版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年甘肅天水甘谷一中高三下學(xué)期聯(lián)考數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.一袋中裝有個(gè)紅球和個(gè)黑球(除顏色外無(wú)區(qū)別),任取球,記其中黑球數(shù)為,則為()A. B. C. D.2.已知函數(shù),將的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的,縱坐標(biāo)保持不變;再把所得圖象向上平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象,若,則的值可能為()A. B. C. D.3.自2019年12月以來(lái),在湖北省武漢市發(fā)現(xiàn)多起病毒性肺炎病例,研究表明,該新型冠狀病毒具有很強(qiáng)的傳染性各級(jí)政府反應(yīng)迅速,采取了有效的防控阻擊措施,把疫情控制在最低范圍之內(nèi).某社區(qū)按上級(jí)要求做好在鄂返鄉(xiāng)人員體格檢查登記,有3個(gè)不同的住戶(hù)屬在鄂返鄉(xiāng)住戶(hù),負(fù)責(zé)該小區(qū)體格檢查的社區(qū)診所共有4名醫(yī)生,現(xiàn)要求這4名醫(yī)生都要分配出去,且每個(gè)住戶(hù)家里都要有醫(yī)生去檢查登記,則不同的分配方案共有()A.12種 B.24種 C.36種 D.72種4.設(shè)集合,,則集合A. B. C. D.5.已知集合,則全集則下列結(jié)論正確的是()A. B. C. D.6.設(shè)是雙曲線的左、右焦點(diǎn),若雙曲線右支上存在一點(diǎn),使(為坐標(biāo)原點(diǎn)),且,則雙曲線的離心率為()A. B. C. D.7.設(shè)直線過(guò)點(diǎn),且與圓:相切于點(diǎn),那么()A. B.3 C. D.18.若點(diǎn)x,y位于由曲線x=y-2+1與x=3圍成的封閉區(qū)域內(nèi)(包括邊界),則A.-3,1 B.-3,5 C.-∞,-39.我國(guó)古代數(shù)學(xué)家秦九韶在《數(shù)書(shū)九章》中記述了“三斜求積術(shù)”,用現(xiàn)代式子表示即為:在中,角所對(duì)的邊分別為,則的面積.根據(jù)此公式,若,且,則的面積為()A. B. C. D.10.設(shè)全集,集合,則=()A. B. C. D.11.已知橢圓的左、右焦點(diǎn)分別為,,上頂點(diǎn)為點(diǎn),延長(zhǎng)交橢圓于點(diǎn),若為等腰三角形,則橢圓的離心率A. B.C. D.12.某幾何體的三視圖如圖所示,其中正視圖是邊長(zhǎng)為4的正三角形,俯視圖是由邊長(zhǎng)為4的正三角形和一個(gè)半圓構(gòu)成,則該幾何體的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(shè)集合,,則____________.14.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為,粗實(shí)線畫(huà)出的是某幾何體的三視圖,則該幾何體的體積為_(kāi)_______.15.已知定義在的函數(shù)滿(mǎn)足,且當(dāng)時(shí),,則的解集為_(kāi)_________________.16.已知曲線,點(diǎn),在曲線上,且以為直徑的圓的方程是.則_______.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)的內(nèi)角的對(duì)邊分別為,若(1)求角的大?。?)若,求的周長(zhǎng)18.(12分)已知橢圓:(),與軸負(fù)半軸交于,離心率.(1)求橢圓的方程;(2)設(shè)直線:與橢圓交于,兩點(diǎn),連接,并延長(zhǎng)交直線于,兩點(diǎn),已知,求證:直線恒過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).19.(12分)已知橢圓:過(guò)點(diǎn),過(guò)坐標(biāo)原點(diǎn)作兩條互相垂直的射線與橢圓分別交于,兩點(diǎn).(1)證明:當(dāng)取得最小值時(shí),橢圓的離心率為.(2)若橢圓的焦距為2,是否存在定圓與直線總相切?若存在,求定圓的方程;若不存在,請(qǐng)說(shuō)明理由.20.(12分)在三棱錐中,是邊長(zhǎng)為的正三角形,平面平面,,M、N分別為、的中點(diǎn).?(1)證明:;(2)求三棱錐的體積.21.(12分)已知各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,且是與的等差中項(xiàng).(1)證明:為等差數(shù)列,并求;(2)設(shè),數(shù)列的前項(xiàng)和為,求滿(mǎn)足的最小正整數(shù)的值.22.(10分)在四棱錐中,是等邊三角形,點(diǎn)在棱上,平面平面.(1)求證:平面平面;(2)若,求直線與平面所成角的正弦值的最大值;(3)設(shè)直線與平面相交于點(diǎn),若,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】
由題意可知,隨機(jī)變量的可能取值有、、、,計(jì)算出隨機(jī)變量在不同取值下的概率,進(jìn)而可求得隨機(jī)變量的數(shù)學(xué)期望值.【詳解】由題意可知,隨機(jī)變量的可能取值有、、、,則,,,.因此,隨機(jī)變量的數(shù)學(xué)期望為.故選:A.【點(diǎn)睛】本題考查隨機(jī)變量數(shù)學(xué)期望的計(jì)算,考查計(jì)算能力,屬于基礎(chǔ)題.2、C【解析】
利用二倍角公式與輔助角公式將函數(shù)的解析式化簡(jiǎn),然后利用圖象變換規(guī)律得出函數(shù)的解析式為,可得函數(shù)的值域?yàn)?,結(jié)合條件,可得出、均為函數(shù)的最大值,于是得出為函數(shù)最小正周期的整數(shù)倍,由此可得出正確選項(xiàng).【詳解】函數(shù),將函數(shù)的圖象上的所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的倍,得的圖象;再把所得圖象向上平移個(gè)單位,得函數(shù)的圖象,易知函數(shù)的值域?yàn)?若,則且,均為函數(shù)的最大值,由,解得;其中、是三角函數(shù)最高點(diǎn)的橫坐標(biāo),的值為函數(shù)的最小正周期的整數(shù)倍,且.故選C.【點(diǎn)睛】本題考查三角函數(shù)圖象變換,同時(shí)也考查了正弦型函數(shù)與周期相關(guān)的問(wèn)題,解題的關(guān)鍵在于確定、均為函數(shù)的最大值,考查分析問(wèn)題和解決問(wèn)題的能力,屬于中等題.3、C【解析】
先將4名醫(yī)生分成3組,其中1組有2人,共有種選法,然后將這3組醫(yī)生分配到3個(gè)不同的住戶(hù)中去,有種方法,由分步原理可知共有種.【詳解】不同分配方法總數(shù)為種.故選:C【點(diǎn)睛】此題考查的是排列組合知識(shí),解此類(lèi)題時(shí)一般先組合再排列,屬于基礎(chǔ)題.4、B【解析】
先求出集合和它的補(bǔ)集,然后求得集合的解集,最后取它們的交集得出結(jié)果.【詳解】對(duì)于集合A,,解得或,故.對(duì)于集合B,,解得.故.故選B.【點(diǎn)睛】本小題主要考查一元二次不等式的解法,考查對(duì)數(shù)不等式的解法,考查集合的補(bǔ)集和交集的運(yùn)算.對(duì)于有兩個(gè)根的一元二次不等式的解法是:先將二次項(xiàng)系數(shù)化為正數(shù),且不等號(hào)的另一邊化為,然后通過(guò)因式分解,求得對(duì)應(yīng)的一元二次方程的兩個(gè)根,再利用“大于在兩邊,小于在中間”來(lái)求得一元二次不等式的解集.5、D【解析】
化簡(jiǎn)集合,根據(jù)對(duì)數(shù)函數(shù)的性質(zhì),化簡(jiǎn)集合,按照集合交集、并集、補(bǔ)集定義,逐項(xiàng)判斷,即可求出結(jié)論.【詳解】由,則,故,由知,,因此,,,,故選:D【點(diǎn)睛】本題考查集合運(yùn)算以及集合間的關(guān)系,求解不等式是解題的關(guān)鍵,屬于基礎(chǔ)題.6、D【解析】
利用向量運(yùn)算可得,即,由為的中位線,得到,所以,再根據(jù)雙曲線定義即可求得離心率.【詳解】取的中點(diǎn),則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點(diǎn)睛】本題綜合考查向量運(yùn)算與雙曲線的相關(guān)性質(zhì),難度一般.7、B【解析】
過(guò)點(diǎn)的直線與圓:相切于點(diǎn),可得.因此,即可得出.【詳解】由圓:配方為,,半徑.∵過(guò)點(diǎn)的直線與圓:相切于點(diǎn),∴;∴;故選:B.【點(diǎn)睛】本小題主要考查向量數(shù)量積的計(jì)算,考查圓的方程,屬于基礎(chǔ)題.8、D【解析】
畫(huà)出曲線x=y-2+1與x=3圍成的封閉區(qū)域,y+1x-2表示封閉區(qū)域內(nèi)的點(diǎn)(x,y)【詳解】畫(huà)出曲線x=y-2+1與y+1x-2表示封閉區(qū)域內(nèi)的點(diǎn)(x,y)和定點(diǎn)P(2,-1)設(shè)k=y+1x-2,結(jié)合圖形可得k≥k由題意得點(diǎn)A,B的坐標(biāo)分別為A(3,0),B(1,2),∴kPA∴k≥1或k≤-3,∴y+1x-2的取值范圍為-∞,-3故選D.【點(diǎn)睛】解答本題的關(guān)鍵有兩個(gè):一是根據(jù)數(shù)形結(jié)合的方法求解問(wèn)題,即把y+1x-29、A【解析】
根據(jù),利用正弦定理邊化為角得,整理為,根據(jù),得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因?yàn)?,所以,由余弦定理,所以,由的面積公式得故選:A【點(diǎn)睛】本題主要考查正弦定理和余弦定理以及類(lèi)比推理,還考查了運(yùn)算求解的能力,屬于中檔題.10、A【解析】
先求得全集包含的元素,由此求得集合的補(bǔ)集.【詳解】由解得,故,所以,故選A.【點(diǎn)睛】本小題主要考查補(bǔ)集的概念及運(yùn)算,考查一元二次不等式的解法,屬于基礎(chǔ)題.11、B【解析】
設(shè),則,,因?yàn)椋裕?,則,所以,所以,不符合題意,所以,則,所以,所以,,設(shè),則,在中,易得,所以,解得(負(fù)值舍去),所以橢圓的離心率.故選B.12、A【解析】由題意得到該幾何體是一個(gè)組合體,前半部分是一個(gè)高為底面是邊長(zhǎng)為4的等邊三角形的三棱錐,后半部分是一個(gè)底面半徑為2的半個(gè)圓錐,體積為故答案為A.點(diǎn)睛:思考三視圖還原空間幾何體首先應(yīng)深刻理解三視圖之間的關(guān)系,遵循“長(zhǎng)對(duì)正,高平齊,寬相等”的基本原則,其內(nèi)涵為正視圖的高是幾何體的高,長(zhǎng)是幾何體的長(zhǎng);俯視圖的長(zhǎng)是幾何體的長(zhǎng),寬是幾何體的寬;側(cè)視圖的高是幾何體的高,寬是幾何體的寬.由三視圖畫(huà)出直觀圖的步驟和思考方法:1、首先看俯視圖,根據(jù)俯視圖畫(huà)出幾何體地面的直觀圖;2、觀察正視圖和側(cè)視圖找到幾何體前、后、左、右的高度;3、畫(huà)出整體,然后再根據(jù)三視圖進(jìn)行調(diào)整.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先解不等式,再求交集的定義求解即可.【詳解】由題,因?yàn)?解得,即,則,故答案為:【點(diǎn)睛】本題考查集合的交集運(yùn)算,考查解一元二次不等式.14、【解析】
根據(jù)三視圖知該幾何體是三棱柱與半圓錐的組合體,結(jié)合圖中數(shù)據(jù)求出它的體積.【詳解】根據(jù)三視圖知,該幾何體是三棱柱與半圓錐的組合體,如圖所示:結(jié)合圖中數(shù)據(jù),計(jì)算它的體積為.故答案為:.【點(diǎn)睛】本題考查了根據(jù)三視圖求簡(jiǎn)單組合體的體積應(yīng)用問(wèn)題,是基礎(chǔ)題.15、【解析】
由已知得出函數(shù)是偶函數(shù),再得出函數(shù)的單調(diào)性,得出所解不等式的等價(jià)的不等式,可得解集.【詳解】因?yàn)槎x在的函數(shù)滿(mǎn)足,所以函數(shù)是偶函數(shù),又當(dāng)時(shí),,得時(shí),,所以函數(shù)在上單調(diào)遞減,所以函數(shù)在上單調(diào)遞減,函數(shù)在上單調(diào)遞增,所以不等式等價(jià)于,即或,解得或,所以不等式的解集為:.故答案為:.【點(diǎn)睛】本題考查抽象函數(shù)的不等式的求解,關(guān)鍵得出函數(shù)的奇偶性,單調(diào)性,屬于中檔題.16、【解析】
設(shè)所在直線方程為設(shè)?點(diǎn)坐標(biāo)分別為,,都在上,代入曲線方程,兩式作差可得,從而可得直線的斜率,聯(lián)立直線與的方程,由,利用弦長(zhǎng)公式即可求解.【詳解】因?yàn)槭菆A的直徑,必過(guò)圓心點(diǎn),設(shè)所在直線方程為設(shè)?點(diǎn)坐標(biāo)分別為,,都在上,故兩式相減,可得(因?yàn)槭堑闹悬c(diǎn)),即聯(lián)立直線與的方程:又,即,即又因?yàn)椋瑒t有即∴.故答案為:【點(diǎn)睛】本題考查了直線與圓錐曲線的位置關(guān)系、弦長(zhǎng)公式,考查了學(xué)生的計(jì)算能力,綜合性比較強(qiáng),屬于中檔題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)(2)11【解析】
(1)利用二倍角公式將式子化簡(jiǎn)成,再利用兩角和與差的余弦公式即可求解.(2)利用余弦定理可得,再將平方,利用向量數(shù)量積可得,從而可求周長(zhǎng).【詳解】由題解得,所以由余弦定理,,再由解得:所以故的周長(zhǎng)為【點(diǎn)睛】本題主要考查了余弦定理解三角形、兩角和與差的余弦公式、需熟記公式,屬于基礎(chǔ)題.18、(1)(2)證明見(jiàn)解析;定點(diǎn)坐標(biāo)為【解析】
(1)由條件直接算出即可(2)由得,,,由可得,同理,然后由推出即可【詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)由得,.又∴,同理又∴∴∴∴∴∴,此時(shí)滿(mǎn)足∴∴直線恒過(guò)定點(diǎn)【點(diǎn)睛】涉及橢圓的弦長(zhǎng)、中點(diǎn)、距離等相關(guān)問(wèn)題時(shí),一般利用根與系數(shù)的關(guān)系采用“設(shè)而不求”“整體帶入”等解法.19、(1)證明見(jiàn)解析;(2)存在,【解析】
(1)將點(diǎn)代入橢圓方程得到,結(jié)合基本不等式,求得取得最小值時(shí),進(jìn)而證得橢圓的離心率為.(2)當(dāng)直線的斜率不存在時(shí),根據(jù)橢圓的對(duì)稱(chēng)性,求得到直線的距離.當(dāng)直線的斜率存在時(shí),聯(lián)立直線的方程和橢圓方程,寫(xiě)出韋達(dá)定理,利用,則列方程,求得的關(guān)系式,進(jìn)而求得到直線的距離.根據(jù)上述分析判斷出所求的圓存在,進(jìn)而求得定圓的方程.【詳解】(1)證明:∵橢圓經(jīng)過(guò)點(diǎn),∴,∴,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立,此時(shí)橢圓的離心率.(2)解:∵橢圓的焦距為2,∴,又,∴,.當(dāng)直線的斜率不存在時(shí),由對(duì)稱(chēng)性,設(shè),.∵,在橢圓上,∴,∴,∴到直線的距離.當(dāng)直線的斜率存在時(shí),設(shè)的方程為.由,得,.設(shè),,則,.∵,∴,∴,∴,即,∴到直線的距離.綜上,到直線的距離為定值,且定值為,故存在定圓:,使得圓與直線總相切.【點(diǎn)睛】本小題主要考查點(diǎn)和橢圓的位置關(guān)系,考查基本不等式求最值,考查直線和橢圓的位置關(guān)系,考查點(diǎn)到直線的距離公式,考查分類(lèi)討論的數(shù)學(xué)思想方法,考查運(yùn)算求解能力,屬于中檔題.20、(1)證明見(jiàn)解析;(2).【解析】
(1)取中點(diǎn),連接,,證明平面,由線面垂直的性質(zhì)可得;(2)由,即可求得三棱錐的體積.【詳解】解:(1)證明:取中點(diǎn)D,連接,.因?yàn)?,,所以且,因?yàn)?,平面,平面,所以平?又平面,所以;(2)解:因?yàn)槠矫?,平面,所以平面平面,過(guò)N作于E,則平面,因?yàn)槠矫嫫矫妫?,平面平面,平面,所以平面,又因?yàn)槠矫妫裕捎?,所以所以,所?【點(diǎn)睛】本題考查線面垂直,考查三棱錐體積的計(jì)算,解題的關(guān)鍵是掌握線面垂直的判定與性質(zhì),屬于中檔題.21、(1)見(jiàn)解析,(2)最小正整數(shù)的值為35.【解析】
(1)由等差中項(xiàng)可知,當(dāng)時(shí),得,整理后可得,從而證明為等差數(shù)列,繼而可求.(2),則可求出,令,即可求出的取值范圍,進(jìn)而求出最小值.【詳解】解析:(1)由題意可得,當(dāng)時(shí),,∴,,當(dāng)時(shí),,整理可得,∴是首項(xiàng)為1,公差為1的等差數(shù)列,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024美容院加盟合作協(xié)議書(shū)(五年有效期)
- 2025年煙草產(chǎn)品采購(gòu)合同模板3篇
- 二零二五年度地鐵隧道鋼筋供應(yīng)及安裝服務(wù)合同2篇
- 2025年度國(guó)家級(jí)科研項(xiàng)目合作勞務(wù)派遣管理協(xié)議3篇
- 二零二五年度文化產(chǎn)業(yè)園開(kāi)發(fā)與運(yùn)營(yíng)合同文化產(chǎn)業(yè)3篇
- 2025年度云計(jì)算服務(wù)100%股權(quán)轉(zhuǎn)讓合同3篇
- 代運(yùn)營(yíng)服務(wù)商2025年度店鋪經(jīng)營(yíng)狀況評(píng)估合同2篇
- 2025年度零擔(dān)運(yùn)輸合同供應(yīng)鏈金融合作合同4篇
- 年度ZNO基變阻器材料產(chǎn)業(yè)分析報(bào)告
- 年度汽油發(fā)動(dòng)機(jī)電控裝置市場(chǎng)分析及競(jìng)爭(zhēng)策略分析報(bào)告
- 注射泵管理規(guī)范及工作原理
- 山東省濟(jì)南市2023-2024學(xué)年高二上學(xué)期期末考試化學(xué)試題 附答案
- 大唐電廠采購(gòu)合同范例
- 國(guó)潮風(fēng)中國(guó)風(fēng)2025蛇年大吉蛇年模板
- GB/T 18724-2024印刷技術(shù)印刷品與印刷油墨耐各種試劑性的測(cè)定
- IEC 62368-1標(biāo)準(zhǔn)解讀-中文
- 15J403-1-樓梯欄桿欄板(一)
- 2024年中考語(yǔ)文名句名篇默寫(xiě)分類(lèi)匯編(解析版全國(guó))
- 新煤礦防治水細(xì)則解讀
- 醫(yī)院領(lǐng)導(dǎo)班子集體議事決策制度
- 解讀2024年《學(xué)紀(jì)、知紀(jì)、明紀(jì)、守紀(jì)》全文課件
評(píng)論
0/150
提交評(píng)論