2024屆山東省萊蕪市達(dá)標(biāo)名校中考數(shù)學(xué)對點突破模擬試卷含解析_第1頁
2024屆山東省萊蕪市達(dá)標(biāo)名校中考數(shù)學(xué)對點突破模擬試卷含解析_第2頁
2024屆山東省萊蕪市達(dá)標(biāo)名校中考數(shù)學(xué)對點突破模擬試卷含解析_第3頁
2024屆山東省萊蕪市達(dá)標(biāo)名校中考數(shù)學(xué)對點突破模擬試卷含解析_第4頁
2024屆山東省萊蕪市達(dá)標(biāo)名校中考數(shù)學(xué)對點突破模擬試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆山東省萊蕪市達(dá)標(biāo)名校中考數(shù)學(xué)對點突破模擬試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在△ABC中,BC=8,AB的中垂線交BC于D,AC的中垂線交BC于E,則△ADE的周長等于()A.8 B.4 C.12 D.162.已知地球上海洋面積約為361000000km2,361000000這個數(shù)用科學(xué)記數(shù)法可表示為()A.3.61×106 B.3.61×107 C.3.61×108 D.3.61×1093.如圖,若a∥b,∠1=60°,則∠2的度數(shù)為()A.40° B.60° C.120° D.150°4.如圖,兩根竹竿AB和AD斜靠在墻CE上,量得∠ABC=,∠ADC=,則竹竿AB與AD的長度之比為A. B. C. D.5.已知直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,那么直線y=bx-a一定不經(jīng)過(

)A.第一象限B.第二象限C.第三象限D(zhuǎn).第四象限6.計算﹣的結(jié)果為()A. B. C. D.7.某班將舉行“慶祝建黨95周年知識競賽”活動,班長安排小明購買獎品,如圖是小明買回獎品時與班長的對話情境:請根據(jù)如圖對話信息,計算乙種筆記本買了()A.25本 B.20本 C.15本 D.10本8.的整數(shù)部分是()A.3 B.5 C.9 D.69.下列各數(shù)中,比﹣1大1的是()A.0B.1C.2D.﹣310.已知,如圖,AB是⊙O的直徑,點D,C在⊙O上,連接AD、BD、DC、AC,如果∠BAD=25°,那么∠C的度數(shù)是()A.75° B.65° C.60° D.50°二、填空題(共7小題,每小題3分,滿分21分)11.因式分解.12.若3,a,4,5的眾數(shù)是4,則這組數(shù)據(jù)的平均數(shù)是_____.13.計算:2(a-b)+3b=___________.14.一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達(dá)小島的北偏西45°的C處,則該船行駛的速度為____________海里/時.15.如圖,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以點A為圓心,AC為半徑的弧交AB于點E,以點B為圓心,BC為半徑的弧交AB于點D,則圖中陰影部分圖形的面積為__(保留根號和π)16.已知,在Rt△ABC中,∠C=90°,AC=9,BC=12,點D、E分別在邊AC、BC上,且CD:CE=3︰1.將△CDE繞點D順時針旋轉(zhuǎn),當(dāng)點C落在線段DE上的點F處時,BF恰好是∠ABC的平分線,此時線段CD的長是________.17.已知,是關(guān)于x的一元二次方程x2+(2m+3)x+m2=0的兩個不相等的實數(shù)根,且滿足=﹣1,則m的值是____.三、解答題(共7小題,滿分69分)18.(10分)一天晚上,李明利用燈光下的影子長來測量一路燈D的高度.如圖,當(dāng)在點A處放置標(biāo)桿時,李明測得直立的標(biāo)桿高AM與影子長AE正好相等,接著李明沿AC方向繼續(xù)向前走,走到點B處放置同一個標(biāo)桿,測得直立標(biāo)桿高BN的影子恰好是線段AB,并測得AB=1.2m,已知標(biāo)桿直立時的高為1.8m,求路燈的高CD的長.19.(5分)在△ABC中,AB=AC,以AB為直徑的⊙O交AC于點E,交BC于點D,P為AC延長線上一點,且∠PBC=∠BAC,連接DE,BE.(1)求證:BP是⊙O的切線;(2)若sin∠PBC=,AB=10,求BP的長.20.(8分)已知P是⊙O外一點,PO交⊙O于點C,OC=CP=2,弦AB⊥OC,∠AOC的度數(shù)為60°,連接PB.求BC的長;求證:PB是⊙O的切線.21.(10分)如圖,兒童游樂場有一項射擊游戲.從O處發(fā)射小球,將球投入正方形籃筐DABC.正方形籃筐三個頂點為A(2,2),B(3,2),D(2,3).小球按照拋物線y=﹣x2+bx+c飛行.小球落地點P坐標(biāo)(n,0)(1)點C坐標(biāo)為;(2)求出小球飛行中最高點N的坐標(biāo)(用含有n的代數(shù)式表示);(3)驗證:隨著n的變化,拋物線的頂點在函數(shù)y=x2的圖象上運動;(4)若小球發(fā)射之后能夠直接入籃,球沒有接觸籃筐,請直接寫出n的取值范圍.22.(10分)如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PA、PB、AB、OP,已知PB是⊙O的切線.(1)求證:∠PBA=∠C;(2)若OP∥BC,且OP=9,⊙O的半徑為3,求BC的長.23.(12分)如圖,已知∠AOB與點M、N求作一點P,使點P到邊OA、OB的距離相等,且PM=PN(保留作圖痕跡,不寫作法)24.(14分)如圖二次函數(shù)的圖象與軸交于點和兩點,與軸交于點,點、是二次函數(shù)圖象上的一對對稱點,一次函數(shù)的圖象經(jīng)過、求二次函數(shù)的解析式;寫出使一次函數(shù)值大于二次函數(shù)值的的取值范圍;若直線與軸的交點為點,連結(jié)、,求的面積;

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

∵AB的中垂線交BC于D,AC的中垂線交BC于E,∴DA=DB,EA=EC,則△ADE的周長=AD+DE+AE=BD+DE+EC=BC=8,故選A.2、C【解析】分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值大于1時,n是正數(shù);當(dāng)原數(shù)的絕對值小于1時,n是負(fù)數(shù).解答:解:將361000000用科學(xué)記數(shù)法表示為3.61×1.故選C.3、C【解析】如圖:∵∠1=60°,∴∠3=∠1=60°,又∵a∥b,∴∠2+∠3=180°,∴∠2=120°,故選C.點睛:本題考查了平行線的性質(zhì),對頂角相等的性質(zhì),熟記性質(zhì)是解題的關(guān)鍵.平行線的性質(zhì)定理:兩直線平行,同位角相等,內(nèi)錯角相等,同旁內(nèi)角互補,兩條平行線之間的距離處處相等.4、B【解析】

在兩個直角三角形中,分別求出AB、AD即可解決問題;【詳解】在Rt△ABC中,AB=,在Rt△ACD中,AD=,∴AB:AD=:=,故選B.【點睛】本題考查解直角三角形的應(yīng)用、銳角三角函數(shù)等知識,解題的關(guān)鍵是學(xué)會利用參數(shù)解決問題.5、D【解析】

根據(jù)直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,可以判斷a、b的正負(fù),從而可以判斷直線y=bx-a經(jīng)過哪幾個象限,不經(jīng)過哪個象限,本題得以解決.【詳解】∵直線y=ax+b(a≠0)經(jīng)過第一,二,四象限,∴a<0,b>0,∴直線y=bx-a經(jīng)過第一、二、三象限,不經(jīng)過第四象限,故選D.【點睛】本題考查一次函數(shù)的性質(zhì),解答本題的關(guān)鍵是明確題意,利用一次函數(shù)的性質(zhì)解答.6、A【解析】

根據(jù)分式的運算法則即可【詳解】解:原式=,故選A.【點睛】本題主要考查分式的運算。7、C【解析】

設(shè)甲種筆記本買了x本,甲種筆記本的單價是y元,則乙種筆記本買了(40﹣x)本,乙種筆記本的單價是(y+3)元,根據(jù)題意列出關(guān)于x、y的二元一次方程組,求出x、y的值即可.【詳解】解:設(shè)甲種筆記本買了x本,甲種筆記本的單價是y元,則乙種筆記本買了(40﹣x)本,乙種筆記本的單價是(y+3)元,根據(jù)題意,得:,解得:,答:甲種筆記本買了25本,乙種筆記本買了15本.故選C.【點睛】本題考查的是二元二次方程組的應(yīng)用,能根據(jù)題意得出關(guān)于x、y的二元二次方程組是解答此題的關(guān)鍵.8、C【解析】解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故選C.9、A【解析】

用-1加上1,求出比-1大1的是多少即可.【詳解】∵-1+1=1,∴比-1大1的是1.故選:A.【點睛】本題考查了有理數(shù)加法的運算,解題的關(guān)鍵是要熟練掌握:“先符號,后絕對值”.10、B【解析】因為AB是⊙O的直徑,所以求得∠ADB=90°,進(jìn)而求得∠B的度數(shù),又因為∠B=∠C,所以∠C的度數(shù)可求出.解:∵AB是⊙O的直徑,

∴∠ADB=90°.

∵∠BAD=25°,

∴∠B=65°,

∴∠C=∠B=65°(同弧所對的圓周角相等).

故選B.

二、填空題(共7小題,每小題3分,滿分21分)11、【解析】試題分析:要將一個多項式分解因式的一般步驟是首先看各項有沒有公因式,若有公因式,則把它提取出來,之后再觀察是否是完全平方公式或平方差公式,若是就考慮用公式法繼續(xù)分解因式.因此,先提取公因式后繼續(xù)應(yīng)用平方差公式分解即可:.12、4【解析】試題分析:先根據(jù)眾數(shù)的定義求出a的值,再根據(jù)平均數(shù)的定義列出算式,再進(jìn)行計算即可.試題解析:∵3,a,4,5的眾數(shù)是4,∴a=4,∴這組數(shù)據(jù)的平均數(shù)是(3+4+4+5)÷4=4.考點:1.算術(shù)平均數(shù);2.眾數(shù).13、2a+b.【解析】

先去括號,再合并同類項即可得出答案.【詳解】原式=2a-2b+3b=2a+b.故答案為:2a+b.14、【解析】

設(shè)該船行駛的速度為x海里/時,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40=3x,解方程即可.【詳解】如圖所示:該船行駛的速度為x海里/時,3小時后到達(dá)小島的北偏西45°的C處,由題意得:AB=80海里,BC=3x海里,在直角三角形ABQ中,∠BAQ=60°,∴∠B=90°?60°=30°,∴AQ=AB=40,BQ=AQ=40,在直角三角形AQC中,∠CAQ=45°,∴CQ=AQ=40,∴BC=40+40=3x,解得:x=.即該船行駛的速度為海里/時;故答案為:.【點睛】本題考查的是解直角三角形,熟練掌握方向角是解題的關(guān)鍵.15、15π?18.【解析】

根據(jù)扇形的面積公式:S=分別計算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面積,最后由S陰影部分=S扇形ACE+S扇形BCD-S△ABC即可得到答案.【詳解】S陰影部分=S扇形ACE+S扇形BCD-S△ABC,∵S扇形ACE==12π,S扇形BCD==3π,S△ABC=×6×6=18,∴S陰影部分=12π+3π?18=15π?18.故答案為15π?18.【點睛】本題考查了扇形面積的計算,解題的關(guān)鍵是熟練的掌握扇形的面積公式.16、2【解析】分析:設(shè)CD=3x,則CE=1x,BE=12﹣1x,依據(jù)∠EBF=∠EFB,可得EF=BE=12﹣1x,由旋轉(zhuǎn)可得DF=CD=3x,再根據(jù)Rt△DCE中,CD2+CE2=DE2,即可得到(3x)2+(1x)2=(3x+12﹣1x)2,進(jìn)而得出CD=2.詳解:如圖所示,設(shè)CD=3x,則CE=1x,BE=12﹣1x.∵=,∠DCE=∠ACB=90°,∴△ACB∽△DCE,∴∠DEC=∠ABC,∴AB∥DE,∴∠ABF=∠BFE.又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠EBF=∠EFB,∴EF=BE=12﹣1x,由旋轉(zhuǎn)可得DF=CD=3x.在Rt△DCE中,∵CD2+CE2=DE2,∴(3x)2+(1x)2=(3x+12﹣1x)2,解得x1=2,x2=﹣3(舍去),∴CD=2×3=2.故答案為2.點睛:本題考查了相似三角形的判定與性質(zhì),勾股定理以及旋轉(zhuǎn)的性質(zhì),解題時注意:對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.17、3.【解析】

可以先由韋達(dá)定理得出兩個關(guān)于、的式子,題目中的式子變形即可得出相應(yīng)的與韋達(dá)定理相關(guān)的式子,即可求解.【詳解】得+=-2m-3,=m2,又因為,所以m2-2m-3=0,得m=3或m=-1,因為一元二次方程的兩個不相等的實數(shù)根,所以△>0,得(2m+3)2-4×m2=12m+9>0,所以m>,所以m=-1舍去,綜上m=3.【點睛】本題考查了根與系數(shù)的關(guān)系,將根與系數(shù)的關(guān)系與代數(shù)式相結(jié)合解題是解決本題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、路燈高CD為5.1米.【解析】

根據(jù)AM⊥EC,CD⊥EC,BN⊥EC,EA=MA得到MA∥CD∥BN,從而得到△ABN∽△ACD,利用相似三角形對應(yīng)邊的比相等列出比例式求解即可.【詳解】設(shè)CD長為x米,∵AM⊥EC,CD⊥EC,BN⊥EC,EA=MA,∴MA∥CD∥BN,∴EC=CD=x米,∴△ABN∽△ACD,∴=,即,解得:x=5.1.經(jīng)檢驗,x=5.1是原方程的解,∴路燈高CD為5.1米.【點睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是根據(jù)已知條件得到平行線,從而證得相似三角形.19、(1)證明見解析;(2)【解析】

(1)連接AD,求出∠PBC=∠ABC,求出∠ABP=90°,根據(jù)切線的判定得出即可;(2)解直角三角形求出BD,求出BC,根據(jù)勾股定理求出AD,根據(jù)相似三角形的判定和性質(zhì)求出BE,根據(jù)相似三角形的性質(zhì)和判定求出BP即可.【詳解】解:(1)連接AD,∵AB是⊙O的直徑,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分∠BAC,∴∠BAD=∠BAC,∵∠ADB=90°,∴∠BAD+∠ABD=90°,∵∠PBC=∠BAC,∴∠PBC+∠ABD=90°,∴∠ABP=90°,即AB⊥BP,∴PB是⊙O的切線;(2)∵∠PBC=∠BAD,∴sin∠PBC=sin∠BAD,∵sin∠PBC==,AB=10,∴BD=2,由勾股定理得:AD==4,∴BC=2BD=4,∵由三角形面積公式得:AD×BC=BE×AC,∴4×4=BE×10,∴BE=8,∴在Rt△ABE中,由勾股定理得:AE=6,∵∠BAE=∠BAP,∠AEB=∠ABP=90°,∴△ABE∽△APB,∴=,∴PB===.【點睛】本題考查了切線的判定、圓周角定理、勾股定理、解直角三角形、相似三角形的性質(zhì)和判定等知識點,能綜合運用性質(zhì)定理進(jìn)行推理是解此題的關(guān)鍵.20、(1)BC=2;(2)見解析【解析】試題分析:(1)連接OB,根據(jù)已知條件判定△OBC的等邊三角形,則BC=OC=2;(2)欲證明PB是⊙O的切線,只需證得OB⊥PB即可.(1)解:如圖,連接OB.∵AB⊥OC,∠AOC=60°,∴∠OAB=30°,∵OB=OA,∴∠OBA=∠OAB=30°,∴∠BOC=60°,∵OB=OC,∴△OBC的等邊三角形,∴BC=OC.又OC=2,∴BC=2;(2)證明:由(1)知,△OBC的等邊三角形,則∠COB=60°,BC=OC.∵OC=CP,∴BC=PC,∴∠P=∠CBP.又∵∠OCB=60°,∠OCB=2∠P,∴∠P=30°,∴∠OBP=90°,即OB⊥PB.又∵OB是半徑,∴PB是⊙O的切線.考點:切線的判定.21、(1)(3,3);(2)頂點N坐標(biāo)為(,);(3)詳見解析;(4)<n<.【解析】

(1)由正方形的性質(zhì)及A、B、D三點的坐標(biāo)求得AD=BC=1即可得;(2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,據(jù)此可得函數(shù)解析式,配方成頂點式即可得出答案;(3)將點N的坐標(biāo)代入y=x2,看是否符合解析式即可;(4)根據(jù)“小球發(fā)射之后能夠直接入籃,球沒有接觸籃筐”知:當(dāng)x=2時y>3,當(dāng)x=3時y<2,據(jù)此列出關(guān)于n的不等式組,解之可得.【詳解】(1)∵A(2,2),B(3,2),D(2,3),∴AD=BC=1,則點C(3,3),故答案為:(3,3);(2)把(0,0)(n,0)代入y=﹣x2+bx+c得:,解得:,∴拋物線解析式為y=﹣x2+nx=﹣(x﹣)2+,∴頂點N坐標(biāo)為(,);(3)由(2)把x=代入y=x2=()2=,∴拋物線的頂點在函數(shù)y=x2的圖象上運動;(4)根據(jù)題意,得:當(dāng)x=2時y>3,當(dāng)x=3時y<2,即,解得:<n<.【點睛】本題主要考查二次函數(shù)的應(yīng)用,解題的關(guān)鍵是掌握待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)及將實際問題轉(zhuǎn)化為二次函數(shù)的問題能力.22、(1)證明見解析;(2)BC=1.【解析】

(1)連接OB,根據(jù)切線的性質(zhì)和圓周角定理求出∠PBO=∠ABC=90°,即可求出答案;

(2)求出△ABC∽△PBO,得出比例式,代入求出即可.【詳解】(1)連接OB,∵PB是⊙O的切線,∴PB⊥OB,∴∠PBA+∠OBA=90°,∵AC是⊙O的直徑

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論