2023-2024學(xué)年廣西貴港市覃塘高級中學(xué)高三第三次測評數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年廣西貴港市覃塘高級中學(xué)高三第三次測評數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年廣西貴港市覃塘高級中學(xué)高三第三次測評數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年廣西貴港市覃塘高級中學(xué)高三第三次測評數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年廣西貴港市覃塘高級中學(xué)高三第三次測評數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年廣西貴港市覃塘高級中學(xué)高三第三次測評數(shù)學(xué)試卷注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,且、都是全集(為實數(shù)集)的子集,則如圖所示韋恩圖中陰影部分所表示的集合為()A. B.或C. D.2.是虛數(shù)單位,復(fù)數(shù)在復(fù)平面上對應(yīng)的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知雙曲線的兩條漸近線與拋物線的準(zhǔn)線分別交于點、,O為坐標(biāo)原點.若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.34.如圖所示,已知某幾何體的三視圖及其尺寸(單位:),則該幾何體的表面積為()A. B.C. D.5.已知集合,,若,則的最小值為()A.1 B.2 C.3 D.46.在中,D為的中點,E為上靠近點B的三等分點,且,相交于點P,則()A. B.C. D.7.圓心為且和軸相切的圓的方程是()A. B.C. D.8.祖暅原理:“冪勢既同,則積不容異”.意思是說:兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設(shè)、為兩個同高的幾何體,、的體積不相等,、在等高處的截面積不恒相等.根據(jù)祖暅原理可知,是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.若復(fù)數(shù)滿足,則()A. B. C.2 D.10.已知水平放置的△ABC是按“斜二測畫法”得到如圖所示的直觀圖,其中B′O′=C′O′=1,A′O′=,那么原△ABC的面積是()A. B.2C. D.11.某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應(yīng)點為,圓柱表面上的點在左視圖上的對應(yīng)點為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為()A. B. C. D.212.《易經(jīng)》包含著很多哲理,在信息學(xué)、天文學(xué)中都有廣泛的應(yīng)用,《易經(jīng)》的博大精深,對今天的幾何學(xué)和其它學(xué)科仍有深刻的影響.下圖就是易經(jīng)中記載的幾何圖形——八卦田,圖中正八邊形代表八卦,中間的圓代表陰陽太極圖,八塊面積相等的曲邊梯形代表八卦田.已知正八邊形的邊長為,陰陽太極圖的半徑為,則每塊八卦田的面積約為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知變量x,y滿足約束條件x-y≤0x+2y≤34x-y≥-6,則14.若在上單調(diào)遞減,則的取值范圍是_______15.在中,角,,的對邊分別是,,,若,,則的面積的最大值為______.16.將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則函數(shù)的最大值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,證明:當(dāng)時,;(2)若在只有一個零點,求的值.18.(12分)如圖所示,四棱柱中,底面為梯形,,,,,,.(1)求證:;(2)若平面平面,求二面角的余弦值.19.(12分)已知在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(1)求直線的直角坐標(biāo)方程;(2)求曲線上的點到直線距離的最小值和最大值.20.(12分)已知橢圓的左右焦點分別為,焦距為4,且橢圓過點,過點且不平行于坐標(biāo)軸的直線交橢圓與兩點,點關(guān)于軸的對稱點為,直線交軸于點.(1)求的周長;(2)求面積的最大值.21.(12分)已知直線的參數(shù)方程為(,為參數(shù)),曲線的極坐標(biāo)方程為.(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線的形狀;(2)若直線經(jīng)過點,求直線被曲線截得的線段的長.22.(10分)已知函數(shù),其中為實常數(shù).(1)若存在,使得在區(qū)間內(nèi)單調(diào)遞減,求的取值范圍;(2)當(dāng)時,設(shè)直線與函數(shù)的圖象相交于不同的兩點,,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據(jù)韋恩圖可確定所表示集合為,根據(jù)一元二次不等式解法和定義域的求法可求得集合,根據(jù)補集和交集定義可求得結(jié)果.【詳解】由韋恩圖可知:陰影部分表示,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算,涉及到一元二次不等式和函數(shù)定義域的求解;關(guān)鍵是能夠根據(jù)韋恩圖確定所求集合.2、D【解析】

求出復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點的坐標(biāo),即可得出結(jié)論.【詳解】復(fù)數(shù)在復(fù)平面上對應(yīng)的點的坐標(biāo)為,該點位于第四象限.故選:D.【點睛】本題考查復(fù)數(shù)對應(yīng)的點的位置的判斷,屬于基礎(chǔ)題.3、C【解析】試題分析:拋物線的準(zhǔn)線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點,,,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準(zhǔn)線方程;4、C【解析】

由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,據(jù)此可計算出答案.【詳解】由三視圖知,該幾何體是一個圓錐,其母線長是5,底面直徑是6,該幾何體的表面積.故選:C【點睛】本題主要考查了三視圖的知識,幾何體的表面積的計算.由三視圖正確恢復(fù)幾何體是解題的關(guān)鍵.5、B【解析】

解出,分別代入選項中的值進(jìn)行驗證.【詳解】解:,.當(dāng)時,,此時不成立.當(dāng)時,,此時成立,符合題意.故選:B.【點睛】本題考查了不等式的解法,考查了集合的關(guān)系.6、B【解析】

設(shè),則,,由B,P,D三點共線,C,P,E三點共線,可知,,解得即可得出結(jié)果.【詳解】設(shè),則,,因為B,P,D三點共線,C,P,E三點共線,所以,,所以,.故選:B.【點睛】本題考查了平面向量基本定理和向量共線定理的簡單應(yīng)用,屬于基礎(chǔ)題.7、A【解析】

求出所求圓的半徑,可得出所求圓的標(biāo)準(zhǔn)方程.【詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.【點睛】本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計算能力,屬于基礎(chǔ)題.8、A【解析】

由題意分別判斷命題的充分性與必要性,可得答案.【詳解】解:由題意,若、的體積不相等,則、在等高處的截面積不恒相等,充分性成立;反之,、在等高處的截面積不恒相等,但、的體積可能相等,例如是一個正放的正四面體,一個倒放的正四面體,必要性不成立,所以是的充分不必要條件,故選:A.【點睛】本題主要考查充分條件、必要條件的判定,意在考查學(xué)生的邏輯推理能力.9、D【解析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)模的計算公式計算.【詳解】解:由題意知,,,∴,故選:D.【點睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)模的求法.10、A【解析】

先根據(jù)已知求出原△ABC的高為AO=,再求原△ABC的面積.【詳解】由題圖可知原△ABC的高為AO=,∴S△ABC=×BC×OA=×2×=,故答案為A【點睛】本題主要考查斜二測畫法的定義和三角形面積的計算,意在考察學(xué)生對這些知識的掌握水平和分析推理能力.11、B【解析】

首先根據(jù)題中所給的三視圖,得到點M和點N在圓柱上所處的位置,將圓柱的側(cè)面展開圖平鋪,點M、N在其四分之一的矩形的對角線的端點處,根據(jù)平面上兩點間直線段最短,利用勾股定理,求得結(jié)果.【詳解】根據(jù)圓柱的三視圖以及其本身的特征,將圓柱的側(cè)面展開圖平鋪,可以確定點M和點N分別在以圓柱的高為長方形的寬,圓柱底面圓周長的四分之一為長的長方形的對角線的端點處,所以所求的最短路徑的長度為,故選B.點睛:該題考查的是有關(guān)幾何體的表面上兩點之間的最短距離的求解問題,在解題的過程中,需要明確兩個點在幾何體上所處的位置,再利用平面上兩點間直線段最短,所以處理方法就是將面切開平鋪,利用平面圖形的相關(guān)特征求得結(jié)果.12、B【解析】

由圖利用三角形的面積公式可得正八邊形中每個三角形的面積,再計算出圓面積的,兩面積作差即可求解.【詳解】由圖,正八邊形分割成個等腰三角形,頂角為,設(shè)三角形的腰為,由正弦定理可得,解得,所以三角形的面積為:,所以每塊八卦田的面積約為:.故選:B【點睛】本題考查了正弦定理解三角形、三角形的面積公式,需熟記定理與面積公式,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、-5【解析】

畫出x,y滿足的可行域,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過點A時,z最小,求解即可?!驹斀狻慨嫵鰔,y滿足的可行域,由x+2y=34x-y=-6解得A-1,2,當(dāng)目標(biāo)函數(shù)z=x-2y經(jīng)過點A【點睛】本題考查的是線性規(guī)劃問題,解決線性規(guī)劃問題的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合思想。需要注意的是:一,準(zhǔn)確無誤地作出可行域;二,畫目標(biāo)函數(shù)所對應(yīng)的直線時,要注意讓其斜率與約束條件中的直線的斜率進(jìn)行比較,避免出錯;三,一般情況下,目標(biāo)函數(shù)的最大值或最小值會在可行域的端點或邊界上取得。14、【解析】

由題意可得導(dǎo)數(shù)在恒成立,解出即可.【詳解】解:由題意,,當(dāng)時,顯然,符合題意;當(dāng)時,在恒成立,∴,∴,故答案為:.【點睛】本題主要考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,屬于中檔題.15、【解析】

化簡得到,,根據(jù)余弦定理和均值不等式得到,根據(jù)面積公式計算得到答案.【詳解】,即,,故.根據(jù)余弦定理:,即.當(dāng)時等號成立,故.故答案為:.【點睛】本題考查了三角恒等變換,余弦定理,均值不等式,面積公式,意在考查學(xué)生的綜合應(yīng)用能力和計算能力.16、【解析】

由三角函數(shù)圖象相位變換后表達(dá)函數(shù)解析式,再利用三角恒等變換與輔助角公式整理的表達(dá)式,進(jìn)而由三角函數(shù)值域求得最大值.【詳解】將函數(shù)的圖象向右平移個單位長度后得到函數(shù)的圖象,則所以,當(dāng)函數(shù)最大,最大值為故答案為:【點睛】本題考查表示三角函數(shù)圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡函數(shù)式并求最值,屬于簡單題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

分析:(1)先構(gòu)造函數(shù),再求導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)不大于零得函數(shù)單調(diào)遞減,最后根據(jù)單調(diào)性證得不等式;(2)研究零點,等價研究的零點,先求導(dǎo)數(shù):,這里產(chǎn)生兩個討論點,一個是a與零,一個是x與2,當(dāng)時,,沒有零點;當(dāng)時,先減后增,從而確定只有一個零點的必要條件,再利用零點存在定理確定條件的充分性,即得a的值.詳解:(1)當(dāng)時,等價于.設(shè)函數(shù),則.當(dāng)時,,所以在單調(diào)遞減.而,故當(dāng)時,,即.(2)設(shè)函數(shù).在只有一個零點當(dāng)且僅當(dāng)在只有一個零點.(i)當(dāng)時,,沒有零點;(ii)當(dāng)時,.當(dāng)時,;當(dāng)時,.所以在單調(diào)遞減,在單調(diào)遞增.故是在的最小值.①若,即,在沒有零點;②若,即,在只有一個零點;③若,即,由于,所以在有一個零點,由(1)知,當(dāng)時,,所以.故在有一個零點,因此在有兩個零點.綜上,在只有一個零點時,.點睛:利用函數(shù)零點的情況求參數(shù)值或取值范圍的方法(1)利用零點存在的判定定理構(gòu)建不等式求解.(2)分離參數(shù)后轉(zhuǎn)化為函數(shù)的值域(最值)問題求解.(3)轉(zhuǎn)化為兩熟悉的函數(shù)圖象的上、下關(guān)系問題,從而構(gòu)建不等式求解.18、(1)證明見解析(2)【解析】

(1)取中點為,連接,,,,根據(jù)線段關(guān)系可證明為等邊三角形,即可得;由為等邊三角形,可得,從而由線面垂直判斷定理可證明平面,即可證明.(2)以為原點,,,為,,軸建立空間直角坐標(biāo)系,寫出各個點的坐標(biāo),并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【詳解】(1)證明:取中點為,連接,,,如下圖所示:因為,,,所以,故為等邊三角形,則.連接,因為,,所以為等邊三角形,則.又,所以平面.因為平面,所以.(2)由(1)知,因為平面平面,平面,所以平面,以為原點,,,為,,軸建立如圖所示的空間直角坐標(biāo)系,易求,則,,,,則,,.設(shè)平面的法向量,則即令,則,,故.設(shè)平面的法向量,則則令,則,,故,所以.由圖可知,二面角為鈍二面角角,所以二面角的余弦值為.【點睛】本題考查線面垂直的判定,由線面垂直判定線線垂直,由空間向量法求平面與平面形成二面角的大小,屬于中檔題.19、(1)(2)最大值;最小值.【解析】

(1)結(jié)合極坐標(biāo)和直角坐標(biāo)的互化公式可得;(2)利用參數(shù)方程,求解點到直線的距離公式,結(jié)合三角函數(shù)知識求解最值.【詳解】解:(1)因為,代入,可得直線的直角坐標(biāo)方程為.(2)曲線上的點到直線的距離,其中,.故曲線上的點到直線距離的最大值,曲線上的點到直線的距離的最小值.【點睛】本題主要考查極坐標(biāo)和直角坐標(biāo)的轉(zhuǎn)化及最值問題,橢圓上的點到直線的距離的最值求解優(yōu)先考慮參數(shù)方法,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).20、(1)12(2)【解析】

(1)根據(jù)焦距得焦點坐標(biāo),結(jié)合橢圓上的點的坐標(biāo),根據(jù)定義;(2)求出橢圓的標(biāo)準(zhǔn)方程,設(shè),聯(lián)立直線和橢圓,結(jié)合韋達(dá)定理表示出面積,即可求解最大值.【詳解】(1)設(shè)橢園的焦距為,則,故.則橢圓過點,由橢圓定義知:,故,因此,的周長;(2)由(1)知:,橢圓方程為:設(shè),則,,,,,當(dāng)且僅當(dāng)在短軸頂點處取等,故面積的最大值為.【點睛】此題考查根據(jù)橢圓的焦點和橢圓上的點的坐標(biāo)求橢圓的標(biāo)準(zhǔn)方程,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論