2023-2024學(xué)年四川省瀘州市天立國(guó)際學(xué)校高三第二次模擬考試數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年四川省瀘州市天立國(guó)際學(xué)校高三第二次模擬考試數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年四川省瀘州市天立國(guó)際學(xué)校高三第二次模擬考試數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年四川省瀘州市天立國(guó)際學(xué)校高三第二次模擬考試數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年四川省瀘州市天立國(guó)際學(xué)校高三第二次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023-2024學(xué)年四川省瀘州市天立國(guó)際學(xué)校高三第二次模擬考試數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.有一改形塔幾何體由若千個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長(zhǎng)為8,如果改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是()A.8 B.7 C.6 D.42.等差數(shù)列的前項(xiàng)和為,若,,則數(shù)列的公差為()A.-2 B.2 C.4 D.73.點(diǎn)在所在的平面內(nèi),,,,,且,則()A. B. C. D.4.如圖是正方體截去一個(gè)四棱錐后的得到的幾何體的三視圖,則該幾何體的體積是()A. B. C. D.5.若變量,滿足,則的最大值為()A.3 B.2 C. D.106.若函數(shù)(其中,圖象的一個(gè)對(duì)稱中心為,,其相鄰一條對(duì)稱軸方程為,該對(duì)稱軸處所對(duì)應(yīng)的函數(shù)值為,為了得到的圖象,則只要將的圖象()A.向右平移個(gè)單位長(zhǎng)度 B.向左平移個(gè)單位長(zhǎng)度C.向左平移個(gè)單位長(zhǎng)度 D.向右平移個(gè)單位長(zhǎng)度7.在中,角所對(duì)的邊分別為,已知,.當(dāng)變化時(shí),若存在最大值,則正數(shù)的取值范圍為A. B. C. D.8.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則9.復(fù)數(shù)().A. B. C. D.10.若,則實(shí)數(shù)的大小關(guān)系為()A. B. C. D.11.函數(shù)的圖象大致是()A. B.C. D.12.若a>b>0,0<c<1,則A.logac<logbc B.logca<logcb C.a(chǎn)c<bc D.ca>cb二、填空題:本題共4小題,每小題5分,共20分。13.若復(fù)數(shù)滿足,其中為虛數(shù)單位,則的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)為_____.14.在四面體中,分別是的中點(diǎn).則下述結(jié)論:①四面體的體積為;②異面直線所成角的正弦值為;③四面體外接球的表面積為;④若用一個(gè)與直線垂直,且與四面體的每個(gè)面都相交的平面去截該四面體,由此得到一個(gè)多邊形截面,則該多邊形截面面積最大值為.其中正確的有_____.(填寫所有正確結(jié)論的編號(hào))15.已知,滿足約束條件,則的最小值為______.16.以,為圓心的兩圓均過,與軸正半軸分別交于,,且滿足,則點(diǎn)的軌跡方程為_________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在等腰梯形中,AD∥BC,,,,,分別為,,的中點(diǎn),以為折痕將折起,使點(diǎn)到達(dá)點(diǎn)位置(平面).(1)若為直線上任意一點(diǎn),證明:MH∥平面;(2)若直線與直線所成角為,求二面角的余弦值.18.(12分)已知函數(shù)(1)當(dāng)時(shí),求不等式的解集;(2)的圖象與兩坐標(biāo)軸的交點(diǎn)分別為,若三角形的面積大于,求參數(shù)的取值范圍.19.(12分)設(shè)函數(shù).(1)若恒成立,求整數(shù)的最大值;(2)求證:.20.(12分)如圖,點(diǎn)為圓:上一動(dòng)點(diǎn),過點(diǎn)分別作軸,軸的垂線,垂足分別為,,連接延長(zhǎng)至點(diǎn),使得,點(diǎn)的軌跡記為曲線.(1)求曲線的方程;(2)若點(diǎn),分別位于軸與軸的正半軸上,直線與曲線相交于,兩點(diǎn),且,試問在曲線上是否存在點(diǎn),使得四邊形為平行四邊形,若存在,求出直線方程;若不存在,說明理由.21.(12分)己知圓F1:(x+1)1+y1=r1(1≤r≤3),圓F1:(x-1)1+y1=(4-r)1.(1)證明:圓F1與圓F1有公共點(diǎn),并求公共點(diǎn)的軌跡E的方程;(1)已知點(diǎn)Q(m,0)(m<0),過點(diǎn)E斜率為k(k≠0)的直線與(Ⅰ)中軌跡E相交于M,N兩點(diǎn),記直線QM的斜率為k1,直線QN的斜率為k1,是否存在實(shí)數(shù)m使得k(k1+k1)為定值?若存在,求出m的值,若不存在,說明理由.22.(10分)已知函數(shù).(1)若在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;(2)若,對(duì),恒有成立,求實(shí)數(shù)的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解析】

則從下往上第二層正方體的棱長(zhǎng)為:,從下往上第三層正方體的棱長(zhǎng)為:,從下往上第四層正方體的棱長(zhǎng)為:,以此類推,能求出改形塔的最上層正方體的邊長(zhǎng)小于1時(shí)該塔形中正方體的個(gè)數(shù)的最小值的求法.【詳解】最底層正方體的棱長(zhǎng)為8,則從下往上第二層正方體的棱長(zhǎng)為:,從下往上第三層正方體的棱長(zhǎng)為:,從下往上第四層正方體的棱長(zhǎng)為:,從下往上第五層正方體的棱長(zhǎng)為:,從下往上第六層正方體的棱長(zhǎng)為:,從下往上第七層正方體的棱長(zhǎng)為:,從下往上第八層正方體的棱長(zhǎng)為:,∴改形塔的最上層正方體的邊長(zhǎng)小于1,那么該塔形中正方體的個(gè)數(shù)至少是8.故選:A.【點(diǎn)睛】本小題主要考查正方體有關(guān)計(jì)算,屬于基礎(chǔ)題.2、B【解析】

在等差數(shù)列中由等差數(shù)列公式與下標(biāo)和的性質(zhì)求得,再由等差數(shù)列通項(xiàng)公式求得公差.【詳解】在等差數(shù)列的前項(xiàng)和為,則則故選:B【點(diǎn)睛】本題考查等差數(shù)列中求由已知關(guān)系求公差,屬于基礎(chǔ)題.3、D【解析】

確定點(diǎn)為外心,代入化簡(jiǎn)得到,,再根據(jù)計(jì)算得到答案.【詳解】由可知,點(diǎn)為外心,則,,又,所以①因?yàn)?,②?lián)立方程①②可得,,,因?yàn)?,所以,即.故選:【點(diǎn)睛】本題考查了向量模長(zhǎng)的計(jì)算,意在考查學(xué)生的計(jì)算能力.4、C【解析】

根據(jù)三視圖作出幾何體的直觀圖,結(jié)合三視圖的數(shù)據(jù)可求得幾何體的體積.【詳解】根據(jù)三視圖還原幾何體的直觀圖如下圖所示:由圖可知,該幾何體是在棱長(zhǎng)為的正方體中截去四棱錐所形成的幾何體,該幾何體的體積為.故選:C.【點(diǎn)睛】本題考查利用三視圖計(jì)算幾何體的體積,考查空間想象能力與計(jì)算能力,屬于基礎(chǔ)題.5、D【解析】

畫出約束條件的可行域,利用目標(biāo)函數(shù)的幾何意義求解最大值即可.【詳解】解:畫出滿足條件的平面區(qū)域,如圖示:如圖點(diǎn)坐標(biāo)分別為,目標(biāo)函數(shù)的幾何意義為,可行域內(nèi)點(diǎn)與坐標(biāo)原點(diǎn)的距離的平方,由圖可知到原點(diǎn)的距離最大,故.故選:D【點(diǎn)睛】本題考查了簡(jiǎn)單的線性規(guī)劃問題,考查數(shù)形結(jié)合思想,屬于中檔題.6、B【解析】

由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出,由五點(diǎn)法作圖求出的值,可得的解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式,得出結(jié)論.【詳解】根據(jù)已知函數(shù)其中,的圖象過點(diǎn),,可得,,解得:.再根據(jù)五點(diǎn)法作圖可得,可得:,可得函數(shù)解析式為:故把的圖象向左平移個(gè)單位長(zhǎng)度,可得的圖象,故選B.【點(diǎn)睛】本題主要考查由函數(shù)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出,由五點(diǎn)法作圖求出的值,函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式的應(yīng)用,屬于中檔題.7、C【解析】

因?yàn)?,,所以根?jù)正弦定理可得,所以,,所以,其中,,因?yàn)榇嬖谧畲笾?,所以由,可得,所以,所以,解得,所以正?shù)的取值范圍為,故選C.8、C【解析】

根據(jù)空間中平行關(guān)系、垂直關(guān)系的相關(guān)判定和性質(zhì)可依次判斷各個(gè)選項(xiàng)得到結(jié)果.【詳解】對(duì)于,若,則可能為平行或異面直線,錯(cuò)誤;對(duì)于,若,則可能為平行、相交或異面直線,錯(cuò)誤;對(duì)于,若,且,由面面垂直的判定定理可知,正確;對(duì)于,若,只有當(dāng)垂直于的交線時(shí)才有,錯(cuò)誤.故選:.【點(diǎn)睛】本題考查空間中線面關(guān)系、面面關(guān)系相關(guān)命題的辨析,關(guān)鍵是熟練掌握空間中的平行關(guān)系與垂直關(guān)系的相關(guān)命題.9、A【解析】試題分析:,故選A.【考點(diǎn)】復(fù)數(shù)運(yùn)算【名師點(diǎn)睛】復(fù)數(shù)代數(shù)形式的四則運(yùn)算的法則是進(jìn)行復(fù)數(shù)運(yùn)算的理論依據(jù),加減運(yùn)算類似于多項(xiàng)式的合并同類項(xiàng),乘法法則類似于多項(xiàng)式的乘法法則,除法運(yùn)算則先將除式寫成分式的形式,再將分母實(shí)數(shù)化.10、A【解析】

將化成以為底的對(duì)數(shù),即可判斷的大小關(guān)系;由對(duì)數(shù)函數(shù)、指數(shù)函數(shù)的性質(zhì),可判斷出與1的大小關(guān)系,從而可判斷三者的大小關(guān)系.【詳解】依題意,由對(duì)數(shù)函數(shù)的性質(zhì)可得.又因?yàn)椋?故選:A.【點(diǎn)睛】本題考查了指數(shù)函數(shù)的性質(zhì),考查了對(duì)數(shù)函數(shù)的性質(zhì),考查了對(duì)數(shù)的運(yùn)算性質(zhì).兩個(gè)對(duì)數(shù)型的數(shù)字比較大小時(shí),底數(shù)相同,則構(gòu)造對(duì)數(shù)函數(shù),結(jié)合對(duì)數(shù)的單調(diào)性可判斷大??;若真數(shù)相同,則結(jié)合對(duì)數(shù)函數(shù)的圖像或者換底公式可判斷大小;若真數(shù)和底數(shù)都不相同,則可與中間值如1,0比較大小.11、A【解析】

根據(jù)復(fù)合函數(shù)的單調(diào)性,同增異減以及采用排除法,可得結(jié)果.【詳解】當(dāng)時(shí),,由在遞增,所以在遞增又是增函數(shù),所以在遞增,故排除B、C當(dāng)時(shí),若,則所以在遞減,而是增函數(shù)所以在遞減,所以A正確,D錯(cuò)誤故選:A【點(diǎn)睛】本題考查具體函數(shù)的大致圖象的判斷,關(guān)鍵在于對(duì)復(fù)合函數(shù)單調(diào)性的理解,記住常用的結(jié)論:增+增=增,增-減=增,減+減=減,復(fù)合函數(shù)單調(diào)性同增異減,屬中檔題.12、B【解析】試題分析:對(duì)于選項(xiàng)A,,,,而,所以,但不能確定的正負(fù),所以它們的大小不能確定;對(duì)于選項(xiàng)B,,,兩邊同乘以一個(gè)負(fù)數(shù)改變不等號(hào)方向,所以選項(xiàng)B正確;對(duì)于選項(xiàng)C,利用在第一象限內(nèi)是增函數(shù)即可得到,所以C錯(cuò)誤;對(duì)于選項(xiàng)D,利用在上為減函數(shù)易得,所以D錯(cuò)誤.所以本題選B.【考點(diǎn)】指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)【名師點(diǎn)睛】比較冪或?qū)?shù)值的大小,若冪的底數(shù)相同或?qū)?shù)的底數(shù)相同,通常利用指數(shù)函數(shù)或?qū)?shù)函數(shù)的單調(diào)性進(jìn)行比較;若底數(shù)不同,可考慮利用中間量進(jìn)行比較.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

把已知等式變形,再由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),求出得答案.【詳解】,,則,的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)點(diǎn)的坐標(biāo)為,故答案為【點(diǎn)睛】本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查復(fù)數(shù)的代數(shù)表示法及其幾何意義準(zhǔn)確計(jì)算是關(guān)鍵,是基礎(chǔ)題.14、①③④.【解析】

補(bǔ)圖成長(zhǎng)方體,在長(zhǎng)方體中利用割補(bǔ)法求四面體的體積,和外接球的表面積,以及異面直線的夾角,作出截面即可計(jì)算截面面積的最值.【詳解】根據(jù)四面體特征,可以補(bǔ)圖成長(zhǎng)方體設(shè)其邊長(zhǎng)為,,解得補(bǔ)成長(zhǎng),寬,高分別為的長(zhǎng)方體,在長(zhǎng)方體中:①四面體的體積為,故正確②異面直線所成角的正弦值等價(jià)于邊長(zhǎng)為的矩形的對(duì)角線夾角正弦值,可得正弦值為,故錯(cuò);③四面體外接球就是長(zhǎng)方體的外接球,半徑,其表面積為,故正確;④由于,故截面為平行四邊形,可得,設(shè)異面直線與所成的角為,則,算得,.故正確.故答案為:①③④.【點(diǎn)睛】此題考查根據(jù)幾何體求體積,外接球的表面積,異面直線夾角和截面面積最值,關(guān)鍵在于熟練掌握點(diǎn)線面位置關(guān)系的處理方法,補(bǔ)圖法作為解決體積和外接球問題的常用方法,平常需要積累常見幾何體的補(bǔ)圖方法.15、2【解析】

作出可行域,平移基準(zhǔn)直線到處,求得的最小值.【詳解】畫出可行域如下圖所示,由圖可知平移基準(zhǔn)直線到處時(shí),取得最小值為.故答案為:【點(diǎn)睛】本小題主要考查線性規(guī)劃求最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.16、【解析】

根據(jù)圓的性質(zhì)可知在線段的垂直平分線上,由此得到,同理可得,由對(duì)數(shù)運(yùn)算法則可知,從而化簡(jiǎn)得到,由此確定軌跡方程.【詳解】,,和的中點(diǎn)坐標(biāo)為,且在線段的垂直平分線上,,即,同理可得:,,,點(diǎn)的軌跡方程為.故答案為:.【點(diǎn)睛】本題考查動(dòng)點(diǎn)軌跡方程的求解問題,關(guān)鍵是能夠利用圓的性質(zhì)和對(duì)數(shù)運(yùn)算法則構(gòu)造出滿足的方程,由此得到結(jié)果.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)【解析】

(1)根據(jù)中位線證明平面平面,即可證明MH∥平面;(2)以,,為,,軸建立空間直角坐標(biāo)系,找到點(diǎn)的坐標(biāo)代入公式即可計(jì)算二面角的余弦值.【詳解】(1)證明:連接,∵,,分別為,,的中點(diǎn),∴,又∵平面,平面,∴平面,同理,平面,∵平面,平面,,∴平面平面,∵平面,∴平面.(2)連接,在和中,由余弦定理可得,,由與互補(bǔ),,,可解得,于是,∴,,∵,直線與直線所成角為,∴,又,∴,即,∴平面,∴平面平面,∵為中點(diǎn),,∴平面,如圖所示,分別以,,為,,軸建立空間直角坐標(biāo)系,則,,,,.設(shè)平面的法向量為,∴,即.令,則,,可得平面的一個(gè)法向量為.又平面的一個(gè)法向量為,∴,∴二面角的余弦值為.【點(diǎn)睛】此題考查線面平行,建系通過坐標(biāo)求二面角等知識(shí)點(diǎn),屬于一般性題目.18、(1)(2)【解析】

(1)當(dāng)時(shí),不等式可化為:,再利用絕對(duì)值的意義,分,,討論求解.(2)根據(jù)可得,得到函數(shù)的圖象與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)分別為,再利用三角形面積公式由求解.【詳解】(1)當(dāng)時(shí),不等式可化為:①當(dāng)時(shí),不等式化為,解得:②當(dāng)時(shí),不等式化為,解得:,③當(dāng)時(shí),不等式化為解集為,綜上,不等式的解集為.(2)由題得,所以函數(shù)的圖象與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)分別為,的面積為,由,得(舍),或,所以,參數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查絕對(duì)值不等式的解法和絕對(duì)值函數(shù)的應(yīng)用,還考查分類討論的思想和運(yùn)算求解的能力,屬于中檔題.19、(1)整數(shù)的最大值為;(2)見解析.【解析】

(1)將不等式變形為,構(gòu)造函數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性并確定其最值,從而得到正整數(shù)的最大值;(2)根據(jù)(1)的結(jié)論得到,利用不等式的基本性質(zhì)可證得結(jié)論.【詳解】(1)由得,令,,令,對(duì)恒成立,所以,函數(shù)在上單調(diào)遞增,,,,,故存在使得,即,從而當(dāng)時(shí),有,,所以,函數(shù)在上單調(diào)遞增;當(dāng)時(shí),有,,所以,函數(shù)在上單調(diào)遞減.所以,,,因此,整數(shù)的最大值為;(2)由(1)知恒成立,,令則,,,,,上述等式全部相加得,所以,,因此,【點(diǎn)睛】本題考查導(dǎo)數(shù)在函數(shù)單調(diào)性、最值中的應(yīng)用,以及放縮法證明不等式的技巧,屬于難題.20、(1)(2)不存在;詳見解析【解析】

(1)設(shè),,,通過,即為的中點(diǎn),轉(zhuǎn)化求解,點(diǎn)的軌跡的方程.(2)設(shè)直線的方程為,先根據(jù),可得,①,再根據(jù)韋達(dá)定理,點(diǎn)在橢圓上可得,②,將①代入②可得,該方程無解,問題得以解決【詳解】(1)設(shè),,則,,由題意知,所以為中點(diǎn),由中點(diǎn)坐標(biāo)公式得,即,又點(diǎn)在圓:上,故滿足,得.曲線的方程.(2)由題意知直線的斜率存在且不為零,設(shè)直線的方程為,因?yàn)?,故,即①,?lián)立,消去得:,設(shè),,,,,因?yàn)樗倪呅螢槠叫兴倪呅危?,點(diǎn)在橢圓上,故,整理得②,將①代入②,得,該方程無解,故這樣的直線不存在.【點(diǎn)睛】本題考查點(diǎn)的軌跡方程的求法、滿足條件的點(diǎn)是否存在的判斷與直線方程的求法,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.21、(1)見解析,(1)存在,【解析】

(1)求出圓和圓的圓心和半徑,通過圓F1與圓F1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論