黑龍江省尚志市希望中學(xué)2024年數(shù)學(xué)八年級下冊期末綜合測試模擬試題含解析_第1頁
黑龍江省尚志市希望中學(xué)2024年數(shù)學(xué)八年級下冊期末綜合測試模擬試題含解析_第2頁
黑龍江省尚志市希望中學(xué)2024年數(shù)學(xué)八年級下冊期末綜合測試模擬試題含解析_第3頁
黑龍江省尚志市希望中學(xué)2024年數(shù)學(xué)八年級下冊期末綜合測試模擬試題含解析_第4頁
黑龍江省尚志市希望中學(xué)2024年數(shù)學(xué)八年級下冊期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩23頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

黑龍江省尚志市希望中學(xué)2024年數(shù)學(xué)八年級下冊期末綜合測試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.《中國詩詞大會(huì)》是央視科教頻道自主研發(fā)的一檔大型文化益智節(jié)目,節(jié)目帶動(dòng)全民感受詩詞之趣,分享詩詞之美,從古人的智慧和情懷中汲取營養(yǎng),涵養(yǎng)心靈.比賽中除了來自復(fù)旦附中的才女武亦姝表現(xiàn)出色外,其他選手的實(shí)力也不容小覷.下表是隨機(jī)抽取的10名挑戰(zhàn)者答對的題目數(shù)量的統(tǒng)計(jì)表,則這10名挑戰(zhàn)者答對的題目數(shù)量的中位數(shù)為答對題數(shù)()答對題數(shù)4578人數(shù)3421A.4 B.5 C.6 D.72.某校組織數(shù)學(xué)學(xué)科競賽為參加區(qū)級比賽做選手選拔工作,經(jīng)過多次測試后,有四位同學(xué)成為晉級的候選人,具體情況如下表,如果從這四位同學(xué)中選出一名晉級(總體水平高且狀態(tài)穩(wěn)定)你會(huì)推薦()甲乙丙丁平均分92949492方差35352323A.甲 B.乙 C.丙 D.丁3.關(guān)于x的分式方程有增根,則a的值為()A.﹣3 B.﹣5 C.0 D.24.如圖,□ABCD中,∠C=108°,BE平分∠ABC,則∠AEB等于()A.18° B.36° C.72° D.108°5.一個(gè)正多邊形的每一個(gè)外角都等于45°,則這個(gè)多邊形的邊數(shù)為()A.4 B.6 C.8 D.106.定義:在同一平面內(nèi)畫兩條相交、有公共原點(diǎn)的數(shù)軸x軸和y軸,交角a≠90°,這樣就在平面上建立了一個(gè)斜角坐標(biāo)系,其中w叫做坐標(biāo)角,對于坐標(biāo)平面內(nèi)任意一點(diǎn)P,過P作y軸和x軸的平行線,與x軸、y軸相交的點(diǎn)的坐標(biāo)分別是a和b,則稱點(diǎn)P的斜角坐標(biāo)為(a,b).如圖,w=60°,點(diǎn)P的斜角坐標(biāo)是(1,2),過點(diǎn)P作x軸和y軸的垂線,垂足分別為M、N,則四邊形OMPN的面積是(

)A.1336 B.13387.如圖,平行四邊形ABCD的對角線AC與BD相交于點(diǎn)O,要使它成為矩形,需再添加的條件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC8.已知:如圖,在長方形ABCD中,AB=4,AD=1.延長BC到點(diǎn)E,使CE=2,連接DE,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),以每秒2個(gè)單位的速度沿BC-CD-DA向終點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為秒,當(dāng)?shù)闹禐開____秒時(shí),△ABP和△DCE全等.A.1 B.1或3 C.1或7 D.3或79.某小組7名同學(xué)積極捐出自己的零花錢支援地震災(zāi)區(qū),他們捐款的數(shù)額分別是(單位:元):50,20,50,30,50,25,1.這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是().A.50,20 B.50,30 C.50,50 D.1,5010.下列事件中,屬于確定事件的是()A.拋擲一枚質(zhì)地均勻的骰子,正面向上的點(diǎn)數(shù)是6B.拋擲一枚質(zhì)地均勻的骰子,正面向上的點(diǎn)數(shù)大于6C.拋擲一枚質(zhì)地均勻的骰子,正面向上的點(diǎn)數(shù)小于6D.拋擲一枚質(zhì)地均勻的骰子6次,“正面向上的點(diǎn)數(shù)是6”至少出現(xiàn)一次二、填空題(每小題3分,共24分)11.如圖,在菱形ABCD中,對角線AC,BD交于點(diǎn)O,AB=5,BD=6,則菱形ABCD的面積是_____.12.如圖,平行四邊形的周長為,相交于點(diǎn),交于點(diǎn),則的周長為________.13.不等式組的解集是________;14.如圖,在矩形ABCD中,AD=6,AB=4,點(diǎn)E、G、H、F分別在AB、BC、CD、AD上,且AF=CG=2,BE=DH=1,點(diǎn)P是直線EF、GH之間任意一點(diǎn),連接PE、PF、PG、PH,則△PEF和△PGH的面積和等于________.15.如圖,已知在中,AB=AC,點(diǎn)D在邊BC上,要使BD=CD,還需添加一個(gè)條件,這個(gè)條件是_____________________.(只需填上一個(gè)正確的條件)16.如圖,一次函數(shù)y=kx+b的圖象經(jīng)過A、B兩點(diǎn),與x軸交于點(diǎn)C,則此一次函數(shù)的解析式為__________,△AOC的面積為_________.17.如圖,在Rt△ABC中,BD平分∠ABC交AC于點(diǎn)D,過D作DE∥BC交AB于點(diǎn)E,若DE剛好平分∠ADB,且AE=a,則BC=_____.18.已知x=2是關(guān)于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一個(gè)根,則k的值為_____.三、解答題(共66分)19.(10分)如圖,一次函數(shù)y=2x+4的圖象與x,y軸分別相交于點(diǎn)A,B,以AB為邊作正方形ABCD(點(diǎn)D落在第四象限).(1)求點(diǎn)A,B,D的坐標(biāo);(2)聯(lián)結(jié)OC,設(shè)正方形的邊CD與x相交于點(diǎn)E,點(diǎn)M在x軸上,如果△ADE與△COM全等,求點(diǎn)M的坐標(biāo).20.(6分)學(xué)校要對如圖所示的一塊地ABCD進(jìn)行綠化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米.(1)若連接AC,試證明:OABC是直角三角形;(2)求這塊地的面積.21.(6分)先化簡再求值:,其中.22.(8分)問題:如圖(1),點(diǎn)E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.(發(fā)現(xiàn)證明)小聰把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.(類比引申)如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點(diǎn)E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足關(guān)系時(shí),仍有EF=BE+FD.(探究應(yīng)用)如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點(diǎn)E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(結(jié)果取整數(shù),參考數(shù)據(jù):=1.41,=1.73)23.(8分)在中,D,E,F(xiàn)分別是三邊,,上的中點(diǎn),連接,,,,已知.(1)觀察猜想:如圖,當(dāng)時(shí),①四邊形的對角線與的數(shù)量關(guān)系是________;②四邊形的形狀是_______;(2)數(shù)學(xué)思考:如圖,當(dāng)時(shí),(1)中的結(jié)論①,②是否發(fā)生變化?若發(fā)生變化,請說明理由;(3)拓展延伸:如圖,將上圖的點(diǎn)A沿向下平移到點(diǎn),使得,已知,分別為,的中點(diǎn),求四邊形與四邊形的面積比.24.(8分)如圖,在平直角坐標(biāo)系xOy中,直線與反比例函數(shù)的圖象關(guān)于點(diǎn)(1)求點(diǎn)P的坐標(biāo)及反比例函數(shù)的解析式;(2)點(diǎn)是x軸上的一個(gè)動(dòng)點(diǎn),若,直接寫出n的取值范圍.25.(10分)如圖,將矩形紙片ABCD折疊,使點(diǎn)C與點(diǎn)A重合,折痕EF分別與AB、DC交于點(diǎn)E和點(diǎn)F,點(diǎn)B的對應(yīng)點(diǎn)為B′.(1)證明:AE=CF;(2)若AD=12,DC=18,求DF的長.26.(10分)在中,,,點(diǎn)是的中點(diǎn),點(diǎn)是射線上一點(diǎn),于點(diǎn),且,連接,作于點(diǎn),交直線于點(diǎn).(1)如圖(1),當(dāng)點(diǎn)在線段上時(shí),判斷和的數(shù)量關(guān)系,并加以證明;(2)如圖(2),當(dāng)點(diǎn)在線段的延長線上時(shí),問題(1)中的結(jié)論是否依然成立?如果成立,請求出當(dāng)和面積相等時(shí),點(diǎn)與點(diǎn)之間的距離;如果不成立,請說明理由.

參考答案一、選擇題(每小題3分,共30分)1、B【解析】

將這組數(shù)據(jù)從小到大的順序排列后,根據(jù)中位數(shù)的定義就可以求解.【詳解】解:將這組數(shù)據(jù)從小到大的順序排列后,處于中間位置第1和第6個(gè)數(shù)是1、1,那么由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是1.

故選:B.【點(diǎn)睛】本題為統(tǒng)計(jì)題,考查中位數(shù)的意義,中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻螅钪虚g的那個(gè)數(shù)(或最中間兩個(gè)數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會(huì)出錯(cuò).2、C【解析】在這四位同學(xué)中,乙、丙的平均分一樣,但丙的方差小,成績比較穩(wěn)定,由此可知,可推薦丙,故選C.3、B【解析】

分式方程去分母轉(zhuǎn)化為整式方程,由分式方程有增根,確定出x的值,代入整式方程計(jì)算即可求出a的值.【詳解】分式方程去分母得:x?2=a,由分式方程有增根,得到x+3=0,即x=?3,把x=?3代入整式方程得:a=?5,故選:B.【點(diǎn)睛】此題考查了分式方程的增根,增根確定后可按如下步驟進(jìn)行:①化分式方程為整式方程;②把增根代入整式方程即可求得相關(guān)字母的值.4、B【解析】

首先根據(jù)平行四邊形的性質(zhì),得出∠ABC的度數(shù),又由BE平分∠ABC,得出∠ABE=∠CBE,∠AEB和∠CBE是內(nèi)錯(cuò)角,相等,即可得出∠AEB.【詳解】解:∵□ABCD中,∠C=108°,∴∠ABC=180°-108°=72°又∵BE平分∠ABC,∴∠ABE=∠CBE=36°又∵∠AEB=∠CBE∴∠AEB=36°故答案為B.【點(diǎn)睛】此題主要考查利用平行四邊形的性質(zhì)求角的度數(shù),熟練掌握即可解題.5、C【解析】因?yàn)槎噙呅蔚耐饨呛蜑?60°,所以這個(gè)多邊形的邊數(shù)為:360÷45=8,故選C.6、B【解析】

添加輔助線,將四邊形OMPN轉(zhuǎn)化為直角三角形和平行四邊形,因此過點(diǎn)P作PA∥y軸,交x軸于點(diǎn)A,過點(diǎn)P作PB∥x軸交y軸于點(diǎn)B,易證四邊形OAPB是平行四邊形,利用平行四邊形的性質(zhì),可知OB=PA,OA=PB,由點(diǎn)P的斜角坐標(biāo)就可求出PB、PA的長,再利用解直角三角形分別求出PN,NB,PM,AM的長,然后根據(jù)S四邊形OMPN=S△PAM+S△PBN+S平行四邊形OAPB,利用三角形的面積公式和平行四邊形的面積公式,就可求出結(jié)果.【詳解】解:過點(diǎn)P作PA∥y軸,交x軸于點(diǎn)A,過點(diǎn)P作PB∥x軸交y軸于點(diǎn)B,∴四邊形OAPB是平行四邊形,∠NBP=w=∠PAM=60°,

∴OB=PA,OA=PB∵點(diǎn)P的斜角坐標(biāo)為(1,2),∴OA=1,OB=2,∴PB=1,PA=2,∵PM⊥x軸,PN⊥y軸,∴∠PMA=∠PNB=90°,在Rt△PAM中,∠PAM=60°,則∠APM=30°,∴PA=2AM=2,即AM=1PM=PAsin60°∴PM=3∴S△PAM=1在Rt△PBN中,∠PBN=60°,則∠BPN=30°,∴PB=2BN=1,即BN=1PN=PBsin60°∴PN=3∴S△PBN=12PN?BN=∵S四邊形OMPN=S△PAM+S△PBN+S平行四邊形OAPB=故答案為:B【點(diǎn)睛】本題考查了新概念斜角坐標(biāo)系、圖形與坐標(biāo)、含30°角直角三角形的性質(zhì)、三角函數(shù)、平行四邊形的判定與性質(zhì)、三角形面積與平行四邊形面積的計(jì)算等知識,熟練掌握新概念斜角坐標(biāo)系與含30°角直角三角形的性質(zhì)是解題的關(guān)鍵.7、B【解析】分析:根據(jù)矩形的判定定理(對角線相等的平行四邊形是矩形)推出即可.詳解:添加的條件是AC=BD.理由是:∵AC=BD,四邊形ABCD是平行四邊形,∴平行四邊形ABCD是矩形.故選B.點(diǎn)睛:本題考查了矩形的判定定理的應(yīng)用,注意:對角線相等的平行四邊形是矩形.8、C【解析】

分兩種情況進(jìn)行討論,根據(jù)題意得出BP=2t=2和AP=11-2t=2即可求得.【詳解】解:因?yàn)锳B=CD,若∠ABP=∠DCE=90°,BP=CE=2,根據(jù)SAS證得△ABP≌△DCE,

由題意得:BP=2t=2,

所以t=1,

因?yàn)锳B=CD,若∠BAP=∠DCE=90°,AP=CE=2,根據(jù)SAS證得△BAP≌△DCE,

由題意得:AP=11-2t=2,

解得t=2.

所以,當(dāng)t的值為1或2秒時(shí).△ABP和△DCE全等.

故選C.【點(diǎn)睛】本題考查全等三角形的判定,判定方法有:ASA,SAS,AAS,SSS,HL.9、C【解析】

根據(jù)眾數(shù)和中位數(shù)的定義進(jìn)行計(jì)算即可.【詳解】眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),在這一組數(shù)據(jù)中2是出現(xiàn)次數(shù)最多的,故眾數(shù)是2;將這組數(shù)據(jù)從小到大的順序排列為:20,25,30,2,2,2,1,處于中間位置的那個(gè)數(shù)是2,由中位數(shù)的定義可知,這組數(shù)據(jù)的中位數(shù)是2.故選:C.【點(diǎn)睛】本題考查眾數(shù)和中位數(shù),明確眾數(shù)和中位數(shù)的概念是關(guān)鍵.10、B【解析】

根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可.【詳解】A、拋擲一枚質(zhì)地均勻的骰子,正面向上的點(diǎn)數(shù)是6是隨機(jī)事件;B、拋擲一枚質(zhì)地均勻的骰子,正面向上的點(diǎn)數(shù)大于6是不可能事件;C、拋一枚質(zhì)地均勻的骰子,正面向上的點(diǎn)數(shù)小于6是隨機(jī)事件;D、拋擲一枚質(zhì)地均勻的骰子6次,“正面向上的點(diǎn)數(shù)是6”至少出現(xiàn)一次是隨機(jī)事件;故選:B.【點(diǎn)睛】本題考查的是必然事件、不可能事件、隨機(jī)事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機(jī)事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.二、填空題(每小題3分,共24分)11、24【解析】

根據(jù)菱形的對角線互相垂直,利用勾股定理列式求出OA,再根據(jù)菱形的對角線互相平分求出AC,然后利用菱形的面積等于對角線乘積的一半列式進(jìn)行計(jì)算即可得解.【詳解】∵四邊形ABCD是菱形,∴OB=OD=3,OA=OC,AC⊥BD,在Rt△AOB中,∠AOB=90°,根據(jù)勾股定理,得:,∴AC=2OA=8,∴S菱形ABCD=×AC×BD=×6×8=24.故答案為:24.【點(diǎn)睛】此題考查菱形的性質(zhì),勾股定理求線段,菱形的面積有兩種求法:①底乘以高;②對角線乘積的一半,解題中根據(jù)題中的已知條件選擇合適的方法.12、1【解析】

根據(jù)平行四邊形性質(zhì)得出AD=BC,AB=CD,OA=OC,根據(jù)線段垂直平分線得出AE=CE,求出CD+DE+EC=AD+CD,代入求出即可.【詳解】解:∵平行四邊形ABCD,

∴AD=BC,AB=CD,OA=OC,

∵EO⊥AC,

∴AE=EC,

∵AB+BC+CD+AD=16,

∴AD+DC=1,

∴△DCE的周長是:CD+DE+CE=AE+DE+CD=AD+CD=1,

故答案為1.【點(diǎn)睛】本題考查了平行四邊形性質(zhì)、線段垂直平分線性質(zhì)的應(yīng)用,關(guān)鍵是求出AE=CE,主要培養(yǎng)學(xué)生運(yùn)用性質(zhì)進(jìn)行推理的能力,題目較好,難度適中.13、1≤x<2【解析】

先分別解兩個(gè)不等式,求出它們的解集,再求兩個(gè)不等式解集的公共部分即可得到不等式組的解集.【詳解】,解①得x≥1,解②得x<2,∴1≤x<2.故答案為:1≤x<2.【點(diǎn)睛】本題考查了一元一次不等式組的解法,先分別解兩個(gè)不等式,求出它們的解集,再求兩個(gè)不等式解集的公共部分.不等式組解集的確定方法是:同大取大,同小取小,大小小大取中間,大大小小無解.14、1【解析】

連接EG,F(xiàn)H,根據(jù)題目數(shù)據(jù)可以證明△AEF與△CGH全等,根據(jù)全等三角形對應(yīng)邊相等可得EF=GH,同理可得EG=FH,然后根據(jù)兩組對邊相等的四邊形是平行四邊形可得四邊形EGHF是平行四邊形,所以△PEF和△PGH的面積和等于平行四邊形EGHF的面積的一半,再利用平行四邊形EGHF的面積等于矩形ABCD的面積減去四周四個(gè)小直角三角形的面積即可求解.【詳解】解:∵在矩形ABCD中,AD=6,AB=4,AF=CG=2,BE=DH=1,∴AE=AB-BE=4-1=3,CH=CD-DH=4-1=3,∴AE=CH,在△AEF與△CGH中,,∴△AEF≌△CGH(SAS),∴EF=GH,同理可得,△BGE≌△DFH,∴EG=FH,∴四邊形EGHF是平行四邊形,∵△PEF和△PGH的高的和等于點(diǎn)H到直線EF的距離,∴△PEF和△PGH的面積和=×平行四邊形EGHF的面積,平行四邊形EGHF的面積=4×6-×2×3-×1×(6-2)-×2×3-×1×(6-2),=24-3-2-3-2,=14,∴△PEF和△PGH的面積和=×14=1.故答案為1.考點(diǎn):矩形的性質(zhì);平行四邊形的判定與性質(zhì).15、AD⊥BC【解析】

根據(jù)等腰三角形“三線合一”,即可得到答案.【詳解】∵在中,AB=AC,,.故答案為:.【點(diǎn)睛】本題主要考查等腰三角形的性質(zhì),掌握等腰三角形“三線合一”,是解題的關(guān)鍵.16、y=x+21【解析】

一次函數(shù)y=kx+b的圖象經(jīng)過A、B兩點(diǎn),即A(2,1),B(0,2),代入可求出函數(shù)關(guān)系式.再根據(jù)三角形的面積公式,得出△AOC的面積.【詳解】解:一次函數(shù)y=kx+b的圖象經(jīng)過A、B兩點(diǎn),即A(2,1),B(0,2),與x軸交于點(diǎn)C(-2,0),根據(jù)一次函數(shù)解析式的特點(diǎn),可得出方程組,解得則此一次函數(shù)的解析式為y=x+2,△AOC的面積=|-2|×1÷2=1.則此一次函數(shù)的解析式為y=x+2,△AOC的面積為1.故答案為:y=x+2;1.【點(diǎn)睛】本題考查的是待定系數(shù)法求一次函數(shù)的解析式,解答本題的關(guān)鍵是掌握點(diǎn)在函數(shù)解析式上,點(diǎn)的橫縱坐標(biāo)就適合這個(gè)函數(shù)解析式.17、6a【解析】

根據(jù)角平分線的定義得到∠ABD=∠CBD,根據(jù)平行線的性質(zhì)得到∠ADE=∠C,∠EDB=∠CBD,求得∠C=30°,根據(jù)含30°角的直角三角形的性質(zhì)即可得到結(jié)論.【詳解】∵BD平分∠ABC,∴∠ABD=∠CBD,∵DE∥BC,∴∠ADE=∠C,∠EDB=∠CBD,∵DE平分∠ADB,∴∠ADE=∠EDB,∴∠CBD=∠C,∴∠ABC=2∠C,∵∠A=90°,∴∠ABC+∠C=90°,∴∠C=30°,∴∠ADE=30°,∵AE=a,∴DE=2a,∵∠EDB=∠DBC,∠DBE=∠EBD,∴BE=DE=2a,∴AB=3a,∴BC=2AB=6a.故答案為:6a.【點(diǎn)睛】本題考查角平分線的定義、平行線的性質(zhì)、及含30°角的直角三角形的性質(zhì),熟練掌握30°角所對的直角邊等于斜邊一半的性質(zhì)是解題關(guān)鍵.18、﹣1【解析】【分析】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,再解關(guān)于k的方程,然后根據(jù)一元二次方程的定義確定k的值即可.【詳解】把x=2代入kx2+(k2﹣2)x+2k+4=0得4k+2k2﹣4+2k+4=0,整理得k2+1k=0,解得k1=0,k2=﹣1,因?yàn)閗≠0,所以k的值為﹣1.故答案為:﹣1.【點(diǎn)睛】本題考查了一元二次方程的定義以及一元二次方程的解,能使一元二次方程左右兩邊相等的未知數(shù)的值是一元二次方程的解.三、解答題(共66分)19、(1)A(-2,0),B(0,4),D(2,-2);(2)M(5,0).【解析】

(1)由于一次函數(shù)y=2x+4的圖象與x、y軸分別交于點(diǎn)A、B,所以利用函數(shù)解析式即可求出A、B兩點(diǎn)的坐標(biāo),然后作DF⊥x軸于點(diǎn)F,由四邊形ABCD是正方形可以得到∠BAD=∠AOB=∠AFD=90o,AB=AD,接著證明△BAO≌△ADF,最后利用全等三角形的性質(zhì)可以得到DF=AO=2,AF=BO=4,從而求出點(diǎn)D的坐標(biāo);(2)過點(diǎn)C作CG⊥y軸于G,連接OC,作CM⊥OC交x軸于M,用求點(diǎn)D的方法求得點(diǎn)C的坐標(biāo)為(4,2),得出OC=2,由A、B的坐標(biāo)得到AB=2,從而OC=AB=AD,根據(jù)△ADE與△COM全等,利用全等三角形的性質(zhì)可知OM=AE,即OA=EM=2,利用C、D的坐標(biāo)求出直線CD的解析式,得出點(diǎn)E的坐標(biāo),根據(jù)EM=2,即可求出點(diǎn)M的坐標(biāo).【詳解】解:(1)∵一次函數(shù)y=2x+4的圖象與x,y軸分別相交于點(diǎn)A,B,∴A(-2,0),B(0,4),∴OA=2,OB=4,如圖1,過點(diǎn)D作DF⊥x軸于F,∴∠DAF+∠ADF=90°,∵四邊形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAF+∠BAO=90°,∴∠ADF=∠BAO,在△ADF和△BAO中,,∴△ADF≌△BAO(AAS),∴DF=OA=2,AF=OB=4,∴OF=AF-OA=2,∵點(diǎn)D落在第四象限,∴D(2,-2);(2)如圖2,過點(diǎn)C作CG⊥y軸于G,連接OC,作CM⊥OC交x軸于M,同(1)求點(diǎn)D的方法得,C(4,2),∴OC==2,∵A(-2,0),B(0,4),∴AB=2,∵四邊形ABCD是正方形,∴AD=AB=2=OC,∵△ADE與△COM全等,且點(diǎn)M在x軸上,∴△ADE≌△OCM,∴OM=AE,∵OM=OE+EM,AE=OE+OA,∴EM=OA=2,∵C(4,2),D(2,-2),∴直線CD的解析式為y=2x-6,令y=0,∴2x-6=0,∴x=3,∴E(3,0),∴OM=5,∴M(5,0).故答案為(1)A(-2,0),B(0,4),D(2,-2);(2)M(5,0).【點(diǎn)睛】本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,正方形的性質(zhì),全等三角形的判定與性質(zhì).20、(1)見解析;(2)這塊地的面積是24平方米.【解析】

(1)先根據(jù)勾股定理求出AC的長,再根據(jù)勾股定理的逆定理解答即可;(2)根據(jù)三角形的面積公式求解即可.【詳解】(1)∵AD=4,CD=3,AD⊥DC,由勾股定理可得:AC=,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形;(2)△ABC的面積△ACD的面積==24(m2),所以這塊地的面積是24平方米.【點(diǎn)睛】本題考查了勾股定理及勾股定理逆定理的應(yīng)用,在直角三角形中,如果兩條直角邊分別為a和b,斜邊為c,那么a2+b2=c2.反之也成立.21、3.【解析】

原式括號中兩項(xiàng)通分并利用同分母分式的加法法則計(jì)算,同時(shí)利用除以一個(gè)數(shù)等于乘以這個(gè)數(shù)的倒數(shù)將除法運(yùn)算化為乘法運(yùn)算,約分得到最簡結(jié)果,將的值代入化簡后的式子中計(jì)算,即可求出值.【詳解】解:原式,,當(dāng)時(shí),原式.【點(diǎn)睛】此題考查了分式的化簡求值,分式的加減運(yùn)算關(guān)鍵是通分,通分的關(guān)鍵是找最簡公分母;分式的乘除運(yùn)算關(guān)鍵是約分,約分的關(guān)鍵是找公因式,約分時(shí),分式的分子分母出現(xiàn)多項(xiàng)式,應(yīng)將多項(xiàng)式分解因式后再約分.22、【發(fā)現(xiàn)證明】證明見解析;【類比引申】∠BAD=2∠EAF;【探究應(yīng)用】1.2米.【解析】【發(fā)現(xiàn)證明】根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到△ADG≌△ABE,則GF=BE+DF,只要再證明△AFG≌△AFE即可.【類比引申】延長CB至M,使BM=DF,連接AM,證△ADF≌△ABM,證△FAE≌△MAE,即可得出答案;【探究應(yīng)用】利用等邊三角形的判定與性質(zhì)得到△ABE是等邊三角形,則BE=AB=80米.把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)150°至△ADG,根據(jù)旋轉(zhuǎn)的性質(zhì)可以得到△ADG≌△ABE,則GF=BE+DF,只要再證明△AFG≌△AFE即可得出EF=BE+FD.解:如圖(1),∵△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAF=45°,即∠DAF+∠BEA=∠EAF=45°,∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴BE+DF=EF.【類比引申】∠BAD=2∠EAF.理由如下:如圖(2),延長CB至M,使BM=DF,連接AM,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,AB=AD,∠ABM=∠D,BM=DF,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,AE=AE,∠FAE=∠MAE,AF=AM,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.故答案是:∠BAD=2∠EAF.【探究應(yīng)用】如圖3,把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)150°至△ADG,連接AF.∵∠BAD=150°,∠DAE=90°,∴∠BAE=60°.又∵∠B=60°,∴△ABE是等邊三角形,∴BE=AB=80米.根據(jù)旋轉(zhuǎn)的性質(zhì)得到:∠ADG=∠B=60°,又∵∠ADF=120°,∴∠GDF=180°,即點(diǎn)G在CD的延長線上.易得,△ADG≌△ABE,∴AG=AE,∠DAG=∠BAE,DG=BE,又∵∠EAG=∠BAD=150°,∴∠GAF=∠FAE,在△GAF和△FAE中,AG=AE,∠GAF=∠FAE,AF=AF,∴△AFG≌△AFE(SAS).∴GF=EF.又∵DG=BE,∴GF=BE+DF,∴EF=BE+DF=80+40(﹣1)≈1.2(米),即這條道路EF的長約為1.2米.“點(diǎn)睛”此題主要考查了四邊形綜合題,關(guān)鍵是正確畫出圖形,證明△AFG≌△AEF.此題是一道綜合題,難度較大,題目所給例題的思路,為解決此題做了較好的鋪墊.23、(1)①,②平行四邊形;(2)結(jié)論①不變,結(jié)論②由平行四邊形變?yōu)榱庑危碛稍斠娊馕?;?)【解析】

(1)根據(jù)三角形中位線定理,即可得出,進(jìn)而得解;由三角形中位線定理得出DE∥AC,,即可判定為平行四邊形;(2)由中位線定理得出,,,然后根據(jù),得出,,即可判定平行四邊形是菱形;(3)首先設(shè),,根據(jù)等腰直角三角形的性質(zhì),得出,進(jìn)而得出,然后由三角形中位線定理得,,經(jīng)分析可知:,且和互相垂直平分,即可得出四邊形為正方形,又由,,,得出四邊形為矩形,即可得出面積比.【詳解】解:(1)①,②平行四邊形;由已知條件和三角形中位線定理,得又∵∴②由三角形中位線定理得,DE∥AC,,∴四邊形是平行四邊形;(2)結(jié)論①不變,結(jié)論②由平行四邊形變?yōu)榱庑?,四邊形是菱形的理由是:∵,都是的中位線,∴,∴四邊形是平行四邊形∵是的中位線,∴∵∴,∴∴平行四邊形是菱形.(3)設(shè),當(dāng),是等腰直角三角形,∴∴由三角形中位線定理得,,∴,且和互相垂直平分∴四邊形為正方形,∵,EF⊥AD,∴∴又∵,∴四邊形為矩形,∴,∴所求面積比為【點(diǎn)睛】(1)此題主要考查三角形中位線定理的應(yīng)用,利用其進(jìn)行等式轉(zhuǎn)換和平行四邊形的判定,即可得解;(2)此題主要考查菱形的判定,熟練掌握,即可解題;(3)此題主要考查正方形和矩形的判定,關(guān)鍵是利用正方形和矩形的面積關(guān)系式,即可解題.24、(1);(2)【解析】

(1)先把P(1,a)代入y=x+2,求出a的值,確定P點(diǎn)坐標(biāo)為(1,3),然后把P(1,3)代入y=求出k的值,從而可確定反比例函數(shù)的解析式;(2)過P作PB⊥x軸于點(diǎn)B,則B點(diǎn)坐標(biāo)為(1,0),PB=3,然后利用PQ≤1,由垂線段最短可知,PQ≥3,然后利用PQ≤1,在直角三角形PBQ中,PQ=1時(shí),易確定n的取值范圍,要注意分點(diǎn)Q在點(diǎn)B左右兩種情況.當(dāng)點(diǎn)Q在點(diǎn)B左側(cè)時(shí),點(diǎn)Q坐標(biāo)為(-3,0);當(dāng)點(diǎn)Q在點(diǎn)B右側(cè)時(shí),點(diǎn)Q坐標(biāo)為(1,0),從而確定n的取值范圍.【詳解】解:(1)∵直線與反比例函數(shù)的圖象交于點(diǎn),∴.∴點(diǎn)P的坐標(biāo)為.∴.∴反比例函數(shù)的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論