版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
福建省廈門市金尚中學2024年八年級下冊數(shù)學期末調研試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題3分,共30分)1.將點A(1,﹣1)向上平移2個單位后,再向左平移3個單位,得到點B,則點B的坐標為()A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)2.如圖,在等腰直角△ABC中,∠ACB=90°,O是斜邊AB的中點,點D,E分別在直角邊AC,BC上,且∠DOE=90°,DE交OC于點P,則下列結論:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面積等于四邊形CDOE面積的2倍;(4)OD=OE,其中正確的結論有()A. B. C. D.3.如果一個三角形的三邊長分別為6,a,b,且(a+b)(a-b)=36,那么這個三角形的形狀為()A.銳角三角形 B.鈍角三角形C.直角三角形 D.等邊三角形4.如圖,四邊形ABCD的對角線AC,BD相交于點O,E是AB中點,且AE+EO=4,則四邊形ABCD的周長為()A.32 B.16 C.8 D.45.如圖,平行四邊形ABCD中,若∠A=60°,則∠C的度數(shù)為()A.120° B.60° C.30° D.15°6.若一次函數(shù)y=m-1x-3的圖象經(jīng)過第二、三、四象限,則A.m>0 B.m<0 C.m>1 D.m<17.下列各組數(shù)中是勾股數(shù)的為()A.1、2、3 B.4、5、6 C.3、4、5 D.7、8、98.若代數(shù)式有意義,則x的取值范圍是()A.x≥1 B.x≥0 C.x>1 D.x>09.要使代數(shù)式有意義,則的取值范圍是A. B. C. D.10.某學校要種植一塊面積為100m2的長方形草坪,要求兩邊長均不小于5m,則草坪的一邊長為y(單位:m)隨另一邊長x(單位:m)的變化而變化的圖象可能是()A. B. C. D.二、填空題(每小題3分,共24分)11.2-1=_____________12.若關于x的分式方程當?shù)慕鉃檎龜?shù),那么字母a的取值范圍是_____.13.已知A、B兩地之間的距離為20千米,甲步行,乙騎車,兩人沿著相同路線,由A地到B地勻速前行,甲、乙行進的路程s與x(小時)的函數(shù)圖象如圖所示.(1)乙比甲晚出發(fā)___小時;(2)在整個運動過程中,甲、乙兩人之間的距離隨x的增大而增大時,x的取值范圍是___.14.抽取某校學生一個容量為150的樣本,測得學生身高后,得到身高頻數(shù)分布直方圖如圖,已知該校有學生1500人,則可以估計出該校身高位于160cm和165cm之間的學生大約有_______人.15.把拋物線yx2向左平移1個單位,再向下平移2個單位,所得拋物線的解析式為_____.16.不等式5﹣2x>﹣3的解集是_____.17.若x是的整數(shù)部分,則的值是.18.直線與軸的交點坐標___________三、解答題(共66分)19.(10分)如圖,拋物線與軸交于兩點和與軸交于點動點沿的邊以每秒個單位長度的速度由起點向終點運動,過點作軸的垂線,交的另一邊于點將沿折疊,使點落在點處,設點的運動時間為秒.(1)求拋物線的解析式;(2)N為拋物線上的點(點不與點重合)且滿足直接寫出點的坐標;(3)是否存在某一時刻,使的面積最大,若存在,求出的值和最大面積;若不存在,請說明理由.20.(6分)如圖,∠BAC的平分線交△ABC的外接圓于點D,∠ABC的平分線交AD于點E.(1)求證:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圓的半徑.21.(6分)如圖,已知,點在上,點在上.(1)請用尺規(guī)作圖作出的垂直平分線,交于點,交于點;(保留作圖痕跡,不寫作法);(2)連結,求證四邊形是菱形.22.(8分)如圖1.在邊長為10的正方形中,點在邊上移動(點不與點,重合),的垂直平分線分別交,于點,,將正方形沿所在直線折疊,則點的對應點為點,點落在點處,與交于點,(1)若,求的長;(2)隨著點在邊上位置的變化,的度數(shù)是否發(fā)生變化?若變化,請說明理由;若不變,請求出的度數(shù);(3)隨著點在邊上位置的變化,點在邊上位置也發(fā)生變化,若點恰好為的中點(如圖2),求的長.23.(8分)如圖,已知等邊△ABC,點D在直線BC上,連接AD,作∠ADN=60°,直線DN交射線AB于點E,過點C作CF∥AB交直線DN于點F.(1)當點D在線段BC上,∠NDB為銳角時,如圖①.①判斷∠1與∠2的大小關系,并說明理由;②過點F作FM∥BC交射線AB于點M,求證:CF+BE=CD;(2)①當點D在線段BC的延長線上,∠NDB為銳角時,如圖②,請直接寫出線段CF,BE,CD之間的數(shù)量關系;②當點D在線段CB的延長線上,∠NDB為鈍角或直角時,如圖③,請直接寫出線段CF,BE,CD之間的數(shù)量關系.24.(8分)如圖,為線段上一動點,分別過點作,,連接.已知,設.(1)用含的代數(shù)式表示的值;(2)探究:當點滿足什么條件時,的值最小?最小值是多少?(3)根據(jù)(2)中的結論,請構造圖形求代數(shù)式的最小值.25.(10分)某汽車運輸公司根據(jù)實際需要計劃購買大、中型兩種客車共20輛,已知大型客車每輛62萬元,中型客車每輛40萬元,設購買大型客車x(輛),購車總費用為y(萬元).(1)求y與x的函數(shù)關系式(不要求寫出自變量x的取值范圍);(2)若購買中型客車的數(shù)量少于大型客車的數(shù)量,請你給出一種費用最省的方案,并求出該方案所需費用.26.(10分)如圖,已知平行四邊形ABCD的對角線AC和BD交于點O,且AC+BD=28,BC=12,求△AOD的周長.
參考答案一、選擇題(每小題3分,共30分)1、C【解析】分析:讓A點的橫坐標減3,縱坐標加2即為點B的坐標.詳解:由題中平移規(guī)律可知:點B的橫坐標為1-3=-2;縱坐標為-1+2=1,∴點B的坐標是(-2,1).故選:C.點睛:本題考查了坐標與圖形變化-平移,平移變換是中考的常考點,平移中點的變化規(guī)律是:左右移動改變點的橫坐標,左減右加;上下移動改變點的縱坐標,下減上加.2、D【解析】
由等腰直角三角形的性質可得AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO,由“ASA”可證△ADO≌△CEO,△CDO≌△BEO,由全等三角形的性質可依次判斷.【詳解】∵在等腰直角△ABC中,∠ACB=90°,O是斜邊AB的中點,∴AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO∵∠DOE=90°,∴∠COD+∠COE=90°,且∠AOD+∠COD=90°∴∠COE=∠AOD,且AO=CO,∠A=∠ACO=45°,∴△ADO≌△CEO(ASA)∴AD=CE,OD=OE,故④正確,同理可得:△CDO≌△BEO∴CD=BE,∴AC=AD+CD=AD+BE,故①正確,在Rt△CDE中,CD2+CE2=DE2,∴AD2+BE2=DE2,故②正確,∵△ADO≌△CEO,△CDO≌△BEO∴S△ADO=S△CEO,S△CDO=S△BEO,∴△ABC的面積等于四邊形CDOE面積的2倍;故③正確,綜上所述:正確的結論有①②③④,故選D.【點睛】本題考查了全等三角形的判定和性質,勾股定理,等腰直角三角形的性質,熟練運用等腰直角三角形的性質是本題的關鍵.3、C【解析】
先根據(jù)平方差公式對已知等式進行化簡,再根據(jù)勾股定理的逆定理進行判定即可.【詳解】解:∵(a+b)(a-b)=36,∴,∴,∴三角形是直角三角形,故選C.【點睛】本題主要考查了勾股定理的逆定理,掌握勾股定理的逆定理是解題的關鍵.4、B【解析】
首先證明OE=12BC,再由AE+EO=4【詳解】解:∵四邊形ABCD是平行四邊形,
∴OA=OC,
∵AE=EB,
∴OE=∵AE+EO=4,
∴2AE+2EO=8,
∴AB+BC=8,
∴平行四邊形ABCD的周長=2×8=16,
故選:B【點睛】本題考查平行四邊形的性質、三角形的中位線定理等知識,解題的關鍵是熟練掌握三角形的中位線定理,屬于中考常考題型.5、B【解析】
直接利用平行四邊形的對角相等即可得出答案.【詳解】∵四邊形ABCD是平行四邊形∴∠C=∠A=60°故選:B.【點睛】此題主要考查了平行四邊形的性質,熟記平行四邊形的對角性質是解題關鍵.6、D【解析】
根據(jù)一次函數(shù)的性質即可求出m的取值范圍.【詳解】∵一次函數(shù)的圖象經(jīng)過第二、三、四象限,∴m-1<0∴m<1.故選:D【點睛】本題考查一次函數(shù),解題的關鍵是熟練運用一次函數(shù)的性質,本題屬于基礎題型.7、C【解析】
根據(jù)勾股定理的逆定理分別對各組數(shù)據(jù)進行檢驗即可.【詳解】解:A.∵12+22=5≠32=9,∴不是勾股數(shù),故A錯誤;B.∵42+52=41≠62=36,∴不是勾股數(shù),故B錯誤;C.∵32+42=25=52=25,∴是勾股數(shù),故C正確;D.∵72+82=113≠92=81,∴不是勾股數(shù),故D錯誤.故選C.【點睛】本題比較簡單,只要對各組數(shù)據(jù)進行檢驗,看各組數(shù)據(jù)是否符合勾股定理的逆定理即可.8、A【解析】
二次根式有意義的條件是被開方數(shù)為非負數(shù).【詳解】解:∵二次根式有意義,∴x-1≥0,∴x≥1,故選A.【點睛】本題考查了二次根式有意義的條件.9、C【解析】
根據(jù)二次根式的被開方數(shù)非負得到關于x的不等式,解不等式即得答案.【詳解】解:根據(jù)題意,得,解得,.故選C.【點睛】本題考查了二次根式有意義的條件,熟知二次根式被開方數(shù)非負是解題的關鍵.10、C【解析】
由草坪面積為100m2,可知x、y存在關系y=,然后根據(jù)兩邊長均不小于5m,可得x≥5、y≥5,則x≤20,故選:C.二、填空題(每小題3分,共24分)11、【解析】
根據(jù)負指數(shù)冪的運算法則即可解答.【詳解】原式=2-1=.【點睛】本題考查了負指數(shù)冪的運算法則,牢記負指數(shù)冪的運算法則是解答本題的關鍵.12、a>1且a≠3【解析】
首先根據(jù)題意求解x的值,再根據(jù)題意可得分式方程的解大于0,注意分式方程的增根問題.【詳解】解:去分母得:3x﹣a=x﹣1,解得:x=,由分式方程的解為正數(shù),得到>0,≠1,解得:a>1且a≠3,故答案為:a>1且a≠3【點睛】本題主要考查分式方程的解參數(shù)問題,這類題目特步要注意分式方程的增根問題.13、2,0≤x≤2或≤x≤2.【解析】
(2)由圖象直接可得答案;(2)根據(jù)圖象求出甲乙的函數(shù)解析式,再求出方程組的解集即可解答【詳解】(2)由函數(shù)圖象可知,乙比甲晚出發(fā)2小時.故答案為2.(2)在整個運動過程中,甲、乙兩人之間的距離隨x的增大而增大時,有兩種情況:一是甲出發(fā),乙還未出發(fā)時:此時0≤x≤2;二是乙追上甲后,直至乙到達終點時:設甲的函數(shù)解析式為:y=kx,由圖象可知,(4,20)在函數(shù)圖象上,代入得:20=4k,∴k=5,∴甲的函數(shù)解析式為:y=5x①設乙的函數(shù)解析式為:y=k′x+b,將坐標(2,0),(2,20)代入得:,解得,∴乙的函數(shù)解析式為:y=20x﹣20②由①②得,∴,故≤x≤2符合題意.故答案為0≤x≤2或≤x≤2.【點睛】此題考查函數(shù)的圖象和二元一次方程組的解,解題關鍵在于看懂圖中數(shù)據(jù)14、1【解析】
根據(jù)頻率直方圖的意義,由用樣本估計總體的方法可得樣本中160~165的人數(shù),進而可得其頻率;計算可得1500名學生中身高位于160cm至165cm之間的人數(shù)【詳解】解:由題意可知:150名樣本中160~165的人數(shù)為30人,則其頻率為,則1500名學生中身高位于160cm至165cm之間大約有1500×=1人.故答案為1.【點睛】本題考查讀頻數(shù)分布直方圖的能力和利用統(tǒng)計圖獲取信息的能力;同時本題很好的考查了用樣本來估計總體的數(shù)學思想.15、y=(x+1)1-1【解析】
先由平移方式確定新拋物線的頂點坐標.然后可得出頂點式的解析式?!驹斀狻拷猓涸瓛佄锞€的頂點為(0,0),向左平移1個單位,再向下平移1個單位,那么新拋物線的頂點為(-1,-1).
可設新拋物線的解析式為:y=(x-h)1+k,
代入得:y=(x+1)1-1.故答案為:y=(x+1)1-1【點睛】此題考查了二次函數(shù)圖象與幾何變換以及一般式轉化頂點式,正確將一般式轉化為頂點式是解題關鍵.16、x<1【解析】
根據(jù)解一元一次不等式基本步驟:去分母、去括號、移項、合并同類項、系數(shù)化為1可得.【詳解】解:﹣2x>﹣3﹣5,﹣2x>﹣8,x<1,故答案為x<1.【點睛】本題主要考查解一元一次不等式的基本能力,嚴格遵循解不等式的基本步驟是關鍵,尤其需要注意不等式兩邊都乘以或除以同一個負數(shù)不等號方向要改變.17、1【解析】
3<<4x=3==1故答案為1.18、(0,-3)【解析】
求出當x=0時,y的值,由此即可得出直線與y軸的交點坐標.【詳解】解:由題意得:當x=0時,y=2×0-3=-3,即直線與y軸交點坐標為(0,-3),故答案為(0,-3).【點睛】本題主要考查一次函數(shù)與坐標軸的交點,比較簡單,令x=0即可.三、解答題(共66分)19、(1);(2)(-5,1)或(,-1)或(,-1);(1)存在,時,有最大值為.【解析】
(1)把A(-1,0),B(1,0)代入y=ax2+bx+1,得到關于a、b的二元一次方程組,解方程組即可得到結論;(2)由拋物線解析式求出C(0,1),根據(jù)同底等高的兩個三角形面積相等,可知N點縱坐標的絕對值等于1,將y=±1分別代入二次函數(shù)解析式,求出x的值,進而得到N點的坐標;(1)由于點D在y軸的右側時,過點作軸的垂線,無法與的另一邊相交,所以點D在y軸左側,根據(jù)題意求出直線AC的解析式及E,D,F(xiàn)的坐標,然后根據(jù)三角形面積求得與t的函數(shù)關系式,然后利用二次函數(shù)的性質求最值即可.【詳解】解:(1)把A(-1,0),B(1,0)代入y=ax2+bx+1中,得,解得,∴拋物線的解析式為:,(2)∵拋物線與y軸交于點C,∴C(0,1).∵N為拋物線上的點(點不與點重合)且S△NAB=S△ABC,∴設N(x,y),則|y|=1.把y=1代入,得,解得x=0或-5,x=0時N與C點重合,舍去,∴N(-5,1);把y=-1代入,得,解得∴N(,-1)或(,-1).綜上所述,所求N點的坐標為(-5,1)或(,-1)或(,-1);(1)存在.由題意可知,∵過點作軸的垂線,交的另一邊于點∴點D必在y軸的左側.∵AD=2t,∴由折疊性質可知DF=AD=2t,∴OF=1-4t,∴D(2t-1,0),∵設直線AC的解析式為:,將A(-1,0)和C(0,1)代入解析式得,解得∴直線AC的解析式為:∴E(2t-1,2t).∴∵-4<0時,有最大值為.【點睛】本題是二次函數(shù)綜合題,其中涉及到利用待定系數(shù)法求直線、拋物線的解析式,二次函數(shù)的性質,三角形的面積等知識.利用數(shù)形結合是解題的關鍵.20、(1)證明見解析(2)2【解析】試題分析:由角平分線得出,得出,由圓周角定理得出證出再由三角形的外角性質得出即可得出由得:,得出由圓周角定理得出是直徑,由勾股定理求出即可得出外接圓的半徑.試題解析:(1)證明:平分又平分連接,是直徑.平分∴半徑為21、(1)詳見解析;(2)詳見解析.【解析】
(1)按照尺規(guī)作圖的步驟作出圖形即可;
(2)證明AC垂直平分EF,則根據(jù)對角線互相垂直平分的四邊形為菱形得到四邊形AECF是菱形.【詳解】解:(1)如圖,就是所求作的的垂直平分線,(2)證明:∵四邊形ABCD為平行四邊形,
∴AD∥BC,
∴∠AFE=∠CEF,
∵EF垂直平分AC,
∴EA=EC,EF⊥AC,
∴∠CEF=∠AEF,
∴∠AFE=∠AEF,
∴AE=AF,
∴AC垂直平分EF,
∴四邊形AECF是菱形.【點睛】本題考查了作圖-復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.也考查了菱形的判定.22、(1);(2)不變,45°;(3).【解析】
(1)由翻折可知:EB=EM,設EB=EM=x,在Rt△AEM中,根據(jù)EM2=AM2+AE2,構建方程即可解決問題.
(2)如圖1-1中,作BH⊥MN于H.利用全等三角形的性質證明∠ABM=∠MBH,∠CBP=∠HBP,即可解決問題.
(3)如圖2中,作FG⊥AB于G.則四邊形BCFG是矩形,F(xiàn)G=BC,CF=BG.設AM=x,在Rt△DPM中,利用勾股定理構建方程求出x,再在Rt△AEM中,利用勾股定理求出BE,EM,AE,再證明AM=EG即可解決問題.【詳解】(1)如圖1中,
∵四邊形ABCD是正方形,
∴∠A=90°,AB=AD=10,
由翻折可知:EB=EM,設EB=EM=x,
在Rt△AEM中,∵EM2=AM2+AE2,
∴x2=42+(10-x)2,
∴x=.
∴BE=.
(2)如圖1-1中,作BH⊥MN于H.
∵EB=EM,
∴∠EBM=∠EMB,
∵∠EMN=∠EBC=90°,
∴∠NMB=∠MBC,
∵AD∥BC,
∴∠AMB=∠MBC,
∴∠AMB=∠BMN,
∵BA⊥MA,BH⊥MN,
∴BA=BH,
∵∠A=∠BHM=90°,BM=BM,BA=BH,
∴Rt△BAM≌△BHM(HL),
∴∠ABM=∠MBH,
同法可證:∠CBP=∠HBP,
∵∠ABC=90°,
∴∠MBP=∠MBH+∠PBH=∠ABH+∠CBH=∠ABC=45°.
∴∠PBM=45°.
(3)如圖2中,作FG⊥AB于G.則四邊形BCFG是矩形,F(xiàn)G=BC,CF=BG.設AM=x,
∵PC=PD=5,
∴PM+x=5,DM=10-x,
在Rt△PDM中,(x+5)2=(10-x)2+25,
∴x=,
∴AM=,
設EB=EM=m,
在Rt△AEM中,則有m2=(10-m)2+()2,
∴m=,
∴AE=10-,
∵AM⊥EF,
∴∠ABM+∠GEF=90°,∠GEF+∠EFG=90°,
∴∠ABM=∠EFG,
∵FG=BC=AB,∠A=∠FGE=90°,
∴△BAM≌△FGE(AAS),
∴EG=AM=,
∴CF=BG=AB-AE-EG=10-.【點睛】此題考查四邊形綜合題、正方形的性質、全等三角形的判定和性質、勾股定理,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,學會利用參數(shù)構建方程解決問題.23、(1)①∠1=∠2,理由見解析,②證明見解析;(2)①BE=CD+CF,②CF=CD+BE.【解析】
(1)①由等邊三角形的性質和∠ADN=60°,易得∠1+∠ADC=120°,∠2+∠ADC=120°,所以∠1=∠2;②由條件易得四邊形BCFM為平行四邊形,得到BM=CF,BC=MF,再證明△MEF≌△CDA,得到ME=CD,利用等量代換即可得證;(2)①過F作FH∥BC,易得四邊形BCFH為平行四邊形,可得HF=BC,BH=CF,然后證明△EFH≌△DAC,得到CD=EH,利用等量代換即可得BE=CD+CF;②過E作EG∥BC,易得四邊形BCGE為平行四邊形,可得EG=BC,BE=CG,然后證明△EFG≌△ADC,得到CD=FG,利用等量代換即可得CF=CD+BE.【詳解】(1)①∠1=∠2,理由如下:∵△ABC為等邊三角形∴∠ACB=60°∴∠2+∠ADC=120°又∵∠AND=60°∴∠1+∠ADC=120°∴∠1=∠2②∵MF∥BC,CF∥BM∴四邊形BCFM為平行四邊形∴BM=CF,BC=MF=AC,∵BC∥MF∴∠1=∠EFM=∠2,∠EMF=∠ABC=60°在△MEF和△CDA中,∵∠EFM=∠2,MF=AC,∠EMF=∠ACD=60°∴△MEF≌△CDA(ASA)∴ME=CD∴ME=BM+BE=CF+BE=CD即CF+BE=CD(2)①BE=CD+CF,證明如下:如圖,過F作FH∥BC,∵CF∥BH,F(xiàn)H∥BC,∴四邊形BCFH為平行四邊形∴HF=BC=AC,BH=CF∵△ABC為等邊三角形∴∠ABC=∠ACB=60°∴∠CAD+∠ADC=60°,∠DBE=120°,∠ACD=120°又∵∠AND=60°,即∠BDN+∠ADC=60°∴∠CAD=∠BDN∵BD∥HF∴∠HFE=∠BDN=∠CAD,∠EHF=∠ACD=120°在△EFH和△DAC中,∵∠EHF=∠ACD,HF=AC,∠HFE=∠CAD∴△EFH≌△DAC(ASA)∴EH=CD∴BE=BH+EH=CF+CD即BE=CD+CF;②CF=CD+BE,證明如下:如圖所示,過E作EG∥BC,∵EG∥BC,CG∥BE∴四邊形BCGE為平行四邊形,∴EG=BC=AC,BE=CG,∵∠AND=60°,∠ACD=60°∴∠ADC+∠CDE=120°,∠ADC+∠DAC=120°∴∠CDE=∠DAC又∵CD∥EG∴∠GEF=∠CDE=∠DAC,∠EGF=∠DCF∵AE∥CF∴∠DCF=∠ABC=60°∴∠EGF=∠ABC=60°在△EFG和△ADC中,∵∠GEF=∠DAC,EG=AC,∠EGF=∠ACD=60°∴△EFG≌△ADC(ASA)∴FG=CD∴CF=CG+FG=BE+CD即CF=C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年浙教版九年級地理下冊階段測試試卷
- 2025年粵教新版九年級歷史上冊月考試卷含答案
- 2025年中圖版選擇性必修3歷史上冊月考試卷含答案
- 2025年滬教版八年級歷史下冊階段測試試卷含答案
- 2025年人教新起點高一語文上冊月考試卷
- 遵義醫(yī)藥高等專科學?!冬F(xiàn)代漢語語法研究》2023-2024學年第一學期期末試卷
- 二零二五年度出租車行業(yè)駕駛員安全責任合同范本4篇
- 二零二五年度出租車公司車輛調度合同3篇
- 房屋贈與合同范本(2篇)
- 2025年度農(nóng)機保險代理銷售合同范本4篇
- 蛋糕店服務員勞動合同
- 土地買賣合同參考模板
- 2025高考數(shù)學二輪復習-專題一-微專題10-同構函數(shù)問題-專項訓練【含答案】
- 新能源行業(yè)市場分析報告
- 2025年天津市政建設集團招聘筆試參考題庫含答案解析
- 巖土工程勘察.課件
- 60歲以上務工免責協(xié)議書
- 滋補類用藥的培訓
- 北師大版高三數(shù)學選修4-6初等數(shù)論初步全冊課件【完整版】
- 高職《勞動教育》指導綱要
- XX公司年會活動報價單
評論
0/150
提交評論