廣東省惠州九中學2024年八年級數(shù)學第二學期期末教學質量檢測模擬試題含解析_第1頁
廣東省惠州九中學2024年八年級數(shù)學第二學期期末教學質量檢測模擬試題含解析_第2頁
廣東省惠州九中學2024年八年級數(shù)學第二學期期末教學質量檢測模擬試題含解析_第3頁
廣東省惠州九中學2024年八年級數(shù)學第二學期期末教學質量檢測模擬試題含解析_第4頁
廣東省惠州九中學2024年八年級數(shù)學第二學期期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省惠州九中學2024年八年級數(shù)學第二學期期末教學質量檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列性質中,菱形具有而矩形不一定具有的是()A.對角線相等 B.對角線互相平分 C.對角線互相垂直 D.鄰邊互相垂直2.若一個多邊形的內角和小于其外角和,則這個多邊形的邊數(shù)是()A.3 B.4 C.5 D.63.如圖,在△ABC中,D,E,F(xiàn)分別是AB,BC,AC邊的中點.如果添加一個條件,使四邊形ADEF是菱形,則添加的條件為()A.AB=AC B.AC=BC C.∠A=90° D.∠A=60°4.下圖表示一次函數(shù)y=mx+n與正比例函數(shù)y=mnx(m,n是常數(shù),且mn0)的大致圖像是()A. B.C. D.5.如圖,在矩形ABCD中,點E,F(xiàn)分別在邊AB,BC上,且AE=AB,將矩形沿直線EF折疊,點B恰好落在AD邊上的點P處,連接BP交EF于點Q,對于下列結論:①EF=2BE;②PF=2PE;③FQ=3EQ;④△PBF是等邊三角形,其中正確的是()A.①②③ B.②③④ C.①②④ D.①③④6.圖中的兩個三角形是位似圖形,它們的位似中心是()A.點P B.點DC.點M D.點N7.如圖,四邊形ABCD是平行四邊形,要使它成為矩形,那么需要添加的條件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.下圖是一株美麗的勾股樹,其中所有的四邊形都是正方形,所有的三角形都是直角三角形,若最大正方形G的邊長是6cm,則正方形A,B,C,D,E,F,G的面積之和是()A.18cm2 B.36cm2 C.72cm2 D.108cm29.若反比例函數(shù)的圖象經(jīng)過點,則該反比例函數(shù)的圖象位于()A.第一、二象限 B.第二、三象限 C.第二、四象限 D.第一、三象限10.最簡二次根式與是同類二次根式,則a為()A.a(chǎn)=6 B.a(chǎn)=2 C.a(chǎn)=3或a=2 D.a(chǎn)=111.一蓄水池有水40m3,按一定的速度放水,水池里的水量y(m3)與放水時間t(分)有如下關系:放水時間(分)1234...水池中水量(m)38363432...下列結論中正確的是A.y隨t的增加而增大 B.放水時間為15分鐘時,水池中水量為8m3C.每分鐘的放水量是2m3 D.y與t之間的關系式為y=38-2t12.將一張矩形紙片沿一組對邊和的中點連線對折,對折后所得矩形恰好與原矩形相似,若原矩形紙片的邊,則的長為()A. B. C. D.2二、填空題(每題4分,共24分)13.如圖,E是矩形ABCD的對角線的交點,點F在邊AE上,且DF=DC,若∠ADF=25°,則∠ECD=___°.14.如圖,將ABCD的一邊BC延長至E,若∠A=110°,則∠1=________.15.如圖,OP平分∠MON,PE⊥OM于點E,PF⊥ON于點F,OA=OB,則圖中有____對全等三角形.16.任何一個正整數(shù)n都可以進行這樣的分解:n=s×t(s,t是正整數(shù),且s≤t),如果p×q在n的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解,并規(guī)定:、例如18可以分解成1×18,2×9,3×6這三種,這時就有.給出下列關于F(n)的說法:(1);(2);(3)F(27)=3;(4)若n是一個整數(shù)的平方,則F(n)=1.其中正確說法的有_____.17.當________時,方程無解.18.函數(shù)中,若自變量的取值范圍是,則函數(shù)值的取值范圍為__________.三、解答題(共78分)19.(8分)(1)計算:(2)計算:20.(8分)如圖,在矩形中,點為上一點,連接、,.(1)如圖1,若,,求的長.(2)如圖2,點是的中點,連接并延長交于,為上一點,連接,且,求證:.21.(8分)閱讀材料:各類方程的解法求解一元一次方程,根據(jù)等式的基本性質,把方程轉化為x=a的形式.求解二元一次方程組,把它轉化為一元一次方程來解;類似的,求解三元一次方程組,把它轉化為解二元一次方程組.求解一元二次方程,把它轉化為兩個一元一次方程來解.求解分式方程,把它轉化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學思想轉化,把未知轉化為已知.用“轉化”的數(shù)學思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.(1)問題:方程x3+x2-2x=0的解是x1=0,x2=,x3=;(2)拓展:用“轉化”思想求方程的解;(3)應用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.22.(10分)如圖,中且,又、為的三等分點.(1)求證;(2)證明:;(3)若點為線段上一動點,連接則使線段的長度為整數(shù)的點的個數(shù)________.(直接寫答案無需說明理由)23.(10分)如圖,A城氣象臺測得臺風中心在A城正西方向320km的B處,以每小時40km的速度向北偏東60?的BF方向移動,距離臺風中心200km的范圍內是受臺風影響的區(qū)域.(1)A城是否受到這次臺風的影響?為什么?(2)若A城受到這次臺風影響,則A城遭受這次臺風影響有多長時間?24.(10分)如圖1,直線與雙曲線交于、兩點,與軸交于點,與軸交于點,已知點、點.(1)求直線和雙曲線的解析式;(2)將沿直線翻折,點落在第一象限內的點處,直接寫出點的坐標;(3)如圖2,過點作直線交軸的負半軸于點,連接交軸于點,且的面積與的面積相等.①求直線的解析式;②在直線上是否存在點,使得?若存在,請直接寫出所有符合條件的點的坐標;如果不存在,請說明理由.25.(12分)觀察下列等式:第1個等式:a1=-1,第2個等式:a2=,第3個等式:a3==2-,第4個等式:a4=-2,…按上述規(guī)律,回答以下問題:(1)請寫出第n個等式:an=__________.(2)a1+a2+a3+…+an=_________.26.暑假期間,小剛一家乘車去離家380公里的某景區(qū)旅游,他們離家的距離y(km)與汽車行駛時間x(h)之間的函數(shù)圖象如圖所示.(1)從小剛家到該景區(qū)乘車一共用了多少時間?(2)求線段AB對應的函數(shù)解析式;(3)小剛一家出發(fā)2.5小時時離目的地多遠?

參考答案一、選擇題(每題4分,共48分)1、C【解析】試題分析:A.對角線相等是矩形具有的性質,菱形不一定具有;B.對角線互相平分是菱形和矩形共有的性質;C.對角線互相垂直是菱形具有的性質,矩形不一定具有;D.鄰邊互相垂直是矩形具有的性質,菱形不一定具有.故選C.點評】本題考查菱形與矩形的性質,需要同學們對各種平行四邊形的性質熟練掌握并區(qū)分.考點:菱形的性質;矩形的性質.2、A【解析】試題分析:∵多邊形的外角和是360度,多邊形的內角和等于它的外角和,則內角和是360度,∴這個多邊形是四邊形.故選B.考點:多邊形內角與外角.3、A【解析】

由題意利用中位線性質和平行四邊形判定四邊形ADEF是平行四邊形,再尋找條件使得相鄰兩邊相等即可判斷選項.【詳解】解:∵在△ABC中,D,E,F(xiàn)分別是AB,BC,AC邊的中點,∴DE和EF為中位線,EF//AB,DE//AC,∴四邊形ADEF是平行四邊形,當AB=AC,則有AD=AF,證得四邊形ADEF是菱形,故AB=AC滿足條件.故選:A.【點睛】本題考查菱形的性質與證明,熟練掌握中位線性質和平行四邊形的判定是解題的關鍵.4、C【解析】

根據(jù)一次函數(shù)圖像與系數(shù)的關系以及正比例函數(shù)圖像與系數(shù)的關系逐一對各選項進行判斷,然后進一步得出答案即可.【詳解】A:由一次函數(shù)圖像可知:m>0,n>0,則mn>0,由正比例函數(shù)圖像可得:mn<0,互相矛盾,故該選項錯誤;B:由一次函數(shù)圖像可知:m>0,n<0,則此時mn<0,由正比例函數(shù)圖像可得:mn>0,互相矛盾,故該選項錯誤;C:由一次函數(shù)圖像可知:m﹤0,n>0,則此時mn﹤0,由正比例函數(shù)圖像可得:mn<0,故該選項正確;D:由一次函數(shù)圖像可知:m﹤0,n﹥0,則此時mn<0,由正比例函數(shù)圖像可得:mn>0,互相矛盾,故該選項錯誤;故選:C.【點睛】本題主要考查了正比例函數(shù)圖像以及一次函數(shù)圖像與系數(shù)的關系,熟練掌握相關概念是解題關鍵.5、D【解析】

求出BE=2AE,根據(jù)翻折的性質可得PE=BE,由此得出∠APE=30°,然后求出∠AEP=60°,再根據(jù)翻折的性質求出∠BEF=60°,根據(jù)直角三角形兩銳角互余求出∠EFB=30°,然后根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半可得EF=2BE,判斷出①正確;利用30°角的正切值求出PF=PE,判斷出②錯誤;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判斷出③正確;求出∠PBF=∠PFB=60°,然后得到△PBF是等邊三角形,故④正確.【詳解】∵AE=AB,∴BE=2AE,由翻折的性質得:PE=BE,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正確;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②錯誤;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③正確;由翻折的性質,∠EFB=∠EFP=30°,則∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等邊三角形,故④正確.故選D.【點睛】本題考查了翻折變換的性質,直角三角形30°角所對的直角邊等于斜邊的一半的性質,直角三角形兩銳角互余的性質,等邊三角形的判定等知識,熟記各性質并準確識圖是解題的關鍵.6、A【解析】試題分析:根據(jù)位似變換的定義:對應點的連線交于一點,交點就是位似中心.即位似中心一定在對應點的連線上.解:∵位似圖形的位似中心位于對應點連線所在的直線上,點M、N為對應點,所以位似中心在M、N所在的直線上,因為點P在直線MN上,所以點P為位似中心.故選A.考點:位似變換.7、D【解析】

可根據(jù)對角線相等的平行四邊形是矩形證明四邊形ABCD是矩形.【詳解】解:A、AB=CD,當ABCD是平行四邊形時也成立,故不合符題意;B、AD=BC,當ABCD是平行四邊形時也成立,故不合符題意;C、AB=BC,當ABCD是菱形時也成立,故不合符題意;D、AC=BD,對角線相等的平行四邊形是矩形,符合題意;故選:D.【點睛】此題主要考查了矩形的判定,關鍵是矩形的判定:①矩形的定義:有一個角是直角的平行四邊形是矩形;②有三個角是直角的四邊形是矩形;③對角線相等的平行四邊形是矩形.8、D【解析】

根據(jù)正方形的面積公式,運用勾股定理可以證明:6個小正方形的面積和等于最大正方形面積的3倍.【詳解】根據(jù)勾股定理得到:A與B的面積的和是E的面積;C與D的面積的和是F的面積;而E,F(xiàn)的面積的和是G的面積.即A、B、C、D、E、F的面積之和為3個G的面積.∵M的面積是61=36cm1,∴A、B、C、D、E、F的面積之和為36×3=108cm1.故選D.【點睛】考查了勾股定理,注意運用勾股定理和正方形的面積公式證明結論:6個小正方形的面積和等于最大正方形的面積的1倍.9、D【解析】

首先將點坐標代入函數(shù)解析式,即可得出的值,即可判定反比例函數(shù)所處的象限.【詳解】解:∵反比例函數(shù)圖象經(jīng)過點,∴∴∴該反比例函數(shù)圖像位于第一、三象限,故答案為D.【點睛】此題主要考查利用點坐標求出反比例函數(shù)解析式,即可判定其所在象限.10、B【解析】試題分析:由題意可得:,解得a=2或a=3;當a=3時,,不是最簡根式,因此a=3不合題意,舍去.因此a=2.故選B.考點:2.同類二次根式;2.最簡二次根式;3.一元二次方程的解.11、C【解析】

根據(jù)表格內的數(shù)據(jù),利用待定系數(shù)法求出y與t之間的函數(shù)關系式,由此可得出D選項錯誤;由-2<0可得出y隨t的增大而減小,A選項錯誤;代入t=15求出y值,由此可得出:放水時間為15分鐘時,水池中水量為10m3,B選項錯誤;由k=-2可得出每分鐘的放水量是2m3,C選項正確.綜上即可得出結論.【詳解】解:設y與t之間的函數(shù)關系式為y=kt+b,

將(1,38)、(2,36)代入y=kt+b,,解得:∴y與t之間的函數(shù)關系式為y=-2t+40,D選項錯誤;

∵-2<0,

∴y隨t的增大而減小,A選項錯誤;

當t=15時,y=-2×15+40=10,

∴放水時間為15分鐘時,水池中水量為10m3,B選項錯誤;

∵k=-2,

∴每分鐘的放水量是2m3,C選項正確.

故選:C.【點睛】本題考查一次函數(shù)的應用,利用待定系數(shù)法求出函數(shù)關系式是解題的關鍵.12、C【解析】

根據(jù)相似多邊形對應邊的比相等,設出原來矩形的長,就可得到一個方程,解方程即可求得.【詳解】解:根據(jù)條件可知:矩形AEFB∽矩形ABCD,∴,設AD=BC=x,AB=1,則AE=x.則,即:x2=1.∴x=或﹣(舍去).故選:C.【點睛】本題考查了相似多邊形的性質,根據(jù)相似形的對應邊的比相等,把幾何問題轉化為方程問題,正確分清對應邊,以及正確解方程是解決本題的關鍵.二、填空題(每題4分,共24分)13、17.1.【解析】

根據(jù)矩形的性質由∠ADF求出∠CDF,再由等腰三角形的性質得出∠ECD即可.【詳解】解:∵四邊形ABCD是矩形,∴∠ADC=90°,∵∠ADF=21°,∴∠CDF=∠ADC﹣∠ADF=90°﹣21°=61°,∵DF=DC,∴∠ECD=,故答案為:17.1.【點睛】本題考查了矩形的性質,等腰三角形的性質,解本題的關鍵是求出∠CDF.是一道中考常考的簡單題.14、70°【解析】

解:∵平行四邊形ABCD的∠A=110°,∴∠BCD=∠A=110°,∴∠1=180°-∠BCD=180°-110°=70°.故答案為:70°.15、1【解析】試題分析:OP平分∠MON,PE⊥OM于E,PF⊥ON于F,∴PE=PF,∠1=∠2,在△AOP與△BOP中,,∴△AOP≌△BOP,∴AP=BP,在△EOP與△FOP中,,∴△EOP≌△FOP,在Rt△AEP與Rt△BFP中,,∴Rt△AEP≌Rt△BFP,∴圖中有1對全等三角形,故答案為1.考點:角平分線的性質,全等三角形的判定和性質.16、2【解析】

把2,24,27,n分解為兩個正整數(shù)的積的形式,找到相差最少的兩個數(shù),讓較小的數(shù)除以較大的數(shù),看結果是否與所給結果相同.【詳解】∵2=1×2,∴F(2)=,故(1)是正確的;∵24=1×24=2×12=3×8=4×6,這幾種分解中4和6的差的絕對值最小,∴F(24)==,故(2)是錯誤的;∵27=1×27=3×9,其中3和9的絕對值較小,又3<9,∴F(27)=,故(3)是錯誤的;∵n是一個完全平方數(shù),∴n能分解成兩個相等的數(shù),則F(n)=1,故(4)是正確的,∴正確的有(1),(4).故答案為2.【點睛】本題考查了題目信息獲取能力,解決本題的關鍵是理解答此題的定義:所有這種分解中兩因數(shù)之差的絕對值最小,F(xiàn)(n)=(p≤q).17、1【解析】

根據(jù)分式方程無解,得到1?x=0,求出x的值,分式方程去分母轉化為整式方程,將x的值代入整式方程計算即可求出m的值.【詳解】解:分式方程去分母得:m=2(1?x)+1,由分式方程無解,得到1?x=0,即x=1,代入整式方程得:m=1.故答案為:1.【點睛】此題考查了分式方程的解,將分式方程轉化為整式方程是解本題的關鍵.18、【解析】

根據(jù)不等式性質:不等式兩邊同時減去一個數(shù),不等號不變,即可得到答案.【詳解】解:∵,∴∴,即:.故答案為:.【點睛】本題考查了不等式的性質,熟練掌握不等式兩邊同時減去一個數(shù),不等號不變是本題解題的關鍵.三、解答題(共78分)19、(1)15;(2).【解析】

(1)先進行二次根式的化簡,然后再根據(jù)二次根式乘除法的運算法則進行計算即可;(2)先分別化簡各個二次根式,然后再進行合并即可.【詳解】(1)原式=3×5÷=15÷=15;(2)原式=3﹣4+=-+.【點睛】本題考查了二次根式的混合運算,熟練掌握二次根式混合運算的運算順序以及運算法則是解題的關鍵.20、(1);(2)見解析【解析】

(1)利用等腰直角三角形的性質及勾股定理求AB和AE的長,然后根據(jù)矩形的性質求得CD和ED的長,從而利用勾股定理求解;(2)延長交的延長線于,利用AAS定理證得,得到,,然后求得,從而使問題得解.【詳解】解:(1)∵矩形,∴又∵∴設,在中,即解得:,(舍)∴∵矩形∴,∴在中,,∴;(2)如答圖,延長交的延長線于∵,∴又∵為的中點,∴在和中∴∴,∵,∴∴∴∴【點睛】本題考查矩形的性質,勾股定理解直角三角形,全等三角形的判定和性質,等腰三角形的判定和性質,有一定的綜合性,掌握相關性質定理正確推理論證是解題關鍵.21、(1)-2,1;(2)x=3;(3)4m.【解析】

(1)因式分解多項式,然后得結論;

(2)兩邊平方,把無理方程轉化為整式方程,求解,注意驗根;

(3)設AP的長為xm,根據(jù)勾股定理和BP+CP=10,可列出方程,由于方程含有根號,兩邊平方,把無理方程轉化為整式方程,求解,【詳解】解:(1),,所以或或,,;故答案為,1;(2),方程的兩邊平方,得即或,,當時,,所以不是原方程的解.所以方程的解是;(3)因為四邊形是矩形,所以,設,則因為,,兩邊平方,得整理,得兩邊平方并整理,得即所以.經(jīng)檢驗,是方程的解.答:的長為.【點睛】考查了轉化的思想方法,一元二次方程的解法.解無理方程是注意到驗根.解決(3)時,根據(jù)勾股定理和繩長,列出方程是關鍵.22、(1)見解析;(2)見解析;(3)4.【解析】

(1)利用勾股定理求得AD、DE的長,再根據(jù)BD、AD的長,利用兩邊對應相等,且夾角相等的兩個三角形相似,即可判斷;(2)利用相似三角形的對應角相等以及三角形的外角的性質即可判斷;(3)作EF⊥AB于點F,利用△ABC∽△EBF,求得EF的長,即可確定PE的長的范圍,從而求解.【詳解】解:(1)證明:∵,∴,∴在和中,,,∴,又∵,∴;(2)證明:∵,∴,又∵,∴;(3)作于點.在直角中,.∵,,∴,∴,即,解得:.又∵,,則,的整數(shù)值是1或2或3.則當時,的位置有2個;當時,的位置有1個;當時,的位置有1個.故的整數(shù)點有4個.故答案是:4.【點睛】本題考查了相似三角形的判定與性質,正確作出輔助線,利用相似三角形的性質求得PE的范圍是關鍵.23、(1)A城受臺風影響;(2)DA=200千米,AC=160千米【解析】試題分析:(1)由A點向BF作垂線,垂足為C,根據(jù)勾股定理求得AC的長,與200比較即可得結論;(2)點A到直線BF的長為200千米的點有兩點,分別設為D、G,則△ADG是等腰三角形,由于AC⊥BF,則C是DG的中點,在Rt△ADC中,解出CD的長,則可求DG長,在DG長的范圍內都是受臺風影響,再根據(jù)速度與距離的關系則可求時間.試題解析:(1)由A點向BF作垂線,垂足為C,在Rt△ABC中,∠ABC=30°,AB=320km,則AC=160km,因為160<200,所以A城要受臺風影響;(2)設BF上點D,DA=200千米,則還有一點G,有AG=200千米.因為DA=AG,所以△ADG是等腰三角形,因為AC⊥BF,所以AC是DG的垂直平分線,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD===120千米,則DG=2DC=240千米,遭受臺風影響的時間是:t=240÷40=6(小時).24、(1);(2);(3)點的坐標為或.【解析】

(1)待定系數(shù)法求一次函數(shù)解析式和反比例函數(shù)解析式,將已知點坐標代入并解方程(組)即可;

(2)先求出直線l1與坐標軸的交點坐標,可得:△CO

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論