版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
河北省滄州市青縣2024屆數(shù)學八年級下冊期末達標檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.直角三角形的兩直角邊長分別為6和8,則斜邊上的中線長是()A.10 B.2.5 C.5 D.82.某科研小組在網(wǎng)上獲取了聲音在空氣中傳播的速度與空氣溫度關系的一些數(shù)據(jù)(如下表):溫度/℃﹣20﹣100102030聲速/m/s318324330336342348下列說法錯誤的是()A.在這個變化中,自變量是溫度,因變量是聲速B.溫度越高,聲速越快C.當空氣溫度為20℃時,聲音5s可以傳播1740mD.當溫度每升高10℃,聲速增加6m/s3.某市從不同學校隨機抽取100名初中生對“使用數(shù)學教輔用書的冊數(shù)”進行調(diào)查,統(tǒng)計結果如下:冊數(shù)0123人數(shù)10203040關于這組數(shù)據(jù),下列說法正確的是()A.眾數(shù)是2冊 B.中位數(shù)是2冊C.平均數(shù)是3冊 D.方差是1.54.下列計算中,運算錯誤的是()A. B.C. D.(-)2=35.如圖,梯子AB靠在墻上,梯子的底端A到墻根O的距離為2米,梯子的頂端B到地面距離為7米.現(xiàn)將梯子的底端A向外移動到A',使梯子的底端A'到墻根O的距離等于3米,同時梯子的頂端B下降至B',那么BA.小于1米 B.大于1米 C.等于1米 D.無法確定6.為考察兩名實習工人的工作情況,質(zhì)檢部將他們工作第一周每天生產(chǎn)合格產(chǎn)品的個數(shù)整理成甲,乙兩組數(shù)據(jù),如下表:甲26778乙23488關于以上數(shù)據(jù),說法正確的是()A.甲、乙的眾數(shù)相同 B.甲、乙的中位數(shù)相同C.甲的平均數(shù)小于乙的平均數(shù) D.甲的方差小于乙的方差7.輪船從B處以每小時50海里的速度沿南偏東30°方向勻速航行,在B處觀測燈塔A位于南偏東75°方向上,輪船航行半小時到達C處,在C處觀測燈塔A位于北偏東60°方向上,則C處與燈塔A的距離是()海里.A. B. C.50 D.258.如圖,在2×2的正方形網(wǎng)格中,每個小正方形邊長為1,點A,B,C均為格點,以點A為圓心,AB長為半徑作弧,交格線于點D,則CD的長為()A. B. C. D.2﹣9.方程有()A.兩個不相等的實數(shù)根 B.兩個相等的實數(shù)根 C.無實數(shù)根 D.無法確定10.如圖,菱形ABCD的一邊中點M到對角線交點O的距離為5cm,則菱形ABCD的周長為()A.5cm B.10cm C.20cm D.40cm11.邊長為a的等邊三角形,記為第1個等邊三角形,取其各邊的三等分點,順次連接得到一個正六邊形,記為第1個正六邊形,取這個正六邊形不相鄰的三邊中點,順次連接又得到一個等邊三角形,記為第2個等邊三角形,取其各邊的三等分點,順次連接又得到一個正六邊形,記為第2個正六邊形(如圖),…,按此方式依次操作,則第6個正六邊形的邊長為()A. B. C. D.12.四邊形ABCD中,對角線AC、BD相交于點O,給出下列四組條件:①AB∥CD,AD∥BC;②AB=CD,AD=BC;③AO=CO,BO=DO;④AB∥CD,AD=BC.其中一定能判斷這個四邊形是平行四邊形的條件共有A.1組 B.2組 C.3組 D.4組二、填空題(每題4分,共24分)13.如圖,已知雙曲線y=kx(k>0)經(jīng)過直角三角形OAB斜邊OB的中點D,與直角邊AB相交于點C.若△OBC的面積為3,則k=_____14.如圖,在Rt△ABC中,∠B=90°,AB=,BC=3,D、E分別是AB、AC的中點,延長BC至點F,使CF=BC,連接DF、EF,則EF的長為____.15.商家花費760元購進某種水果80千克,銷售中有5%的水果正常損耗,為了避免虧本,售價至少應定為_______元/千克.16.如圖,在平面直角坐標系中,A(4,0),B(0,3),以點A為圓心,AB長為半徑畫弧,交x軸的負半軸于點C,則點C坐標為______.17.若一個多邊形的內(nèi)角和是其外角和的3倍,則這個多邊形的邊數(shù)是______.18.如圖,點E是正方形ABCD邊AD的中點,連接CE,過點A作AF⊥CE交CE的延長線于點F,過點D作DG⊥CF交CE于點G,已知AD=2,則線段AF的長是_____.三、解答題(共78分)19.(8分)如圖,直線l1:y=2x+1與直線l2:y=mx+4相交于點P(1,b)(1)求b,m的值(2)垂直于x軸的直線x=a與直線l1,l2分別相交于C,D,若線段CD長為2,求a的值20.(8分)如圖,四邊形ABCD和四邊形AEFB都是平行四邊形,求證:△ADE≌△BCF.21.(8分)為了推動我區(qū)教育教學發(fā)展,加快教師的成長與提升,學年度某名師工作室開展了多次送教下鄉(xiāng)活動.在某次研討課活動中,為了分析某節(jié)復習課的教學效果,課前,張老師讓八()班每位同學做道類似題目(與這節(jié)課內(nèi)容相關)析某節(jié)復至少容對,解題情況如圖所示:課后,再讓學生做道類似的題目.結果如表所示.已知每位學生至少答對題.(1)根據(jù)圖表信息填空:;.(2)該班課前解題時答對題數(shù)的眾數(shù)是;課后答對題數(shù)的中位數(shù)是.(3)通過計算課前,課后學生答對題數(shù)的平均數(shù),評價這節(jié)復習課的教學效果.22.(10分)閱讀下列材料,完成(1)、(2)小題.在平面直角坐標系中,已知軸上兩點,的距離記作,如果,是平面上任意兩點,我們可以通過構造直角三角形來求間的距離,如圖1,過點、分別向軸、軸作垂線,和,,垂足分別是,,,,直線交于點,在中,,∴∴,我們稱此公式為平面直角坐標系內(nèi)任意兩點,間的距離公式(1)直接應用平面內(nèi)兩點間距離公式計算點,的距離為_________(2)如圖2,已知在平面直角坐標系中有兩點,,為軸上任意一點,求的最小值23.(10分)某市從今年1月起調(diào)整居民用水價格,每立方米消費上漲20%,小明家去年12月的水費是40元,而今年4月的水費是60元,已知小明家今年4月的用水量比去年12月用水量多4立方米,求該市今年居民用水的價格.24.(10分)甲、乙兩人加工同一種機器零件,甲比乙每小時多加工10個零件,甲加工150個零件所用的時間與乙加工120個零件所用時間相等,求甲、乙兩人每小時各加工多少個機器零件.25.(12分)如圖,在中,點,是直線上的兩點,,連結,,,.(1)求證:四邊形是平行四邊形.(2)若,,,四邊形是矩形,求的長.26.在一個布口袋里裝著白、紅、黑三種顏色的小球,它們除顏色之外沒有任何其它區(qū)別,其中有白球3只、紅球2只、黑球1只.袋中的球已經(jīng)攪勻.(1)閉上眼睛隨機地從袋中取出1只球,求取出的球是黑球的概率;(2)若取出的第1只球是紅球,將它放在桌上,閉上眼睛從袋中余下的球中再隨機地取出1只球,這時取出的球還是紅球的概率是多少?(3)若取出一只球,將它放回袋中,閉上眼睛從袋中再隨機地取出1只球,兩次取出的球都是白球概率是多少?(用列表法或樹狀圖法計算)
參考答案一、選擇題(每題4分,共48分)1、C【解析】
已知直角三角形的兩條直角邊,根據(jù)勾股定理即可求斜邊的長度,根據(jù)斜邊中線長為斜邊長的一半即可解題.【詳解】已知直角三角形的兩直角邊為6、8,
則斜邊長為=10,
故斜邊的中線長為×10=5,
故選:C.【點睛】考查了勾股定理在直角三角形中的運用,考查了斜邊中線長為斜邊長的一半的性質(zhì),本題中正確的運用勾股定理求斜邊的長是解題的關鍵.2、C【解析】
根據(jù)自變量、因變量的含義,以及聲音在空氣中傳播的速度與空氣溫度關系逐一判斷即可.【詳解】∵在這個變化中,自變量是溫度,因變量是聲速,∴選項A正確;
∵根據(jù)數(shù)據(jù)表,可得溫度越高,聲速越快,∴選項B正確;
∵342×5=1710(m),∴當空氣溫度為20℃時,聲音5s可以傳播1710m,∴選項C錯誤;
∵324-318=6(m/s),330-324=6(m/s),336-330=6(m/s),342-336=6(m/s),348-342=6(m/s),∴當溫度每升高10℃,聲速增加6m/s,∴選項D正確.故選C.【點睛】此題主要考查了自變量、因變量的含義和判斷,要熟練掌握.3、B【解析】
根據(jù)方差、眾數(shù)、中位數(shù)及平均數(shù)的定義,依次計算各選項即可作出判斷.【詳解】解:A、眾數(shù)是3冊,結論錯誤,故A不符合題意;
B、中位數(shù)是2冊,結論正確,故B符合題意;
C、平均數(shù)是(0×10+1×20+2×30+3×40)÷100=2冊,結論錯誤,故C不符合題意;
D、方差=×[10×(0-2)2+20×(1-2)2+30×(2-2)2+40×(3-2)2]=1,結論錯誤,故D不符合題意.
故選:B.【點睛】本題考查方差、平均數(shù)、中位數(shù)及眾數(shù),屬于基礎題,掌握各部分的定義及計算方法是解題的關鍵.4、C【解析】
根據(jù)二次根式的除法法則對A進行判斷;根據(jù)二次根式的乘法法則對B進行判斷;根據(jù)二次根式的加減法對C進行判斷;根據(jù)二次根式的性質(zhì)對D進行判斷.【詳解】A、=,所以A選項的計算正確;B、=,所以B選項的計算正確;C、與不能合并,所以C選項的計算錯誤;D、(-)2=3,所以D選項的計算正確.故選:C.【點睛】本題考查了二次根式的混合運算:先把二次根式化為最簡二次根式,然后進行二次根式的乘除運算,再合并即可.5、A【解析】
由題意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移動過程中長短不變,所以AB=A′B′,又由題意可知OA′=3,利用勾股定理分別求OB′長,把其相減得解.【詳解】解:在直角三角形AOB中,因為OA=2,OB=7由勾股定理得:AB=53,由題意可知AB=A′B′=53,又OA′=3,根據(jù)勾股定理得:OB′=211,∴BB′=7-211<1.故選A.【點睛】本題考查了勾股定理的應用,解題時注意勾股定理應用的環(huán)境是在直角三角形中.6、D【解析】
分別根據(jù)眾數(shù)、中位數(shù)、平均數(shù)、方差的定義進行求解后進行判斷即可得.【詳解】甲:數(shù)據(jù)7出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)為7,排序后最中間的數(shù)是7,所以中位數(shù)是7,,=4.4,乙:數(shù)據(jù)8出現(xiàn)了2次,次數(shù)最多,所以眾數(shù)為8,排序后最中間的數(shù)是4,所以中位數(shù)是4,,=6.4,所以只有D選項正確,故選D.【點睛】本題考查了眾數(shù)、中位數(shù)、平均數(shù)、方差,熟練掌握相關定義及求解方法是解題的關鍵.7、D【解析】
根據(jù)題中所給信息,求出∠BCA=90°,再求出∠CBA=45°,從而得到△ABC為等腰直角三角形,然后根據(jù)解直角三角形的知識解答.【詳解】根據(jù)題意,∠1=∠2=30°,∵∠ACD=60°,∴∠ACB=30°+60°=90°,∴∠CBA=75°﹣30°=45°,∴∠A=45°,∴AB=AC.∵BC=50×0.5=25,∴AC=BC=25(海里).故選D.考點:1等腰直角三角形;2方位角.8、D【解析】
由勾股定理求出DE,即可得出CD的長.【詳解】解:連接AD,如圖所示:∵AD=AB=2,∴DE==,∴CD=2﹣;故選D.【點睛】本題考查勾股定理;由勾股定理求出DE是解題關鍵.9、A【解析】
根據(jù)根的差別式進行判斷即可.【詳解】解:∵a=1,b=3,c=2,∴?==1>0∴這個方程有兩個不相等的實數(shù)根.故選:A.【點睛】本題考查了一元二次方程根的判別式,正確理解根的判別式是解題的關鍵.10、D【解析】
根據(jù)菱形的性質(zhì)得出AB=BC=CD=AD,AO=OC,根據(jù)三角形的中位線求出BC,即可得出答案.【詳解】∵四邊形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周長為40cm,故選D.【點睛】本題考查了菱形的性質(zhì)和三角形的中位線定理,能根據(jù)菱形的性質(zhì)得出AO=OC是解此題的關鍵.11、A【解析】連接AD、DB、DF,求出∠AFD=∠ABD=90°,根據(jù)HL證兩三角形全等得出∠FAD=60°,求出AD∥EF∥GI,過F作FZ⊥GI,過E作EN⊥GI于N,得出平行四邊形FZNE得出EF=ZN=a,求出GI的長,求出第一個正六邊形的邊長是a,是等邊三角形QKM的邊長的;同理第二個正六邊形的邊長是等邊三角形GHI的邊長的;求出第五個等邊三角形的邊長,乘以即可得出第六個正六邊形的邊長.連接AD、DF、DB.∵六邊形ABCDEF是正六邊形,∴∠ABC=∠BAF=∠AFE,AB=AF,∠E=∠C=120°,EF=DE=BC=CD,∴∠EFD=∠EDF=∠CBD=∠BDC=30°,∵∠AFE=∠ABC=120°,∴∠AFD=∠ABD=90°,在Rt△ABD和RtAFD中∴Rt△ABD≌Rt△AFD(HL),∴∠BAD=∠FAD=×120°=60°,∴∠FAD+∠AFE=60°+120°=180°,∴AD∥EF,∵G、I分別為AF、DE中點,∴GI∥EF∥AD,∴∠FGI=∠FAD=60°,∵六邊形ABCDEF是正六邊形,△QKM是等邊三角形,∴∠EDM=60°=∠M,∴ED=EM,同理AF=QF,即AF=QF=EF=EM,∵等邊三角形QKM的邊長是a,∴第一個正六邊形ABCDEF的邊長是a,即等邊三角形QKM的邊長的,過F作FZ⊥GI于Z,過E作EN⊥GI于N,則FZ∥EN,∵EF∥GI,∴四邊形FZNE是平行四邊形,∴EF=ZN=a,∵GF=AF=×a=a,∠FGI=60°(已證),∴∠GFZ=30°,∴GZ=GF=a,同理IN=a,∴GI=a+a+a=a,即第二個等邊三角形的邊長是a,與上面求出的第一個正六邊形的邊長的方法類似,可求出第二個正六邊形的邊長是×a;同理第第三個等邊三角形的邊長是×a,與上面求出的第一個正六邊形的邊長的方法類似,可求出第三個正六邊形的邊長是××a;同理第四個等邊三角形的邊長是××a,第四個正六邊形的邊長是×××a;第五個等邊三角形的邊長是×××a,第五個正六邊形的邊長是××××a;第六個等邊三角形的邊長是××××a,第六個正六邊形的邊長是×××××a,即第六個正六邊形的邊長是×a,故選A.12、C【解析】如圖,(1)∵AB∥CD,AD∥BC,∴四邊形ABCD是平行四邊形;(2)∵AB∥CD,∴∠ABC+∠BCD=180°,又∵∠BAD=∠BCD,∴∠BAD+∠ABC=180°,∴AD∥BC,∴四邊形ABCD是平行四邊形;(3)∵在四邊形ABCD中,AO=CO,BO=DO,∴四邊形ABCD是平行四邊形;(4)∵在四邊形ABCD中,AB∥CD,AD=BC,∴四邊形ABCD可能是等腰梯形,也可能是平行四邊形;綜上所述,上述四組條件一定能判定四邊形ABCD是平行四邊形的有3組.故選C.二、填空題(每題4分,共24分)13、2【解析】解:過D點作DE⊥x軸,垂足為E,∵Rt△OAB中,∠OAB=90°,∴DE∥AB,∵D為Rt△OAB斜邊OB的中點D,∴DE為Rt△OAB的中位線,∵△OED∽△OAB,∴兩三角形的相似比為,∵雙曲線,可知,,由,得,解得14、【解析】
連接DE、CD,先證明四邊形DEFC為平行四邊形,再求出CD的長,即為EF的長.【詳解】連接DE、CD,∵D、E分別是AB、AC的中點,CF=BC∴DE=BC=CF,DE∥BF,∴四邊形DEFC為平行四邊形,∵BD=AB=,BC=3,AB⊥BF,∴EF=CD=【點睛】此題主要考查四邊形的線段求解,解題的關鍵是根據(jù)題意作出輔助線,求證平行四邊形,再進行求解.15、1.【解析】
解:設售價至少應定為x元/千克,依題可得方程x(1-5%)×80≥760,解得x≥1故答案為1.【點睛】本題考查一元一次不等式的應用.16、(﹣1,0)【解析】
根據(jù)勾股定理求出AB的長,由AB=AC即可求出C點坐標.【詳解】解:∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB==5∴AC=5,∴點C的橫坐標為:4-5=-1,縱坐標為:0,∴點C的坐標為(-1,0).故答案為(-1,0).【點睛】本題考查了勾股定理和坐標與圖形性質(zhì)的應用,解此題的關鍵是求出的長,注意:在直角三角形中,兩直角邊的平方和等于斜邊的平方.17、8【解析】
解:設邊數(shù)為n,由題意得,180(n-2)=3603解得n=8.所以這個多邊形的邊數(shù)是8.18、1【解析】
先利用正方形的性質(zhì)得到∠ADC=90°,CD=AD=1,再利用E點為AD的中點得到AE=DE=,則利用勾股定理可計算出CE=5,然后證明Rt△AEF∽Rt△CED,從而利用相似比可計算出AF的長.【詳解】∵四邊形ABCD為正方形,∴∠ADC=90°,CD=AD=1,∵點E是正方形ABCD邊AD的中點,∴AE=DE=,在Rt△CDE中,∵AF⊥CE,∴∠F=90°,∵∠AEF=∠CED,∴Rt△AEF∽Rt△CED,∴,即∴AF=1.故答案為1.【點睛】本題考查了正方形的性質(zhì):正方形的四條邊都相等,四個角都是直角;正方形的兩條對角線相等,互相垂直平分,并且每條對角線平分一組對角;正方形具有四邊形、平行四邊形、矩形、菱形的一切性質(zhì).也考查了相似三角形的判定與性質(zhì).三、解答題(共78分)19、(1)-1;(2)或.【解析】
(1)由點P(1,b)在直線l1上,利用一次函數(shù)圖象上點的坐標特征,即可求出b值,再將點P的坐標代入直線l2中,即可求出m值;(2)由點C、D的橫坐標,即可得出點C、D的縱坐標,結合CD=2即可得出關于a的含絕對值符號的一元一次方程,解之即可得出結論.【詳解】(1)∵點P(1,b)在直線l1:y=2x+1上,∴b=2×1+1=3;∵點P(1,3)在直線l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)當x=a時,yC=2a+1;當x=a時,yD=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=,∴a=或a=.20、見解析.【解析】
由四邊形ABCD和四邊形AEFB,證明四邊形DEFC為平行四邊形,根據(jù)平行四邊形的性質(zhì)可以得到△ADE和△BCF的三邊相等,從而證明它們?nèi)?【詳解】解:證明:∵四邊形ABCD為平行四邊形,∴,∵四邊形AEFB是平行四邊形,∴,∴,∴四邊形DEFC為平行四邊形,∴DE=FC,在△ADE和△BCF中∵∴△ADE≌△BCF(SSS)【點睛】本題考查全等三角形的判定,平行四邊形的判定和性質(zhì).在解決本題中易證明三角形的兩組對應邊AD=BC,AE=BF,所以解題關鍵是證明四邊形DEFC為平行四邊形,并因此證明DE=FC.21、(1);;(2)題,題;(3)這節(jié)復習課的教學效果明顯.,【解析】
求得頻數(shù)之和即可得出b的值,再利用總數(shù)b求出a的值根據(jù)眾數(shù)和中位數(shù)的定義求得答案求出答對題數(shù)的平均數(shù)即可.【詳解】解:(1)b=4+7+10+9+7+3=40(人),a=40-2-3-3-9-13=10(人)(2)根據(jù)眾數(shù)和中位數(shù)的定義,求得眾數(shù)為題,中位線為題(3)課前答對題數(shù)的平均數(shù)為(題),課后答對題數(shù)的平均數(shù)為(題),從答對題數(shù)的平均數(shù)知,這節(jié)復習課的教學效果明顯.,【點睛】本題考查頻率分布表,熟練掌握計算法則是解題關鍵.22、(1)5;(2)【解析】
(1)利用兩點間的距離公式解答;(2)作點關于軸對稱的點,連接,交軸于,點即為所求,再利用兩點間的距離公式求解即可?!驹斀狻拷猓海?)故答案為:5(2)如圖2,作點關于軸對稱的點,連接,交軸于,點即為所求.∵∴∴∴的最小值為【點睛】本題考查了一次函數(shù)綜合題.解答(2)題時,是根據(jù)“兩點之間,線段最短”來找點P的位置的.23、該市今年居民用水價格為3元/立方米.【解析】分析:首先設該市去年居民用水價格為元/立方米,則今年居民用水價格為元/立方米,根據(jù)用水量列出分式方程,從而得出答案.詳解:解:設該市去年居
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度資源型企業(yè)收購合同3篇
- 二零二五年度房屋租賃保險代理服務合同關于房屋出租3篇
- 二零二五年度農(nóng)業(yè)機械全程作業(yè)與農(nóng)村電商服務合同3篇
- 2025房屋裝修合同范本
- 智慧黨建活動室廣告裝飾工程合同【超級完整版】
- 《洞察愛的細節(jié)》課件
- 2024年項目融資擔保合同模板
- 2024微商品牌合作代理合同模板3篇
- 無創(chuàng)眶周抗衰規(guī)范
- 2024年美容美發(fā)銷售返利及美麗產(chǎn)業(yè)發(fā)展合同3篇
- 控制系統(tǒng)的滯后校正設計
- 燈會安全施工方案
- CNAS-CL02:2023 醫(yī)學實驗室質(zhì)量和能力認可準則
- 溫濕度記錄表
- 痛經(jīng)癥狀量表(CMSS)全
- 住院醫(yī)師規(guī)范化培訓教學查房課件
- 檢修平臺施工方案
- 第六單元大單元教學設計統(tǒng)編版語文八年級上冊
- GB/T 713.2-2023承壓設備用鋼板和鋼帶第2部分:規(guī)定溫度性能的非合金鋼和合金鋼
- 寵物養(yǎng)護與經(jīng)營專業(yè)《寵物解剖生理》課程標準
- 滬教2011課標版三年級起點五年級下冊《Buying Clothes》說課稿
評論
0/150
提交評論