦點到這條漸近線的距離為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),其中.(1)①求函數(shù)的單調(diào)區(qū)間;②若滿足,且.求證:.(2)函數(shù).若對任意,都有,求的最大值.18.(12分)的內(nèi)角的對邊分別為,若(1)求角的大?。?)若,求的周長19.(12分)已知函數(shù).(1)若在上單調(diào)遞增,求實數(shù)的取值范圍;(2)若,對,恒有成立,求實數(shù)的最小值.20.(12分)在平面直角坐標系中,點是直線上的動點,為定點,點為的中點,動點滿足,且,設(shè)點的軌跡為曲線.(1)求曲線的方程;(2)過點的直線交曲線于,兩點,為曲線上異于,的任意一點,直線,分別交直線于,兩點.問是否為定值?若是,求的值;若不是,請說明理由.21.(12分)在平面直角坐標系xOy中,以O(shè)為極點,x軸的正半軸為極軸建立極坐標系,已知曲線C:ρcos2θ=4asinθ?(a>0),直線l的參數(shù)方程為x=-2+22t,y=-1+(I)寫出曲線C的直角坐標方程和直線l的普通方程(不要求具體過程);(II)設(shè)P(-2,-1),若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.22.(10分)4月23日是“世界讀書日”,某中學開展了一系列的讀書教育活動.學校為了解高三學生課外閱讀情況,采用分層抽樣的方法從高三某班甲、乙、丙、丁四個讀書小組(每名學生只能參加一個讀書小組)學生抽取12名學生參加問卷調(diào)查.各組人數(shù)統(tǒng)計如下:小組甲乙丙丁人數(shù)12969(1)從參加問卷調(diào)查的12名學生中隨機抽取2人,求這2人來自同一個小組的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,用表示抽得甲組學生的人數(shù),求隨機變量的分布列和數(shù)學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
利用兩條直線互相平行的條件進行判定【詳解】當時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【點睛】本題主要考查了兩直線平行的條件和性質(zhì),充分條件,必要條件的定義和判斷方法,屬于基礎(chǔ)題.2、B【解析】
由平均數(shù)、方差公式和極差、中位數(shù)概念,可得所求結(jié)論.【詳解】對于甲,;對于乙,,故正確;甲的極差為,乙的極差為,故錯誤;對于甲,方差.5,對于乙,方差,故正確;甲得分的中位數(shù)為,乙得分的中位數(shù)為,故正確.故選:.【點睛】本題考查莖葉圖的應(yīng)用,考查平均數(shù)和方差等概念,培養(yǎng)計算能力,意在考查學生對這些知識的理解掌握水平,屬于基礎(chǔ)題.3、A【解析】
先解A、B集合,再取交集?!驹斀狻?所以B集合與A集合的交集為,故選A【點睛】一般地,把不等式組放在數(shù)軸中得出解集。4、D【解析】
建立平面直角坐標系,求得拋物線的軌跡方程,解直角三角形求得拋物線的焦點到圓錐頂點的距離.【詳解】將拋物線放入坐標系,如圖所示,∵,,,∴,設(shè)拋物線,代入點,可得∴焦點為,即焦點為中點,設(shè)焦點為,,,∴.故選:D【點睛】本小題考查圓錐曲線的概念,拋物線的性質(zhì),兩點間的距離等基礎(chǔ)知識;考查運算求解能力,空間想象能力,推理論證能力,應(yīng)用意識.5、A【解析】
因為,所以函數(shù)是偶函數(shù),排除B、D,又,排除C,故選A.6、D【解析】
通過變形,通過“左加右減”即可得到答案.【詳解】根據(jù)題意,故只需把函數(shù)的圖象上所有的點向右平移個單位長度可得到函數(shù)的圖象,故答案為D.【點睛】本題主要考查三角函數(shù)的平移變換,難度不大.7、C【解析】
設(shè)射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計算即可.【詳解】設(shè)射線OA與x軸正向所成的角為,由已知,,,所以,當時,取得等號.故選:C.【點睛】本題考查正弦型函數(shù)的最值問題,涉及到三角函數(shù)的定義、輔助角公式等知識,是一道容易題.8、D【解析】
直接根據(jù)幾何概型公式計算得到答案.【詳解】根據(jù)幾何概型:,故.故選:.【點睛】本題考查了根據(jù)幾何概型求面積,意在考查學生的計算能力和應(yīng)用能力.9、B【解析】
利用復數(shù)的代數(shù)運算法則化簡即可得到結(jié)論.【詳解】由,得,所以,.故選:B.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,屬于基礎(chǔ)題.10、A【解析】
先求得全集包含的元素,由此求得集合的補集.【詳解】由解得,故,所以,故選A.【點睛】本小題主要考查補集的概念及運算,考查一元二次不等式的解法,屬于基礎(chǔ)題.11、D【解析】
圖象關(guān)于軸對稱的函數(shù)為偶函數(shù),用偶函數(shù)的定義及性質(zhì)對選項進行判斷可解.【詳解】圖象關(guān)于軸對稱的函數(shù)為偶函數(shù);A中,,,故為奇函數(shù);B中,的定義域為,不關(guān)于原點對稱,故為非奇非偶函數(shù);C中,由正弦函數(shù)性質(zhì)可知,為奇函數(shù);D中,且,,故為偶函數(shù).故選:D.【點睛】本題考查判斷函數(shù)奇偶性.判斷函數(shù)奇偶性的兩種方法:(1)定義法:對于函數(shù)的定義域內(nèi)任意一個都有,則函數(shù)是奇函數(shù);都有,則函數(shù)是偶函數(shù)(2)圖象法:函數(shù)是奇(偶)函數(shù)函數(shù)圖象關(guān)于原點(軸)對稱.12、B【解析】
,選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
方法一:依題意,知直線的方程為,代入圓的方程化簡得,解得或,從而得或,則.方法二:依題意,知直線的方程為,代入圓的方程化簡得,設(shè),則,故.方法三:將圓的方程配方得,其半徑,圓心到直線的距離,則.14、【解析】
利用,且周期為2,可得,得.【詳解】∵,且周期為2,∴,又當時,,∴,故答案為:【點睛】本題考查函數(shù)的周期性與對稱性的應(yīng)用,考查轉(zhuǎn)化能力,屬于基礎(chǔ)題.15、1.【解析】
先求得高三學生占的比例,再利用分層抽樣的定義和方法,即可求解.【詳解】由題意,高三學生占的比例為,所以應(yīng)從高三年級學生中抽取的人數(shù)為.【點睛】本題主要考查了分層抽樣的定義和方法,其中解答中熟記分層抽樣的定義和抽取的方法是解答的關(guān)鍵,著重考查了運算與求解能力,屬于基礎(chǔ)題.16、2.【解析】
由雙曲線的一條漸近線為,解得.求出雙曲線的右焦點,利用點到直線的距離公式求解即可.【詳解】雙曲線的一條漸近線為解得:雙曲線的右焦點為焦點到這條漸近線的距離為:本題正確結(jié)果:【點睛】本題考查了雙曲線和的標準方程及其性質(zhì),涉及到點到直線距離公式的考查,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)①單調(diào)遞增區(qū)間,,單調(diào)遞減區(qū)間;②詳見解析;(2).【解析】
(1)①求導可得,再分別求解與的解集,結(jié)合定義域分析函數(shù)的單調(diào)區(qū)間即可.②根據(jù)(1)中的結(jié)論,求出的表達式,再分與兩種情況,結(jié)合函數(shù)的單調(diào)性分析的范圍即可.(2)求導分析的單調(diào)性,再結(jié)合單調(diào)性,設(shè)去絕對值化簡可得,再構(gòu)造函數(shù),,根據(jù)函數(shù)的單調(diào)性與恒成立問題可知,再換元表達求解最大值即可.【詳解】解:,由可得或,由可得,故函數(shù)的單調(diào)遞增區(qū)間,,單調(diào)遞減區(qū)間;,或,若,因為,故,,由知在上單調(diào)遞增,,若由可得x1,因為,所以,由在上單調(diào)遞增,綜上.時,,在上單調(diào)遞減,不妨設(shè)由(1)在上單調(diào)遞減,由,可得,所以,令,,可得單調(diào)遞減,所以在上恒成立,即在上恒成立,即,所以,,所以的最大值.【點睛】本題主要考查了分類討論分析函數(shù)單調(diào)性的問題,同時也考查了利用導數(shù)求解函數(shù)不等式以及構(gòu)造函數(shù)分析函數(shù)的最值解決恒成立的問題.需要根據(jù)題意結(jié)合定義域與單調(diào)性分析函數(shù)的取值范圍與最值等.屬于難題.18、(1)(2)11【解析】
(1)利用二倍角公式將式子化簡成,再利用兩角和與差的余弦公式即可求解.(2)利用余弦定理可得,再將平方,利用向量數(shù)量積可得,從而可求周長.【詳解】由題解得,所以由余弦定理,,再由解得:所以故的周長為【點睛】本題主要考查了余弦定理解三角形、兩角和與差的余弦公式、需熟記公式,屬于基礎(chǔ)題.19、(1)(2)【解析】
(1)求得,根據(jù)已知條件得到在恒成立,由此得到在恒成立,利用分離常數(shù)法求得的取值范圍.(2)構(gòu)造函數(shù)設(shè),利用求二階導數(shù)的方法,結(jié)合恒成立,求得的取值范圍,由此求得的最小值.【詳解】(1)因為在上單調(diào)遞增,所以在恒成立,即在恒成立,當時,上式成立,當,有,需,而,,,,故綜上,實數(shù)的取值范圍是(2)設(shè),,則,令,,在單調(diào)遞增,也就是在單調(diào)遞增,所以.當即時,,不符合;當即時,,符合當即時,根據(jù)零點存在定理,,使,有時,,在單調(diào)遞減,時,,在單調(diào)遞增,成立,故只需即可,有,得,符合綜上得,,實數(shù)的最小值為【點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調(diào)性,考查利用導數(shù)研究不等式恒成立問題,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,考查分類討論的數(shù)學思想方法,屬于難題.20、(1);(2)是定值,.【解析】
(1)設(shè)出M的坐標為,采用直接法求曲線的方程;(2)設(shè)AB的方程為,,,,求出AT方程,聯(lián)立直線方程得D點的坐標,同理可得E點的坐標,最后利用向量數(shù)量積算即可.【詳解】(1)設(shè)動點M的坐標為,由知∥,又在直線上,所以P點坐標為,又,點為的中點,所以,,,由得,即;(2)設(shè)直線AB的方程為,代入得,設(shè),,則,,設(shè),則,所以AT的直線方程為即,令,則,所以D點的坐標為,同理E點的坐標為,于是,,所以,從而,所以是定值.【點睛】本題考查了直接法求拋物線的軌跡方程、直線與拋物線位置關(guān)系中的定值問題,在處理此類問題一般要涉及根與系數(shù)的關(guān)系,本題思路簡單,但計算量比較大,是一道有一定難度的題.21、(I)x2=4aya>0,x-y+1=0【解析】
(I)利用所給的極坐標方程和參數(shù)方程,直接整理化簡得到直角坐標方程和普通方程;(II)聯(lián)立直線的參數(shù)方程和C的直角坐標方程,結(jié)合韋達定理以及等比數(shù)列的性質(zhì)即可求得答案.【詳解】(I)曲線C:ρcos2可得ρ2cos2直線l的參數(shù)方程為x=-2+22t,x-y=-1,得x-y+1=0;(II)將x=-2+22t,y=-1+2t韋達定理:t1由題意得MN2=PM可得(t即32(a+1)解得a=【點睛】本題考查了極坐標方程、參數(shù)方程與直角坐標和普通方程的互化,以及參數(shù)方程的綜合知識,結(jié)合等比數(shù)列,熟練運用知識,屬于較易題.22、(1)(2)見解析,【解析】
(1)采用分層抽樣的方法甲組抽取4人,乙組抽取3人,丙組抽取2人,丁組抽取3人,從參加問卷調(diào)查的12名學生中隨機抽取2人,基本事件總數(shù)為,這兩人來自同一小組取法共有,由此可求出所求的概率;(2)從已抽取的甲、丙兩個小組的學生中隨機抽取2人,而甲、丙兩個小組學生分別有4人和2人,所以抽取的兩人中是甲組的學生的人數(shù)的可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出隨機變
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 腹腔鏡微創(chuàng)手術(shù)治療異位妊娠的臨床效果及安全性研究
- 二零二五年度林業(yè)碳匯交易林地承包合同范本3篇
- 二零二五年度環(huán)保產(chǎn)業(yè)委托擔保合同模板3篇
- 通信行業(yè)安全設(shè)備檢修
- 二零二五年度個人租賃車輛保險合同范本2篇
- 《二零二五版水電站施工合同爭議解決及仲裁條款》3篇
- 二零二五年度電子商務(wù)平臺銷售擔保合同范本
- 初中學年度第二學期八年級地理教案
- 關(guān)注民生-加強公共安全-構(gòu)建和諧社會
- 二零二五年度金融創(chuàng)新產(chǎn)品居間服務(wù)合同3篇
- 《亞太經(jīng)合組織》課件
- 《會展概述》課件
- 《郴州市總體規(guī)劃》課件
- 【高中物理競賽大全】 競賽3 電磁學 50題競賽真題強化訓練解析版-高考物理備考復習重點資料歸納
- 再見2024你好2025展望未來
- 2025屆山東省濟南市歷城二中高二上數(shù)學期末學業(yè)質(zhì)量監(jiān)測試題含解析
- 2024年全國各地中考試題分類匯編:文學常識
- 2022年版義務(wù)教育語文課程標準題庫(教師教資培訓考試專用十三套)
- 英語新課標(英文版)-20220602111643
- 高考模擬作文“文化自信:春節(jié)走向世界”導寫+范文3篇
- 湖南汽車工程職業(yè)學院單招職業(yè)技能測試參考試題庫(含答案)
評論
0/150
提交評論