2023-2024學(xué)年吉林省遼源市高二年級(jí)上冊(cè)期末數(shù)學(xué)模擬試題(含解析)_第1頁(yè)
2023-2024學(xué)年吉林省遼源市高二年級(jí)上冊(cè)期末數(shù)學(xué)模擬試題(含解析)_第2頁(yè)
2023-2024學(xué)年吉林省遼源市高二年級(jí)上冊(cè)期末數(shù)學(xué)模擬試題(含解析)_第3頁(yè)
2023-2024學(xué)年吉林省遼源市高二年級(jí)上冊(cè)期末數(shù)學(xué)模擬試題(含解析)_第4頁(yè)
2023-2024學(xué)年吉林省遼源市高二年級(jí)上冊(cè)期末數(shù)學(xué)模擬試題(含解析)_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年吉林省遼源市高二上冊(cè)期末數(shù)學(xué)模擬試題

一、單選題

1.已知向量£=(3,2,1),6=(2,4,0),則4^-25=()

A.(16,0,4)B.(8,16,4)C.(8-16,4)D.(8,0,4)

【正確答案】D

【分析】根據(jù)向量的數(shù)乘以及減法運(yùn)算,即可求得答案.

【詳解】4a-26=4(3,2,l)-2(2,4,0)=(12,8,4)-(4,8,0)=(8,0,4),

故選:D.

2.已知兩條直線/j(a-l)x+2y+l=0,(:x+@+3=0垂直,貝Ia等于()

A.1B.-C.0D.0或5

33

【正確答案】B

【分析】由兩直線垂直的判斷條件求解即可

【詳解】因?yàn)橹本€4:(a-l)x+2y+l=0與4:x+ay+3=0垂直,

所以(a-l)xl+2xa=0,解得a=:,

故選:B.

3.拋物線好=4x的焦點(diǎn)到準(zhǔn)線的距離為()

A.4B.2C.1D.y

【正確答案】B

【分析】利用焦點(diǎn)到準(zhǔn)線的距離為。,即可求解

【詳解】因?yàn)閽佄锞€的焦點(diǎn)到準(zhǔn)線的距離為。,

所以由拋物線V=4x可得。=2,

故選:B

4.已知圓的方程為X2+/-4X=0,過點(diǎn)(2,1)的該圓的所有弦中,最短弦的長(zhǎng)為()

A.1B.2C.273D.4

【正確答案】C

【分析】根據(jù)圓的幾何特征,過圓內(nèi)一點(diǎn)最短的弦是過此點(diǎn)且與該直徑垂直的弦,然后用垂

徑定理即可求解

【詳解】設(shè)圓的圓心為C,(2,1)為點(diǎn)人,

由圓的方程為/+產(chǎn)-以=0可得(X-2)2+/=4,故圓心C(2,0),半徑為2,

所以|/C|=1,

根據(jù)圓的幾何特征,最短弦所在直線與XC垂直,

所以最短的弦長(zhǎng)為2"斤=2也,

故選:C

5.等差數(shù)列{%}中,+。6=90,求q+%=()

A.45B.15C.18D.36

【正確答案】D

【分析】利用等差數(shù)列的性質(zhì)求出為=18,再利用等差數(shù)列的性質(zhì)可得結(jié)果

【詳解】因?yàn)椋?}是等差數(shù)列,所以。2+%+%+%+4=5%=9。,解得知=18,

所以《+%=〃4=36,

故選:D

6.如圖,在正方體/BCD—44GA中,點(diǎn)E是上底面44GA的中心,則異面直線NE與

80所成角的余弦值為()

C?乎"

【正確答案】B

【分析】建立空間直角坐標(biāo)系,利用向量夾角求解.

【詳解】以。為原點(diǎn),刀,比,函為x),z軸正方向建立空間直角坐標(biāo)系如圖所示,設(shè)正

方體棱長(zhǎng)為2,4(2,0,0),£(1,1,2),。(0,0,2),8(220)

所以ZE=(-1,1,2),28=(2,2,-2),

uuruuur

AED.B-4V2

[1皿|11叼=—f=-----7==-----

網(wǎng).p向V6xV123

所以異面直線/E與8。所成角的余弦值為它.

3

故選:B

7.已知數(shù)列{%}滿足。向=2°“+1,其中%=1,則4=()

A.2B.4C.9D.15

【正確答案】D

【分析】利用構(gòu)造法證明數(shù)列{4+1}為等比數(shù)列,即可求解.

【詳解】因?yàn)?。?2?!?1,所以“用+1=2(%+1),即方吟=2,

所以數(shù)列{%+1}是公比為2的等比數(shù)列,

所以擰-Z',所以外+1=16,則外=15,

故選:D.

8.設(shè)B,尸2是雙曲線1?-%■=1的兩個(gè)焦點(diǎn),尸是雙曲線上的一點(diǎn),且31ml=5|"|,則

A/與鳥的面積等于()

A.24B.1572C.12后D.30

【正確答案】A

【分析】利用雙曲線定義求出△尸耳心的三邊長(zhǎng)度,根據(jù)余弦定理求出三角形的夾角,最后

通過三角形正弦定理面積公式求出面積.

【詳解】3忸耳|=5忸用=忸6kmp闖,根據(jù)雙曲線定義:|SH尸用=4,

京然|一歸用=4n|P同=6,|尸耳|=10,|耳聞=8,

100+36-643

根據(jù)余弦定理:

1205

則sin/不尸乙=[,SPF[F2=1x|P^|x|P^|xsinZ^P^=24.

故選:A

二、多選題

9.已知等差數(shù)列{4}的前n項(xiàng)和為S,,,%=1,則()

A.%+%=2B.a3a7=2C.5,,=11D.S9=9

【正確答案】AD

【分析】利用等差數(shù)列的性質(zhì)和前〃項(xiàng)和公式即可求解.

【詳解】因?yàn)椋?}為等差數(shù)列,所以%+%=為5=2,故A正確,

若數(shù)列{《,}的公差為0,則%=%=%=1,則。3%=1,B錯(cuò)誤;

因?yàn)橛?114+55d=11(4+5")=11%

若數(shù)列{4,}的公差為0,則Su=l"=ll,

但若數(shù)列{對(duì)}的公差不為0,則品=11%C錯(cuò)誤;

因?yàn)?9=9%+3&/=9(q+4d)=9%=9,D正確,

故選:AD.

10.下列四個(gè)命題中真命題有()

A.直線y=x+2在y軸上的截距為-2

B.經(jīng)過定點(diǎn)40,2)的直線都可以用方程、=6+2表示

C.直線2x+my+6=0(/neR)必過定點(diǎn)(-3,0)

3

D.己知直線3x+4j,+9=0與直線6x+my+24=0平行,則平行線間的距離是

【正確答案】CD

【分析】利用截距的定義可判斷A選項(xiàng);取垂直于x軸的直線的方程可判斷B選項(xiàng);求出

直線所過定點(diǎn)的坐標(biāo)可判斷C選項(xiàng);利用兩直線平行求出山的值,再利用平行線間的距離

公式可判斷D選項(xiàng).

【詳解】對(duì)于A選項(xiàng),直線N=x+2在夕軸上的截距為2,A錯(cuò);

對(duì)于B選項(xiàng),經(jīng)過定點(diǎn)/(0,2)且垂直于x軸的直線的方程為x=0,B錯(cuò);

對(duì)于C選項(xiàng),對(duì)于直線方程2x+叼+6=0(zneR),由<可得<,

b=o卜=0

所以,直線2x+叼+6=0G〃€R)必過定點(diǎn)(-3,0),C對(duì);

對(duì)于D選項(xiàng),若直線3x+4y+9=0與直線6x+叫+24=0平行,

則?6=m24解得加=8,

349

故兩直線方程分別為3x+4y+9=0、3x+4y+12=0,

112-913

這兩平行直線間的距離為d=,!=±,D對(duì).

V32+425

故選:CD.

三、單選題

11.在棱長(zhǎng)為3的正方體/8CD-44GA中,點(diǎn)尸在棱。c上運(yùn)動(dòng)(不與頂點(diǎn)重合),則點(diǎn)

8到平面NRP的距離可以是()

A.1B.>/6C.2D.3

【正確答案】BC

【分析】利用坐標(biāo)法,設(shè)P(0",0)(0<f<3),可得平面/的法向量萬=(f,3,。,進(jìn)而即得.

【詳解】以。為原點(diǎn),。4。。,。4分別為達(dá)y,z軸建立空間直角坐標(biāo)系,

則D(0,0,0),4(3,0,0),8(3,3,0),0,(0,0,3),設(shè)尸(0,f,0)(0<f<3),

所以/尸=(―=(—3,0,3),AB=(0,3,0),

設(shè)〃=(x,y,z)為平面/RP的法向量,

n-AP=-3x+ty=0

則有:令N=3,可得萬=億3,。,

n~ADx=-3x+3z=0

甌司9

則點(diǎn)B到平面AD.P的距離為d=

|?|一42-+9

因?yàn)?</<3,所以2/+9?9,27),所以。<(后3).

故選:BC

四、多選題

fv2

12.已知雙曲線C:=-匕=l(a>0)的左、右焦點(diǎn)分別為人,呂,離心率為2,尸為C上一點(diǎn),

a3

則()

A.雙曲線C的實(shí)軸長(zhǎng)為2B,雙曲線C的一條漸近線方程為丁=-瓜

C.|「耳|一|產(chǎn)用=2D.雙曲線C的焦距為4

【正確答案】ABD

【分析】根據(jù)雙曲線的定義與方程,結(jié)合雙曲線的性質(zhì)對(duì)每個(gè)選項(xiàng)進(jìn)行判斷即可

【詳解】由雙曲線方程知:b=6離心率為e=±=五三=2,解得〃=1,

aa

故雙曲線。:/一己=1,

3

對(duì)于A,實(shí)半軸長(zhǎng)為1,實(shí)軸長(zhǎng)為2a=2,A正確:

對(duì)于B,由雙曲線方程可得漸近線方程為y=±JL,故一條漸近線方程為y=-Gx,B正

確;

對(duì)于C,由于P可能在C的不同分支上,則根據(jù)定義有II尸片IT尸乙11=2,C錯(cuò)誤;

對(duì)于D,焦距為2c=2勿+/=4,D正確.

故選:ABD.

五、填空題

13.設(shè)直線/的方向向量為而=(l,-2,z),平面夕的一個(gè)法向量為1=(2,若直線〃/

平面a,則實(shí)數(shù)z的值為.

【正確答案】-4

【分析】根據(jù)直線/〃平面a,則直線/的方向向量與平面a的一個(gè)法向量垂直,即兩向量點(diǎn)

乘為0.

【詳解】若直線〃/平面C,則直線/的方向向量與平面C的一個(gè)法向量垂直,

由此可得益i=2+2+z=0,解得z=-4.

故-4

14.設(shè)兩圓G:/+/-1=0與圓。2:/+/-2》+4夕=0的公共弦所在的直線方程為

【正確答案】2x-4y-l=0

【分析】利用兩圓的方程相減即可求解.

【詳解】因?yàn)閳AG:X2+/-1=O?,圓G:x2+y2-2x+4y=o?,

由①-②得,2x-4v-l=0,

所以兩圓的公共弦所在的直線方程為2x-4y-l=0.

故答案為.2x-4y-l=0

2

15.經(jīng)過橢圓?+丁=1的左焦點(diǎn)片,作不垂直于x軸的直線48,交橢圓于小B兩點(diǎn),F2

是橢圓的右焦點(diǎn),則的周長(zhǎng)為.

【正確答案】8

【分析】利用橢圓的定義,即可求解周長(zhǎng).

2

【詳解】由橢圓工+必=1,可得4=2.

4

由橢圓的定義可得?用+|/聞=忸用+忸周=2a=4.

所以"的周長(zhǎng)=|/用+|/£|+出閭耳月$8月=4a=8.

故8

16.已知函數(shù)/(》)=售,數(shù)列{%}滿足條件。用=/(2),且%=1,則氏=.

【正確答案】y##0.5

【分析】根據(jù)遞推公式一一計(jì)算可得.

【詳解】解:依題意。,用=用彳,又4=1,

%+2

、2x-

~2422%_11,

所以的=消="%=

生+22+22'

3

故g

六、解答題

17.已知向量£=(2,-1,2),7=(1,4,1).

(1)求恢-耳的值;

(2)求向量£+2石與]一石夾角的余弦值.

【正確答案】(1)3卡;

(2)一半.

3

【分析】(1)根據(jù)向量的坐標(biāo)運(yùn)算及向量模的坐標(biāo)表示求解;

(2)根據(jù)向量夾角的坐標(biāo)表示計(jì)算即可得解.

【詳解】(1)Va=(2,-1,2),1=(1,4,1),

A2a=(4,-2,4).2聯(lián)」=(3,-6,3),

忖-g=,2+(-6)2+32=376;

__向+2力(J」)

(2)設(shè)£+25與1的夾角為,,貝!|COS,=T^---r勺,

LZ+2/J-Lz-ft

(7+2/>=(4,7,4),p/+2Z)|=9,“一6=(1,-5,1),|^-/?|=3>/3,

.?.c°s*4xl+7x(N+4xl=W=〃,

9x3V327V33

二向量£+2]與1%夾角的余弦值為-冬

18.已知等差數(shù)列{4}中,%=2,%+%=8

⑴求{4}的通項(xiàng)公式;

(2)求數(shù)列的{%}前n項(xiàng)和S,,,并求S“的最小值

【正確答案】(1)。,=2〃-4

⑵S”=〃2-3〃,-2

【分析】(1)設(shè)等差數(shù)列{對(duì)}的公差為d,根據(jù)題意列出關(guān)于卬,"的等式,聯(lián)立可得

a,=-2,d=2,即可求解;

(2)利用等差的求和公式得到S,,然后判斷明的正負(fù),即可求得S“的最小值

【詳解】(1)設(shè)等差數(shù)列加“}的公差為d,

fa.+2tZ=2,[a.=-2

因?yàn)?=2,&+。6=8,所以;0Q,解得;。,

\2a{+6d=8[<7=2

所以a,,=q+(〃-l)d=2〃-4;

“、n(n-l])

(2)Stt-na]+—--d=n3?,

數(shù)列{4}首項(xiàng)為負(fù)的,公差大于零,是遞增數(shù)列,

令<0即2〃-4<0,解得"<2,因?yàn)椤癳N",所以"=1,

令=0即2〃-4=0,解得?=2,

令%>0即2〃一4>0,解得〃>2,

所以第1項(xiàng)是負(fù)數(shù),第2項(xiàng)是0,從第3項(xiàng)起變成正數(shù),

所以當(dāng)〃=1或2時(shí),S,取得最小值,St=S2=-2

19.圓C的圓心為(2,0),且過點(diǎn)力(1,石).

(1)求圓C的標(biāo)準(zhǔn)方程;

(2)直線/:h-y+4=0與圓C交M,N兩點(diǎn),且|〃M=2五,求k.

【正確答案】(l)(x-2y+y2=4

(2)%=-1或k=-7

【分析】(1)利用題意可得到圓的半徑為/'=2,即可求解;

(2)利用幾何法先求出圓心C到直線/的距離為]=近,然后利用點(diǎn)到直線的距離即可求

【詳解】⑴因?yàn)閳AC的圓心為(2,0),且過點(diǎn)4,6),

所以半徑r=-7(2-l)2+(0-^)2=2,

所以圓C的標(biāo)準(zhǔn)方程為(x-2)2+丁=4

(2)設(shè)圓心C到直線/的距離為d,因?yàn)閨〃N|=2五,

所以|網(wǎng)|=2"2_[2=2"-"2=2至,解得

所以,由圓心到直線距離公式可得"=號(hào)號(hào)=&,

解得%=-1或后=-7.

20.如圖,在三棱柱N8C-44G中,/^_L平面/8C,Z8,/C,Z8=4C=^<=l,A/為線

段4G上的一點(diǎn).

小MG

(1)求證:BM±AB..

(2)若M為線段4G上的中點(diǎn),求直線4B、與平面BCM所成角大小.

【正確答案】(1)證明見解析,

【分析】(1)由題意可得兩兩垂直,所以以A為原點(diǎn),分別以所在

的直線為x,y,z建立空間直角坐標(biāo)系,利用空間向量證明即可,

(2)先求出平面8CA/的法向量,然后利用空間向量的夾角公式求解即可.

【詳解】(1)證明:因?yàn)槠矫?8C,/8,4Cu平面/8C,

所以

因?yàn)閆81NC,所以兩兩垂直,

所以以A為原點(diǎn),分別以所在的直線為xj,z建立空間直角坐標(biāo)系,如圖所示,

則4(0,0,0),5(1,0,0),C(0,1,0),4(0,0,1),(1,0,1),Q0,1,1),

設(shè)

所以麗=福=(1,0,1),

所以麗?麗=-1+0+1=0,

所以麗1彳瓦,

所以

(2)因?yàn)椤盀榫€段4c上的中點(diǎn),所以

設(shè)平面3cAi的法向量為加=(x,y,z),則

m-BM=—x+—y+z=O,.一

2,令X=1,則〃?=1,,

m?BC=-x+y=041

設(shè)直線/用與平面8cM所成角為。,則

所以直線期與平面8cM所成角的大小為%

21.己知數(shù)列{4}的前〃項(xiàng)和為S,,,且電=6,。用=2(S“+1).

(1)證明:{%}為等比數(shù)列,并求{《,}的通項(xiàng)公式;

(2)求數(shù)列卜q}的前n項(xiàng)和。.

【正確答案】⑴證明見解析,%=2X3"T(?EN-)

ms(2//-l)x3w+l

(2)S〃=-----------

M----1(]

【分析】(1)由題意,根據(jù)公式為=一,可得數(shù)列遞推公式3=3(〃理),

S"n>2an

結(jié)合等比數(shù)列的通項(xiàng)公式,可得答案;

(2)由題意,根據(jù)錯(cuò)位相減法,可得答案.

【詳解】(1)因?yàn)?=2(S,+1),所以%=2(S,T+1)(肝5),

故a.+i-q=2(5,一S“_|)=2%,即乎=3(用2)

又a,=2(H+l)=2%+2,故q=2,即5=3,因此也=3(?eN-)

故{4}是以2為首項(xiàng),3為公比的等比數(shù)列.因此%=2x3"—(〃eN)

(2)=2x1+2x2x3+2x3x32+---+2?x3n-'?

故37;=2x1x3+2x2x3?+...+2("-1)x3'—+2”x3"②

①-②,得-27;=2+(2x3+2x3?+…+2X3"T)-2NX3"

2x3(3"i-l)

=2+——_

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論